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Abstract: This paper gropes the stability and Hopf bifurcation of a delayed synthetic drug
transmission model with two stages of addiction and Holling Type-II functional response. The critical
point at which a Hopf bifurcation occurs can be figured out by using the escalating time delay
of psychologically addicts as a bifurcation parameter. Directly afterwards, properties of the Hopf
bifurcation are explored with aid of the central manifold theorem and normal form theory. Specially,
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effectiveness of the obtained results and analyze influence of some influential parameters on dynamics
of the model, some numerical simulations are ultimately addressed.
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1. Introduction

In recent years, as a kind of new infectious disease, sucking drugs has attracted attention of scholars
all over the world. According to the World Drug Situation Report (2019), in 2017, about 271 million
people abused drugs, accounting for 5.5% of the global population aged 15-64 [1]. It also showed
that 0.585 million people died of drug abuse in 2017. In addition, there are also 1.4 million drug
users infected with HIV and 5.6 million drug users suffering from hepatitis C. Compared with the
traditional drugs such as heroin and cocaine, synthetic drugs which are mainly composed of chemicals,
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are relatively cheap and easy to obtain. Therefore, synthetic drug abusers are increasing rapidly.
According to the report of China Drug Situation Report (2017), among 2.553 million drug abusers,
1.538 million people abused synthetic drugs, accounting for 60.2% [2]. In 2018, the current number
of drug addicts in China declined for the first time, accounting for 0.18% of the total population [3].
From the statistical data, it indicates that China has made some achievements in drug abuse control.
However, the abuse of synthetic drugs is still spreading, and types and structures of drug abuse have
changed. Due to these facts, it is urgent to take extraordinary effective measures to curb and eliminate
the spread of synthetic drugs.

In the last decades, social problems such as binge drinking, heavy smoking and drug abuse have
been referred to in terms of epidemics [4,5]. There have been some mathematical models developed to
explore the dynamics of drinking [6–9], smoking [10–15] and drug abuse [16–22]. Recently, Saha and
Samanta proposed synthetic drug transmission model with two stages of addiction and Holling Type-II
functional response [23]:

dS (t)
dt = Λ − δS (t) − βS (t)(P1(t)+bP2(t))

A+S (t) ,

dP1(t)
dt =

βS (t)(P1(t)+bP2(t))
A+S (t) − αP1(t) − (δ + γ)P1(t),

dP2(t)
dt = αP1(t) + ηT (t) − ρP2(t) − δP2(t),

dT (t)
dt = γP1(t) + ρP2(t) − ηT (t) − δT (t),

(1.1)

where S (t) is standing for the number of susceptible individuals at time t; P1(t) is denoting the number
of psychologically addicts at time t; P2(t) is indicating the number of physiologically addicts at time
t; T (t) is representing the number of addicts under treatment at time t. Λ is the recruitment rate of
susceptible individuals; δ is the natural death rate of all the populations; β is the transmission rate
of psychologically addicts; bβ is the transmission rate of psychologically addicts; A is the average
number of contacts with others per unit time; α, γ, η and ρ are state transition rates. Obviously, Saha
and Samanta [23] assumed that the contact rate of physiologically addicts is multiple of the contact
rate of psychologically addicts.

Generally speaking, a susceptible individual is more likely to initiate drug abuse when he contacts
with physiological addicts compared to psychologically addicts [22]. In this sense, there should be a
delay before psychologically addicts can escalate into physiologically addicts. Meanwhile, it is worthy
to note that time delay plays extremely important role on population dynamics. Numerous studies
have revealed that time delay can vary the amplitude and cause the occurrence of Hopf bifurcation.
Guo et al. [24] considered the effect of the conversion time delay on a predator-prey model with food
subsidies and derived the sufficient conditions for local Hopf bifurcations at the positive equilibrium,
and analyzed the direction of Hopf bifurcations and stability of the bifurcating periodic solutions.
Kundu et al. [25,26] analyzed the existence for different form of the predator-prey system with stage
structure by regarding the corresponding time delay as the bifurcation parameter. Huang et al. [27]
studied Hopf bifurcation of a delayed fractional predator-prey model. Zheng et al. [28] analyzed Hopf
bifurcation for a fractional order delayed paddy ecosystem in the fallow season. Miao and Kang [29]
investigated Hopf bifurcation for an HIV infection model with Beddington-DeAngelis incidence by
using different combinations of two delays as the bifurcation parameters. Zhang et al. [30] studied Hopf
bifurcation for an SVEIR epidemic model with vaccination with multiple delays. Zhang et al. [31]
proposed a delayed e-epidemic model for computer virus with graded infection rates and performed
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Hopf bifurcation analysis and nonlinear stability analysis. Zhang and Zhao [32] formulated an e-
SEIARS model with three delays for point-to-group worm propagation and analyzed Hopf bifurcation
by taking different combinations of the three delays as bifurcation parameter. Motivated by the works
above, we introduce the escalating time delay of psychologically addicts into system (1.1) and consider
the following delayed synthetic drug transmission model with two stages of addiction and Holling
Type-II functional response:

dS (t)
dt = Λ − δS (t) − βS (t)(P1(t)+bP2(t))

A+S (t) ,

dP1(t)
dt =

βS (t)(P1(t)+bP2(t))
A+S (t) − αP1(t − τ) − (δ + γ)P1(t),

dP2(t)
dt = αP1(t − τ) + ηT (t) − ρP2(t) − δP2(t),

dT (t)
dt = γP1(t) + ρP2(t) − ηT (t) − δT (t),

(1.2)

where τ is the escalating time delay of psychologically addicts. The foundation of the current paper is
arranged as follows. In Section 2, existence of Hopf bifurcation is analyzed. In Section 3, properties
of the Hopf bifurcation are determined. In Section 4, global stability of the model is proved by
constructing a suitable Lyapunov function. The effectiveness of our findings is certified by performing
some numerical simulations in Section 5. Finally, we end our paper with a conclusion.

2. Existence of Hopf bifurcation

If R0 =
βΛ(ρ+δ)+bαβΛ

(ρ+δ)(Aδ+Λ)(α+δ+γ) > 1 drug addiction equilibrium E∗(S ∗, P∗1, P
∗
2,T

∗), where

S ∗ =
Λ − (α + δ + γ)P∗1

δ
,

P∗1 =
βΛδ(η + δ + ρ) + bβΛ(αη + αδ + ηγ) − δ(α + δ + γ)(η + δ + ρ)(Aδ + Λ)
(α + δ + γ)[βδ(η + δ + ρ) + bβ(αη + αδ + ηγ) − δ(α + δ + γ)(η + δ + ρ)]

,

P∗2 =
(αη + αδ + ηγ)P∗1
δ(η + δ + ρ)

,

T ∗ =
γP∗1 + ρP∗2
η + δ

.

The linear section of system (1.2) at E∗(S ∗, P∗1, P
∗
2,T

∗) is

dS (t)
dt = S 11S (t) + S 12P1(t) + S 13P2(t),

dP1(t)
dt = S 21S (t) + S 22P1(t) + S 23P2(t) + P22P1(t − τ),

dP2(t)
dt = S 33P2(t) + S 34T (t) + P32P1(t − τ),

dT (t)
dt = S 42P1(t) + S 43P2(t) + S 44T (t),

(2.1)

with

S 11 = −

(
δ +

βA(P∗1 + bP∗2)
(A + S ∗)2

)
, S 12 = −

βS ∗

A + S ∗
, S 13 = −

bβS ∗

A + S ∗
,

S 21 =
βA(P∗1 + bP∗2)

(A + S ∗)2 , S 22 =
βS ∗

A + S ∗
− (δ + γ), S 23 =

bβS ∗

A + S ∗
, P22 = −α,
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S 33 = −(ρ + δ), S 34 = η, P32 = α, S 42 = γ, S 43 = ρ, S 44 = −(η + δ).

The corresponding characteristic equation is

λ4 + S 3λ
3 + S 2λ

2 + S 1λ + S 0 + (P3λ
3 + P2λ

2 + P1λ + P0)e−λτ = 0, (2.2)

where

S 0 = S 11S 34(S 23S 42 − S 22S 43) + S 33S 44(S 11S 22 − S 12S 21)
+S 21S 34(S 12S 43 − S 13S 42),

S 1 = S 34S 43(S 11 + S 22) + S 12S 21(S 33 + S 44) − S 23S 34S 42

−S 11S 44(S 22 + S 33) − S 22S 33(S 11 + S 44),
S 2 = S 11S 44 + S 22S 33 − S 12S 21 − S 34S 43 + (S 11 + S 44)(S 22 + S 33),
S 3 = −(S 11 + S 44 + S 22 + S 33),
P0 = S 11S 44S 33P22 + S 13S 21S 44P32 − S 11S 44S 23P32 − S 11S 34S 43P22,

P1 = S 23P32(S 11 + S 44) − P22(S 11S 44 + S 11S 33 + S 33S 44)
−S 13S 21P32 + S 34S 43P22,

P2 = P22(S 11 + S 44 + S 33) − S 23P32, P3 = −P22.

For τ = 0, Eq (2.2) becomes

λ4 + S 03λ
3 + S 02λ

2 + S 01λ + S 00 = 0, (2.3)

with
S 00 = S 0 + P0, S 01 = S 1 + P1, S 02 = S 2 + P2, S 03 = S 3 + P3.

Thus, it is straightforward to know that if (T1): S 00 > 0, S 03 > 0, S 02S 03 > S 01,
S 01S 02S 03 > S 00S 2

03 + S 2
01 is satisfied, then system (1.2) is locally asymptotically stable.

For τ > 0, λ = i$ ($ > 0) is the root of Eq (2.2) if and only if (P1$ − P3$
3) sin τ$ + (P0 − P2$

2) cos τ$ = S 2$
2 −$4 − S 0,

(P1$ − P3$
3) cos τ$ − (P0 − P2$

2) sin τ$ = S 3$
3 − S 1$.

(2.4)

As a result,
$8 + S̃ 3$

6 + S̃ 2$
4 + S̃ 1$

2 + S̃ 0 = 0, (2.5)

where

S̃ 0 = S 2
0 − P2

0,

S̃ 1 = S 2
1 − 2S 0S 2 + 2P0P2 − P2

1,

S̃ 2 = S 2
2 + 2S 0 − 2S 1S 3 − P2

2 + 2P1P3,

S̃ 3 = S 2
3 − 2S 2 − P2

3.
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Let ω = $2. Then Eq (2.4) becomes

ω4 + S̃ 3ω
3 + S̃ 2ω

2 + S̃ 1ω + S̃ 0 = 0. (2.6)

Based on the discussion about the distribution of roots of Eq (2.6) in [33], we have the following
lemma.
Lemma 1. If (a) S̃ 0 < 0; or (b) S̃ 0 ≥ 0, ∆ ≥ 0, ω1 > 0 and F(ω1) < 0; or (c) if S̃ 0 ≥ 0, ∆ < 0, and there
exists ω∗ ∈ {ω1, ω2, ω3}, such that ω∗ > 0 and F(ω∗) ≤ 0, then Eq (2.6) has at leat one positive root,
where

x1 =
S̃ 2

2
−

3
16

S̃ 2
3, x2 =

S̃ 3
3

32
−

S̃ 2S̃ 3

8
+ S̃ 1,

∆ =

( x2

2

)2

+

( x1

3

)2

,Γ =
−1 +

√
3i

2
,

z1 =
3

√
−

x2

2
+
√

∆ +
3

√
−

x2

2
−
√

∆,

z2 =
3

√
−

x2

2
+
√

∆Γ +
3

√
−

x2

2
−
√

∆Γ2,

z3 =
3

√
−

x2

2
+
√

∆Γ2 +
3

√
−

x2

2
−
√

∆Γ,

ωi = zi −
3S̃ 3

4
, z = ω +

3S̃ 3

4
,

F(ω) = ω4 + S̃ 3ω
3 + S̃ 2ω

2 + S̃ 1ω + S̃ 0.

In what follows, we suppose that (T2): Eq (2.6) has four positive roots, which are denoted by ω1,
ω2, ω3 and ω4, respectively. Then, the roots of Eq (2.5) can be denoted as $i =

√
ωi, i = 1, 2, · · · , 4.

For $i, by the aid of Eq (2.4), we have

τ
j
i =

1
$i
× arccos

{ P̃1($i)
P̃2($i)

}
+ 2 jπ, i = 1, 2, · · · , 4, j = 0, 1, 2, · · · . (2.7)

where

P̃1($i) = (P2 − P3S 3)$6
i + (P3S 1 − P0 − P2S 2)$4

i

+(P0S 2 − P1S 1 + P2S 0)$2
i − P0S 0,

P̃2($i) = P2
3$

6
i + (P2

2 − 2P1P3)$4
i + (P2

1 − 2P0P2)$2
i + P2

0.

Define
τ0 = min{τ0

i |i = 1, 2, 3, 4.} (2.8)

Then, when τ = τ0, Eq (2.2) has a pair of purely imaginary roots ±i$0. Differentiating Eq (2.2)
with regard to τ, it can be calculated as[dλ

dτ

]−1

= −
4λ3 + 3S 3λ

2 + 2S 2λ + S 1

λ(λ4 + S 3λ3 + S 2λ2 + S 1λ + S 0)
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+
3P2

3 + 2P2λ + P1

λ(P3λ3 + P2λ2 + P1λ + P0)
−
τ

λ
. (2.9)

Replacing λ = i$0, then

Re
[dλ
dτ

]−1

=
F′(ω0)
P̃2($0)

, (2.10)

where F(ω) = ω4 + S̃ 3ω
3 + S̃ 2ω

2 + S̃ 1ω + S̃ 0 and ω0 = $2
0.

To further cast about for the conditions for the occurrence of Hopf bifurcation, the hypothesis (T3):
F′(ω0) , 0 is necessary. In conclusion, the following theorem can be concluded.

Theorem 2.1. If the conditions (T1)-(T3) are satisfied, then system (1.2) is locally asymptotically
stable when τ∈[0, τ0); system (1.2) undergoes a Hopf bifurcation near τ = τ0 and a family of periodic
solutions bifurcate from the drug addiction equilibrium E∗(S ∗, P∗1, P

∗
2,T∗).

3. Properties of Hopf bifurcation

Let τ = τ0 + µ, µ ∈ R, u1(t) = S (τt), u2(t) = P1(τt), u3(t) = P2(τt) and u4(t) = T (τt). Then, system
(1.2) becomes

u̇(t) = Lµ(ut) + F(µ, ut), (3.1)

where
Lµφ = (τ0 + µ)

(
S trixφ(0) + Ptrixφ(−1)

)
, (3.2)

F(µ, φ) = (F1, F2, 0, 0)T , (3.3)

S trix =


S 11 S 12 S 13 0
S 21 S 22 S 23 0
0 0 S 33 S 34

0 S 42 S 43 S 44

 , Ptrix =


0 0 0 0
0 P22 0 0
0 P32 0 0
0 0 0 0

 ,
and

F1 = S 14φ
2
1(0) + S 15φ1(0)φ2(0) + S 16φ1(0)φ3(0) + S 17φ

3
1(0)

+S 18φ
2
1(0)φ2(0) + S 19φ

2
1(0)φ3(0) + · · · ,

F2 = S 24φ
2
1(0) + S 25φ1(0)φ2(0) + S 26φ1(0)φ3(0) + S 27φ

3
1(0)

+S 28φ
2
1(0)φ2(0) + S 29φ

2
1(0)φ3(0) + · · · ,

with

S 14 =
Aβ(P∗1 + bP∗2)

(A + S ∗)3 , S 15 =
Aβ

(A + S ∗)2 , S 16 =
bAβ

(A + S ∗)2 ,

S 17 = −
Aβ(P∗1 + bP∗2)

(A + S ∗)4 , S 18 =
Aβ

(A + S ∗)3 , S 19 =
bAβ

(A + S ∗)3 ,

S 24 = −
Aβ(P∗1 + bP∗2)

(A + S ∗)3 , S 25 = −
Aβ

(A + S ∗)2 , S 26 = −
bAβ

(A + S ∗)2 ,
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S 27 =
Aβ(P∗1 + bP∗2)

(A + S ∗)4 , S 28 = −
Aβ

(A + S ∗)3 , S 29 = −
bAβ

(A + S ∗)3 .

According to Riesz representation theorem, there exists a 4 × 4 matrix function η(θ, µ) (−1 ≤ θ ≤ 0),
satisfying For φ ∈ C[−1, 0], let

Lµφ =

∫ 0

−1
dη(θ, µ)φ(θ). (3.4)

Further
η(θ, µ) = (τ0 + µ)

(
S trixδ(θ) + Ptrixδ(θ + 1)

)
. (3.5)

Here, δ(θ) is the Dirac delta function.
Define

A(µ)φ =


dφ(θ)

dθ , −1 ≤ θ < 0,∫ 0

−1
dη(θ, %)φ(θ), θ = 0,

(3.6)

and

R(µ)φ =

 0, −1 ≤ θ < 0,

F(µ, φ), θ = 0,
(3.7)

where φ ∈ C([−1, 0],R4). Then system (3.1) is equivalent to

u̇(t) = A(µ)ut + R(µ)ut. (3.8)

For ϕ ∈ C1([0, 1], (R4)∗), define

A∗(ϕ) =

 −
dϕ(s)

ds , 0 < s ≤ 1,∫ 0

−1
dηT (s, 0)ϕ(−s), s = 0,

(3.9)

and a inner product form

〈ϕ(s), φ(θ)〉 = ϕ̄(0)φ(0) −
∫ 0

θ=−1

∫ θ

ξ=0
ϕ̄(ξ − θ)dη(θ)φ(ξ)dξ, (3.10)

with η(θ) = η(θ, 0). Let y(θ) = (1, y2, y3, y4)T eiτ0$0θ be the eigenvector of A(0) associated with +iτ0$0

and y∗(θ) = D(1, y∗2, y
∗
3, y
∗
4)T eiτ0$0 s be the eigenvector of A∗(0) associated with −iτ0$0. Then, through

some calculations, we can obtain

y2 =
S 13S 21 − S 23(i$0 − S 11)

S 13(i$0 − S 22 − P22e−iτ0$0) − S 12S 23
,

y3 =
i$0 − S 11

S 13
−

S 12y2

S 13
,

y4 =
(i$0 − S 33)y3 − P32e−iτ0$0y2

S 34
,

y∗2 = −
i$0 + S 11

S 21
,
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y∗3 =
i$0 + S 22 + P22eiτ0$0y∗2 + S 12

S 34S 42 − (i$0 + S 44)P32eiτ0$0
,

y∗4 = −
S 34y∗3

i$0 + S 44
.

In terms of Eq (3.10), we obtain

D̄ = [1 + y2ȳ∗2 + y3ȳ∗3 + y4ȳ∗4 + τ0ȳ∗2e−iτ0ω0(P22y2 + P32y3)]−1. (3.11)

Let
z(t) = 〈y∗, ut〉,W(t, θ) = ut(θ) − 2Re{z(t)y(θ)}, (3.12)

be on the center manifold C0, and then

W(t, θ) = W(z(t), z̄(t), θ), (3.13)

where

W(z(t), z̄(t), θ) = W(z, z̄) = W20
z2

2
+ W11zz̄ + W02

z̄2

2
+ · · · . (3.14)

Then,

ż(t) = 〈y∗, u̇t〉 = 〈y∗, A(0)ut〉 + 〈y∗,R(0)ut〉

= 〈A∗(0)y∗, ut〉 + 〈y∗,R(0)ut〉

= 〈A∗(0)y∗, ut〉 + 〈y∗ + ȳ∗(0)R(0)ut −

∫ 0

−1

∫ θ

0
ȳ∗(ξ − θ)dη(θ)A(0)R(0)ut(ξ)dξ

= i$0τ0z(t) + q̄∗0 f (0, ut(θ))
:= i$0τ0z(t) + q̄∗0 f0(z(t), z̄(t)). (3.15)

ż(t) = i$0τ0z(t) + g(z, z̄), (3.16)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄
2

+ g21
z2z̄
2

+ · · · . (3.17)

Thus,
g(z, z̄) = q̄∗(0) f0(z, z̄) = D̄(1, ȳ∗2, ȳ

∗
3, ȳ
∗
4)( f1(0, ut), f2(0, ut), 0, 0)T , (3.18)

with

f1(0, ut) = τ0[S 14φ
2
1(0) + S 15φ1(0)φ2(0) + S 16φ1(0)φ3(0) + S 17φ

3
1(0)

+S 18φ
2
1(0)φ2(0) + S 19φ

2
1(0)φ3(0) + · · · ],

f2(0, ut) = τ0[S 24φ
2
1(0) + S 25φ1(0)φ2(0) + S 26φ1(0)φ3(0) + S 27φ

3
1(0)

+S 28φ
2
1(0)φ2(0) + S 29φ

2
1(0)φ3(0) + · · · ],

According to the above discussion, we know that

ut = u(t + θ) = W(z, z̄, θ) + zy(θ) + z̄y(θ),
y(θ) = (1, y2, y3, y4)T ei$0τ0θ,
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we can obtain

ut =


u1(t + θ)
u2(t + θ)

0
0

 +


W (1)(t + θ)
W (2)(t + θ)

0
0

 + z


1
y2

y3

y4

 ei$0τ0θ + z̄


1
ȳ2

ȳ3

ȳ4

 e−i$0τ0θ, (3.19)

and

φ1(0) = z + z̄ + W (1)
20

z2

2
+ W (1)

11 zz̄ + W (1)
02

z̄2

2
+ · · · ,

φ2(0) = zq2 + z̄ȳ2 + W (2)
20 (0)

z2

2
+ W (2)

11 zz̄ + W (2)
02

z̄
2

+ · · · ,

φ3(0) = zq3 + z̄ȳ3 + W (3)
20 (0)

z2

2
+ W (3)

11 zz̄ + W (3)
02

z̄
2

+ · · · ,

From Eq (3.17) and Eq (3.18), we have

g(z, z̄) = D̄(1, ȳ∗2, ȳ
∗
3, ȳ
∗
4)


N11z2 + N12zz̄ + N13z̄2 + N14z2z̄
N21z2 + N22zz̄ + N23z̄2 + N24z2z̄

0
0

 + · · · , (3.20)

where

N11 = τ0(S 14 + S 15y2 + S 16y3),
N21 = τ0(S 24 + S 25y2 + S 26y3),
N12 = τ0[2S 14 + S 15(y2 + ȳ2) + S 16(y3 + ȳ3)],
N22 = τ0[2S 24 + S 25(y2 + ȳ2) + S 26(y3 + ȳ3)],
N13 = τ0(S 14 + S 15ȳ2 + S 16ȳ3),
N23 = τ0(S 24 + S 25ȳ2 + S 26ȳ3),

N14 = τ0[S 14(2W (1)
11 (0) + w(1)

20 (0))

+S 15

(
W (1)

11 (0)y2 +
1
2

W (1)
11 (0)ȳ2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

)
+S 16

(
W (1)

11 (0)y3 +
1
2

W (1)
11 (0)ȳ3 + W (3)

11 (0) +
1
2

W (3)
20 (0)

)
+3S 17 + S 18(ȳ2 + 2y2) + S 19(ȳ3 + 2y3)],

N24 = τ0

(
S 24(2W (1)

11 (0) + w(1)
20 (0))

+S 25

(
W (1)

11 (0)y2 +
1
2

W (1)
11 (0)ȳ2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

)
+S 26

(
W (1)

11 (0)y3 +
1
2

W (1)
11 (0)ȳ3 + W (3)

11 (0) +
1
2

W (3)
20 (0)

)
+3S 27 + S 28(ȳ2 + 2y2) + S 29(ȳ3 + 2y3)

)
.
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Comparing the coefficients in Eq (3.20) with those in Eq (3.17), one can obtain

g20 = 2D̄τ0[S 14 + S 15y2 + S 16y3 + ȳ∗2(S 24 + S 25y2 + S 26y3)],
g11 = D̄τ0[2S 14 + S 15(y2 + ȳ2) + S 16(y3 + ȳ3)

+ȳ∗2(2S 24 + S 25(y2 + ȳ2) + S 26(y3 + ȳ3))],
g02 = 2D̄τ0[S 14 + S 15ȳ2 + S 16ȳ3 + ȳ∗2(S 24 + S 25ȳ2 + S 26ȳ3)],

g21 = 2D̄τ0

[
S 14(2W (1)

11 (0) + w(1)
20 (0))

+S 15

(
W (1)

11 (0)y2 +
1
2

W (1)
11 (0)ȳ2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

)
+S 16

(
W (1)

11 (0)y3 +
1
2

W (1)
11 (0)ȳ3 + W (3)

11 (0) +
1
2

W (3)
20 (0)

)
+3S 17 + S 18(ȳ2 + 2y2) + S 19(ȳ3 + 2y3)

+ȳ∗2
(
S 24(2W (1)

11 (0) + w(1)
20 (0))

+S 25

(
W (1)

11 (0)y2 +
1
2

W (1)
11 (0)ȳ2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

)
+S 26

(
W (1)

11 (0)y3 +
1
2

W (1)
11 (0)ȳ3 + W (3)

11 (0) +
1
2

W (3)
20 (0)

)
+3S 27 + S 28(ȳ2 + 2y2) + S 29(ȳ3 + 2y3)

)]
,

with

W20(θ) =
ig20y(0)
τ0ω0

eiτ0$0θ +
iḡ02ḡ(0)
3τ0$0

e−iτ0$0θ + E1e2iτ0$0θ, (3.21)

W11(θ) = −
ig11g(0)
τ0ω0

eiτ0$0θ +
iḡ11ḡ(0)
τ0$0

e−iτ0$0θ + E2. (3.22)

where

E1 = 2


2i$0 − S 11 −S 12 −S 13 0
−S 21 2i$0 − S 22 − e−2iτ0$0 −S 23 0

0 −S 32e−2iτ0$0 2i$0 − S 33 −S 34

0 −S 42 −S 43 2i$0 − S 44


−1

×


E(1)

1
E(2)

1
0
0

 ,

E2 =


S 11 S 12 S 13 0
S 21 S 22 + P22 S 23 0
0 P32 S 33 S 34

0 S 42 S 43 S 44


−1

×


E(1)

2
E(2)

2
0
0

 ,
with

E(1)
1 = S 14 + S 15y2 + S 16y3,

E(2)
1 = S 24 + S 25y2 + S 26y3,

E(1)
2 = 2S 14 + S 15(y2 + ȳ2) + S 16(y3 + ȳ3),
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E(2)
2 = 2S 24 + S 25(y2 + ȳ2) + S 26(y3 + ȳ3).

Thus,
C1(0) = i

2τ0ω0

(
g11g20 − 2|g11|

2 −
|g02 |

2

3

)
+

g21
2

µ2 = −
Re{C1(0)}
Re{λ′(τ0)} ,

β2 = 2Re{C1(0)},

T2 = −
Im{C1(0)}+µ2Im{λ′(τ0)}

τ0ω0
,

(3.23)

According to the results about the direction and stability of Hopf bifurcation for system (1.2) in [34],
we have the following theorem.

Theorem 3.1. The Hopf bifurcation is supercritical (subcritical) when µ2 > 0 (µ2 < 0); The bifurcating
periodic solutions are stable (unstable) when β2 < 0 (β2 > 0); The period of the bifurcating periodic
solutions increase (decrease) when T2 > 0 (T2 < 0).

4. Global stability criteria

Theorem 4.1. If −h = max{h1, h2, h3, h4} < 0, with

h1 =

[ 1
n1

S 11 +
1
n2

S 21 +
P32S 21N2τ

n2n3

]
< 0,

h2 =

[ 1
n1

S 12 +
1
n3

P32 +
1
n4

S 42 +

(
S 22 + P22

)
n2

+
P32

(
P22 + S 22

)
N2τ

n2n3

]
< 0,

h3 =

[ 1
n1

S 13 +
1
n2

S 23 +
1
n3

S 33 +
1
n4

S 43 +
S 32P32N2τ

n2n3

]
< 0,

h4 =

[ 1
n3

S 34 +
1
n4

S 44

]
< 0,

where n1 < S (t) < N1, n2 < P1(t) < N2, n3 < P2(t) < N3 and n4 < T (t) < N4 for t > 0, the equilibrium
E∗ of linear system (2.1) is global asymptotically stable.

Proof. Let S (t)−S ∗ = S ∗
(
eq(t)−1

)
, P1(t)−P∗1 = P∗1

(
eu(t)−1

)
, P2(t)−P∗2 = P∗2

(
ev(t)−1

)
and T (t)−T ∗ =

T ∗
(
ew(t) − 1

)
. Then, E∗(S ∗, P∗1, P

∗
2,T

∗) becomes the trivial equilibrium for q(t) = u(t) = v(t) = w(t) = 0
for all t > 0, and system (2.1) can be reduced in the following form:

dq(t)
dt

=
1
S

S 11S ∗
(
eq(t) − 1

)
+

1
S

S 12P∗1
(
eu(t) − 1

)
+

1
S

S 13P∗2
(
ev(t) − 1

)
, (4.1)

du(t)
dt

=
1
P1

S 21S ∗
(
eq(t) − 1

)
+

1
P1

S 22P∗1
(
eu(t) − 1

)
+

1
P1

S 23P∗2
(
ev(t) − 1

)
(4.2)

+
1
P1

P22P∗1
(
eu(t−τ) − 1

)
, (4.3)

dv(t)
dt

=
1
P2

S 33P∗2
(
ev(t) − 1

)
+

1
P2

S 34T ∗
(
ew(t) − 1

)
+

1
P2

P32P∗1
(
eu(t−τ) − 1

)
, (4.4)

dw(t)
dt

=
1
T

S 42P∗1
(
eu(t) − 1

)
+

1
T

S 43P∗2
(
ev(t) − 1

)
+

1
T

S 44T ∗
(
ew(t) − 1

)
. (4.5)
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Let V1(t) = |q(t)|, then

D+V1(t) ≤
1
n1

S 11S ∗
∣∣∣∣eq(t) − 1

∣∣∣∣ +
1
n1

S 12P∗1
∣∣∣∣eu(t) − 1

∣∣∣∣ +
1
n1

S 13P∗2
∣∣∣∣ev(t) − 1

∣∣∣∣. (4.6)

Let Ṽ2(t) = |u(t)|, then

D+Ṽ2(t) ≤
1
n2

S 21S ∗
∣∣∣∣eq(t) − 1

∣∣∣∣ +
1
n2

S 22P∗1
∣∣∣∣eu(t) − 1

∣∣∣∣ +
1
n2

S 23P∗2
∣∣∣∣ev(t) − 1

∣∣∣∣ (4.7)

+
1
n3

P22P∗1
∣∣∣∣eu(t−τ) − 1

∣∣∣∣. (4.8)

Again, due to the form of (4.8), we consider the following functional

V2(t) ≤ Ṽ2(t) +
P22P∗1

n2

∫ t

t−τ
|eu(m) − 1| d m

whose time derivative along trajectories of system (4.3) is given by

D+V2(t) ≤ D+Ṽ2(t) +
P22P∗1

n2

[∣∣∣∣eu(t) − 1
∣∣∣∣ − ∣∣∣∣eu(t−τ) − 1

∣∣∣∣] (4.9)

≤
1
n2

S 21S ∗
∣∣∣∣eq(t) − 1

∣∣∣∣ +
1
n2

(
S 22 + P22

)
P∗1

∣∣∣∣eu(t) − 1
∣∣∣∣ +

1
n2

S 23P∗2
∣∣∣∣ev(t) − 1

∣∣∣∣. (4.10)

Now, Eq (4.4) can be rewritten as

dv(t)
dt

=
1
P2

S 33P∗2
(
ev(t) − 1

)
+

1
P2

S 34T ∗
(
ew(t) − 1

)
+

1
P2

P32P∗1

(
eu(t) − 1 −

∫ t

t−τ
eu(m) du

dm
dm

)
(4.11)

=
1
P2

S 33P∗2
(
ev(t) − 1

)
+

1
P2

S 34T ∗
(
ew(t) − 1

)
+

1
P2

P32P∗1

(
eu(t) − 1

)
(4.12)

−
1
P2

P32P∗1

∫ t

t−τ
eu(m)

[ 1
P1

S 21S ∗
(
eq(m) − 1

)
+

1
P1

S 22P∗1
(
eu(m) − 1

)
(4.13)

+
1
P1

S 23P∗2
(
ev(m) − 1

)
+

1
P1

P22P∗1
(
eu(m−τ) − 1

)]
dm. (4.14)

Let Ṽ3(t) = |v(t)|, then

D+Ṽ3(t) ≤
1
n3

S 33P∗2
∣∣∣∣ev(t) − 1

∣∣∣∣ +
1
n3

S 34T ∗
∣∣∣∣ew(t) − 1

∣∣∣∣ +
1
n3

P32P∗1
∣∣∣∣eu(t) − 1

∣∣∣∣
+

1
n3

P32P∗1

∫ t

t−τ
eu(m)

[ 1
n2

S 21S ∗
∣∣∣∣eq(m) − 1

∣∣∣∣ +
1
n2

S 22P∗1
∣∣∣∣eu(m) − 1

∣∣∣∣
+

1
n2

S 23P∗2
∣∣∣∣ev(m) − 1

∣∣∣∣ +
1
n2

P22P∗1
∣∣∣∣eu(m−τ) − 1

∣∣∣∣]dm

We find that there exists t1 > 0 such that P∗1eu(t) < N2 for t > t1 + τ, we have

D+Ṽ3(t) ≤
1
n3

S 33P∗2
∣∣∣∣ev(t) − 1

∣∣∣∣ +
1
n3

S 34T ∗
∣∣∣∣ew(t) − 1

∣∣∣∣ +
1
n3

P32P∗1
∣∣∣∣eu(t) − 1

∣∣∣∣
AIMS Mathematics Volume 6, Issue 1, 1–22.
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+
1
n3

P32N2

∫ t

t−τ

[ 1
n2

S 21S ∗
∣∣∣∣eq(m) − 1

∣∣∣∣ +
1
n2

S 22P∗1
∣∣∣∣eu(m) − 1

∣∣∣∣
+

1
n2

S 23P∗2
∣∣∣∣ev(m) − 1

∣∣∣∣ +
1
n2

P22P∗1
∣∣∣∣eu(m−τ) − 1

∣∣∣∣]dm. (4.15)

Again, due to the form of Eq (4.15), we consider the following functional

V3(t) ≤ Ṽ3(t) +
1
n3

P32N2

∫ t

t−τ

∫ t

z

[
1
n2

S 21S ∗
∣∣∣∣eq(m) − 1

∣∣∣∣ +
1
n2

S 22P∗1
∣∣∣∣eu(m) − 1

∣∣∣∣
+

1
n2

S 23P∗2
∣∣∣∣ev(m) − 1

∣∣∣∣ +
1
n2

P22P∗1
∣∣∣∣eu(m−τ) − 1

∣∣∣∣]dmdz

+
1

n2n3
P22P32N2P∗1τ

∫ t

t−τ

∣∣∣∣eu(m) − 1
∣∣∣∣dm

whose time derivative along trajectories of system (4.4) is given by

D+V3(t) ≤ D+Ṽ3(t) +
1
n3

P32N2τ
[ 1
n2

S 21S ∗
∣∣∣∣eq(t) − 1

∣∣∣∣ +
1
n2

S 22P∗1
∣∣∣∣eu(t) − 1

∣∣∣∣
+

1
n2

S 23P∗2
∣∣∣∣ev(t) − 1

∣∣∣∣] +
1

n2n3
P22P32N2P∗1τ

∣∣∣∣eu(t) − 1
∣∣∣∣

−
1
n3

P32N2

∫ t

t−τ

[ 1
n2

S 21S ∗
∣∣∣∣eq(m) − 1

∣∣∣∣ +
1
n2

S 22P∗1
∣∣∣∣eu(m) − 1

∣∣∣∣
+

1
n2

S 23P∗2
∣∣∣∣ev(m) − 1

∣∣∣∣ +
1
n2

P22P∗1
∣∣∣∣eu(m−τ) − 1

∣∣∣∣]dm

≤
1

n2n3
P32S 21N2τS ∗

∣∣∣∣eq(t) − 1
∣∣∣∣ +

[ 1
n3

P32 +
1

n2n3
P32N2

(
P22 + S 22

)
τ
]
P∗1

∣∣∣∣eu(t) − 1
∣∣∣∣

+
[ 1
n3

S 33 +
1

n2n3
P32S 23N2τ

]
P∗2

∣∣∣∣ev(t) − 1
∣∣∣∣ +

1
n3

S 34T ∗
∣∣∣∣ew(t) − 1

∣∣∣∣.
Let V4(t) = |w(t)|, then

D+V4(t) ≤
1
n4

S 42P∗1
∣∣∣∣eu(t) − 1

∣∣∣∣ +
1
n4

S 43P∗2
∣∣∣∣ev(t) − 1

∣∣∣∣ +
1
n4

S 44T ∗
∣∣∣∣ew(t) − 1

∣∣∣∣.
Let us define functional V(t) = V1(t) + V2(t) + V3(t) + V4(t). Then

D+V(t) = D+V1(t) + D+V2(t) + D+V3(t) + D+V4(t)
≤ h1S ∗|eq(t) − 1| + h2P∗1|e

u(t) − 1| + h3P∗2|e
v(t) − 1| + h4T ∗|ew(t)

where h1, h2, h3, h4, h5 are already defined in hypothesis of Theorem 3.
Let −h = max{h1, h2, h3, h4} < 0, then (2.1) becomes

D+V(t) ≤ −h
[
S ∗|eq(t) − 1| + P∗1|e

u(t) − 1| + P∗2|e
v(t) − 1| + T ∗|ew(t) − 1

∣∣∣∣]
Since, the model (2.1) is positive invariant for all t > t∗1, we have

S (t) = S ∗eq(t) > S ,
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P1(t) = P∗1eu(t) > P1,

P2(t) = P∗2ev(t) > P2,

T (t) = T ∗ew(t) > T .

According to mean value theorem, we have S ∗|eq(t) − 1| = S ∗eω1(t)|q(t)| > n1|q(t)|, P∗1|e
u(t) − 1| =

P∗1eω2(t)|u(t)| > n2|u(t)|, P∗2|e
v(t) − 1| = P∗2eω3(t)|v(t)| > n3|v(t)| and T ∗|ew(t) − 1| = T ∗eω4(t)|w(t)| > n4|w(t)|,

where S ∗eω1(t) lies between S ∗ and S (t), P∗1eω2(t) lies between P∗1 and P1(t), P∗2eω3(t) lies between P∗2 and
P2(t), T ∗eω4(t) lies between T ∗ and T (t). Therefore,

D+V(t) ≤ −h̃
(
|q(t)| + |u(t)| + |v(t)| + |w(t)|

)
where h̃ = min{hS , hP1, hP2, hT }. Hence, by using Lyapunov stability theory, the equilibrium E∗ of
linear system (2.1) is globally asymptotically stable. Hence, the proof is completed.
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Figure 1. Waveform plots of system (5.1) with τ = 4.9064 ∈ [0, τ0).
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Figure 2. Waveform plots of system (5.1) with τ = 5.3202 > τ0.
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Figure 3. Waveform plots of system (5.1) for different α at τ = 4.9064. Rest of the
parameters are taken as given in the text.
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Figure 4. Waveform plots of system (5.1) for different γ at τ = 4.9064. Rest of the
parameters are taken as given in the text.
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Figure 5. Waveform plots of system (5.1) for different ρ at τ = 4.9064. Rest of the
parameters are taken as given in the text.
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5. Numerical simulations

Choosing Λ = 1.2, δ = 0.2, β = 0.08, b = 1.25, A = 1, α = 0.45, γ = 0.2, η = 0.7, ρ = 0.12.

dS (t)
dt = 1.2 − 0.02S (t) − 0.08S (t)(P1(t)+1.25P2(t))

1+S (t) ,

dP1(t)
dt =

0.08S (t)(P1(t)+1.25P2(t))
1+S (t) − 0.45P1(t − τ) − 0.22P1(t),

dP2(t)
dt = 0.45P1(t − τ) + 0.7T (t) − 0.14P2(t),

dT (t)
dt = 0.2P1(t) + 0.12P2(t) − 0.72T (t),

(5.1)

The unique drug addiction equilibrium E∗(0.3097, 1.7818, 49.2127, 8.6971). Then, we can verify
that S 00 = 0.781529, S 01 = 4.061691, S 02S 03 = 40.212361, S 03 = 5.203203. It is obviously that
S 00 > 0, S 03 > 0, S 02S 03 > S 01 and S 01S 02S 03 > S 00S 2

03 + S 2
01 are satisfied. Now, Eq (2.6) becomes

ω4 + 10.847296ω3 + 10.223340ω2 + 0.894157ω − 0.210990 = 0, (5.2)

which has a unique positive root ω0 = 0.102541, leading to the unique positive root $0 = 0.320220,
and τ0 = 5.105862, F′(ω0) = 1.123348e − 006 > 0. Thus, we can conclude that the conditions for the
occurrence of Hopf bifurcation of system (5.1) are satisfied.

From Theorem 1, system (5.1) is locally asymptotically stable when τ ∈ [0, τ0 = 5.105862). Letting
τ = 4.9064 ∈ [0, τ0), it is shown in Figure 1 that system (5.1) is locally asymptotically stable. If
choosing τ = 5.3202 > τ0, then (5.1) loses its stability and a Hopf bifurcation occurs, which can be
illustrated in Figure 2. And then we obtain µ2 = 2.452198e − 006 > 0, β2 = −0.099276 − 006 < 0 and
T2 = 2.004967 − 007 > 0. From Theorem 2, we know that the Hopf bifurcation is supercritical and
stable, and period of the bifurcating periodic solutions increases.

In Figure 3, we can see that number of the physiologically addicts in system (5.1) decreases whereas
numbers of the susceptible individuals, the psychologically addicts and the addicts under treatment
increase, when the value of α decreases. As the value of γ increases, number of the psychologically
addicts decreases and number of the susceptible individuals, the physiologically addicts and the addicts
under treatment increase. This can be seen from Figure 4. In addition, we can observe that when the
value of ρ increases, number of the physiologically addicts decreases and numbers of the susceptible
individuals and the addicts under treatment increase, which can be illustrated in Figure 5. However, it
can be also seen from Figure 5 that ρ does not affect the number of the physiologically addicts.

6. Conclusions

The production and abuse of synthetic drugs has been a major problem all over the world, with
immense health and social consequences. In 2017 alone, about 35 million people around the world
suffered from drug abuse barriers and needed treatment services [1]. In this paper, we proposed a
delayed delayed synthetic drug transmission model with two stages of addiction and Holling Type-II
functional response by introducing the escalating time delay of psychologically addicts into the model
formulated in [23].

Existence of Hopf bifurcation is analyzed by using the escalating time delay of psychologically
addicts as a bifurcation parameter. It is found that when the escalating time delay is suitable small
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(below τ0), system (1.2) is locally asymptotically stable, then the transmission of synthetic drug can
be predicted and controlled. Once the escalating time delay exceeds the critical value τ0, system (1.2)
will lose stability and a Hopf bifurcation occurs, then the transmission of synthetic drug will be out of
control. Thus, we should control and postpone the occurrence of the Hopf bifurcation. In this respect,
it is strongly suggested that someone who think that they will not become an addict after taking once
should never take the first slip. Moreover, global stability of the model is proved by constructing a
suitable Lyapunov function.

On the other hand, from the influence of α on numbers of the four populations in system (1.2),
we appeal that anyone should never be contaminated with drugs. Since number of the psychologically
addicts decreases and number of the susceptible individuals, the physiologically addicts and the addicts
under treatment increase when the value of γ increases, it is indicated that psychotherapy for drug
abusers is not enough. What is more important is that they need scientific and compulsory abandonment
of drug abuse, which can be also seen from the influence of ρ on numbers of the four populations in
system (1.2).
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