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Abstract: In this paper, valuation for a defaultable corporate bond subject to multiple credit rating
migration risk and stochastic volatility of interest rate is addressed in the structure framework through
a free boundary problem, which is derived by a series of transformations. The existence, uniqueness
and regularity of solution to the free boundary problem are obtained to verify the rationality of the bond
pricing model. Furthermore, we show that the solution of the free boundary problem is convergent to
a close form steady status, which may provide some information on the developing characteristics of
the bond price. As the coexistence of stochastic interest rate and defaulting boundary, this convergence
is achieved through an auxiliary free boundary problem and a Lyapunov argument. Interestingly, the
converged steady status can be explicitly solved, which is not the case in the existing literatures on
multiple credit rating migration. Finally, we present an explicit formula for valuating this defaultable
bond with multiple credit rating migration risk and stochastic interest rate.
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1. Introduction

The globalization of financial markets has been developing rapidly, which requires more on credit
risk management. Credit risk, which is attracting more and more attention from people in academics
and practices, refers to not only default risk but also credit rating migration risk. The credit rating
migration risk is playing a more and more significant role in financial markets and risk management,
especially after the outbreak and spread of 2008 financial crisis. In particular, the credit rating
migration risk makes difference to the corporate bond pricing.
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There are two traditional models for default risk, involving the structural models and reduced form
models. In the reduced form models, the default event is depicted and captured by introducing an
exogenous variant. The default time is modeled by a stochastic default intensity in this approach,
see [7,14,17] and so forth. The assumption on the structural models is that if the below bound of some
insolvency threshold is met by corporate value, default occurs. In the model proposed by Merton [28],
a default event may only occur at the maturity. Subsequently, Black and Cox [2] extended Merton’s
model to a first-passage-time model, where default may occur at any time before the debt maturity, see
also [1, 3, 18, 25] and so forth.

With regard to literatures working on credit rating migration, a commonly adopted approach is
the Markov chain, which is captured by transition intensity matrix coming from general statistic data,
see [5, 8, 9] and so forth. The framework of reduced form then can be directly developed for dynamic
credit rating migration process, see [6, 15, 30] and so forth. However, the Markov chain ignores the
role played by the corporate value when modelling credit rating migration. In fact, the corporate
value is an important factor in the credit rating migration and should be taken into consideration.
Accordingly, from the corporate perspective, Liang et al. [20] started to model and analyze credit rating
migration risk by structural model based on Merton’s model. They set a predetermined migration
threshold to divide the corporate value into high and low rating regions, where the corporate value
follows different stochastic processes. However in practice, the threshold dividing credit ratings is
usually not predetermined. To solve this problem, Hu et al. [11] improved the model proposed by Liang
et al. [20]. They determined the migration boundary by the dynamic proportion between corporate
debt and corporate value, which results in a free boundary problem. Subsequently, Liang et al. [21]
incorporated a risk discount factor, which measures the sensibility of credit rating migration to the
proportion, into the model and showed that an asymptotic traveling wave solution exists in the free
boundary problem. Problem on credit rating migration in switching macro regions can also be referred
to Wu and Liang [36], while credit contingent interest rate swap with credit rating migration can be
seen in Liang and Zou [23].

In particular, the aforementioned works [11, 20, 21, 23, 36] only take two credit ratings into
consideration in credit rating migration problem. The credit region is divided into the high rating
region and the low rating region, which results in only one free boundary in the corresponding free
boundary problem. However, in practice, we should notice that there are usually more than two credit
ratings used when accessing the corporate credit levels. The Standard & Poor’s, an international rating
agency, downgraded the long-term sovereign credit rating of Greece from A- to BBB+ on the evening
of December 16, 2009. This verifies the fact and inspires us to consider multiple credit ratings in
migration problems. Wu and Liang [34] provided some numeric results for multiple credit rating
migration problem. Wang et al. [32] presented some theoretical results by showing that the asymptotic
traveling wave solution obtained in Liang et al. [21] persists in the free boundary problem with multiple
free boundaries. By considering stochastic interest rate in reality [19, 24, 29], Yin et al. [37] improved
the model by replacing the constant interest rate with a stochastic version. This improved model covers
the previous works where only two credit ratings are involved with an interest-dependent volatility [22]
or multiple credit ratings migration with constant interest rate [32,34]. Then Huang et al. [12] continued
to study the bond pricing model with multiple credit rating migration and stochastic interest rate.
They contributed to establishing the asymptotic traveling wave solution in the time-heterogeneous free
boundary problem with multiple free boundaries.

The aforementioned models for credit rating migration in the structure framework are based on
the Merton’s model, i.e., default may only occur at the maturity. However, in practice, default may
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occur at any time up to maturity [4, 26, 31]. Wu et al. [35] relaxed the default restriction in the credit
rating migration model by setting a predetermined threshold capturing the first-passage time when the
default occurs. Once the corporate value falls below the threshold at any time, the default occurs. This
results in a free boundary problem subject to a new boundary condition. Again we have to notice
that the credit region in their credit rating migration model pricing a defaultable corporate bond is still
divided into the high and low rating regions and meanwhile, a constant interest rate is also considered.
Hence, motivated by these existing works on the effect of credit rating migration risk when valuating
a corporate bond, in this paper, we devote to studying a pricing model for a defaultable corporate
bond with both multiple credit rating migration risk and stochastic interest rate. Our work extends
the existing works [12, 37], where the multiplicity of credit rating and stochasticity of interest rate are
involved in their models, by inserting the default risk. Meanwhile, we improve the results of Wu et
al. [35], who considered default risk in pricing the corporate bond with only one credit rating migration
boundary and constant interest rate, to fit the effects of multiple credit ratings and stochastic interest
rate.

The difficulties in analysis are generated from the joint effects and mutual restrictions among the
multiplicity of credit ratings, stochastic volatility of interest rate and presence of default boundary.
Besides that the free boundary problem turns into a initial-boundary problem, in particular, it is
perplexed by not only a time-dependent and discontinuous coefficient but also a time-dependent
process arisen in the problem. In addition to an irreducible barrier boundary, these indeed cause some
troubles in deriving necessary estimates and then proving the existence and uniqueness of solution to
the free boundary problem. Another contribution is the asymptotic behavior of solution to the free
boundary problem. We prove that the solution converges to some steady status, which is the spatially
homogeneous solution of an auxiliary free boundary problem, whose coefficients are the long time
limits of the time-dependent coefficients in the original free boundary problem. This convergence,
which shows us the developing tendency of solution, is established by two steps. In the first step,
it is shown that the solution of the original free boundary problem converges to the solution of the
auxiliary free boundary problem with time tending to infinity, while in the second step, it is shown
that the solution of the auxiliary free boundary problem converges to the steady status. Moreover, the
steady status can be solved explicitly. Thus, we present an explicit formula to valuate the defaultable
corporate bond with multiple credit rating migration risk and stochastic volatility of interest rate.

The paper is organized as follows. In Section 2, the pricing model is constructed. In Section 3,
the model is reduced into a free boundary problem with initial condition and boundary conditions
involving default boundary and migrating boundaries. In Section 4, an approximated free boundary
problem is analyzed and some preliminary lemmas for uniform estimates are collected. In Section 5,
through the approximated free boundary problem, the existence and uniqueness of solution to the free
boundary problem are obtained. In Section 6, it is proved that the solution is convergent to a steady
status by a Lyapunov argument. Then we conclude the paper by presenting an explicit pricing formula
for the defaultable corporate bond in Section 7.

2. The baseline pricing model

In this section, we set up the baseline pricing model for a defaultable corporate bond subject to
multiple credit rating migration risk and stochastic interest rate. Some necessary assumptions are put
forward as follows.
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2.1. Assumptions

Let (Ω,F ,P) be a complete probability space. Suppose that the corporation issues a defaultable
bond, which is a contingent claim of its value on the space (Ω,F ,P).

Let S denote the corporate value in the risk neutral world. It satisfies the Black-Scholes model

dS = r(t)S dt + σ(t)S dWt,

where r is the time-varying interest rate and σ is the heterogeneous volatility with respect to credit
ratings. Wt is the Brownian motion generating the filtration {Ft}. The credit is divided into n ratings. In
different credit ratings, the corporation shows different volatilities of its value. We denote the volatility
in the i’th rating by σ(t) = σi, i = 1, 2, · · · , n, and in addition, they satisfy

0 < σ1 < σ2 < · · · < σn−1 < σn < ∞,

which means that in the highest credit rating, the corporation shows the smallest volatility σ1 and in
the lowest credit rating, it shows the largest volatility σn. The stochastic interest rate r is supposed to
satisfy the Vasicek model [27, 33]

dr = a(t)(θ(t) − r)dt + σr(t)dWr
t ,

which is widely popular in financial application, where the parameters a, θ, σr are supposed to be
positive constants in this paper. σr is the volatility of the interest rate. θ is considered as the central
location or the long-term value. a determines the speed of adjustment.

We suppose that the corporation issues only one defaultable bond with face value F. The effect of
corporate value on the bond value is focused on and the discount value of bond is considered. Denote
by φt the discount value of bond at time t. The corporation exhibits two risks, the default risk and credit
rating migration risk. The corporation can default before maturity time T . The default time τd is the
first moment when the corporate value falls below the threshold K, namely that

τd = inf{t > 0|S 0 > K, S t ≤ K},

where K < F · D(t,T ), where 0 < D(t,T ) < 1 is the discount function. Once the corporation defaults,
the investors will get what is left. Hence, φt(K) = K and at the maturity time T , the investors can get
φT = min{S T , F}. On the other hand, the credit regions are determined by the leverage γ(t) = φt/S t.
Denote the thresholds of leverage γ(t) by γi, i = 1, 2, · · · , n − 1, and they satisfy

0 < γ1 < γ2 < · · · < γn−2 < γn−1 < 1.

The credit rating migration times are the first moments when the corporate credit rating is upgraded or
downgraded. They are defined as follows:

τ1 = inf{t > 0|φ0/S 0 < γ1, φt/S t ≥ γ1},

τn = inf{t > 0|φ0/S 0 > γn−1, φt/S t ≤ γn−1},

τi,i+1 = inf{t > 0|γi−1 < φ0/S 0 < γi, φt/S t ≥ γi}, i = 2, 3, · · · , n − 1,

τi,i−1 = inf{t > 0|γi−1 < φ0/S 0 < γi, φt/S t ≤ γi−1}, i = 2, 3, · · · , n − 1.

τ1 is the first moment that the corporation degrades from the highest credit rating. τn is the first moment
that the corporation upgrades from the lowest credit rating. τi,i+1 is the first moment that the corporation
jumps up into the i + 1’th credit rating from the i’th credit rating, while τi,i−1 is the first moment that
the corporation jumps down into the i − 1’th credit rating from the i’th credit rating.
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2.2. Cash flow

Once the credit rating migrates before the maturity T , a virtual substitute termination happens,
namely that the bond is virtually terminated and substituted by a new one with a new credit rating [35].
Thus, there is a virtual cash flow of the bond. Denote the bond values in different credit ratings by
φi(t, S ), i = 1, 2, · · · , n. Then they are the conditional expectations as follows

φ1(t, S ) = Et,S [h1(t,T )|φ1(t, S ) < γ1S ],

where

h1(t,T ) =e−
∫ T

t r(s)ds min{S T , F} · χ(min{τ1, τd} ≥ T )

+ e−
∫ τ1

t r(s)dsφ2(τ1, S τ1) · χ(t < τ1 < min{τd,T })

+ e−
∫ τd

t r(s)dsK · χ(t < τd < min{τ1,T }),

and for i = 2, 3, · · · , n − 1,

φi(t, S ) = Et,S [hi(t,T )|γi−1S < φi(t, S ) < γiS ],

where

hi(t,T ) =e−
∫ T

t r(s)ds min{S T , F} · χ(min{τi,i+1, τi,i−1, τd} ≥ T )

+ e−
∫ τi,i+1

t r(s)dsφi+1(τi,i+1, S τi,i+1) · χ(t < τi,i+1 < min{τi,i−1, τd,T })

+ e−
∫ τi,i−1

t r(s)dsφi−1(τi,i−1, S τi,i−1) · χ(t < τi,i−1 < min{τi,i+1, τd,T })

+ e−
∫ τd

t r(s)dsK · χ(t < τd < min{τi,i+1, τi,i−1,T })

and
φn(t, S ) = Et,S [hn(t,T )|φn(t, S ) > γn−1S ],

where

hn(t,T ) =e−
∫ T

t r(s)ds min{S T , F} · χ(min{τn, τd} ≥ T )

+ e−
∫ τn

t r(s)dsφn−1(τn, S τn) · χ(t < τn < min{τd,T })

+ e−
∫ τd

t r(s)dsK · χ(t < τd < min{τn,T }),

where χ is the indicative function, satisfying χ = 1 if the event happens and otherwise, χ = 0.

2.3. PDE problem

Suppose that the correlation between the interest rate and the corporate value is given by dWr
t ·dWt =

ρt, −1 ≤ ρ ≤ 1. By the Feynman-Kac formula, we can derive that φi, i = 1, 2, · · · , n, are functions of
time t, interest rate r and value S . They satisfy the following PDE in their regions

∂φ1

∂t
+
σ2

1S 2

2
∂2φ1

∂S 2 + σrσ1ρS
∂2φ1

∂S ∂r
+ rS

∂φ1

∂S
+
∂2φ1

∂r2 + a(θ − r)
∂φ1

∂r
− rφ1 = 0, φ1 < γ1S , (2.1)
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and for i = 2, 3, · · · , n − 1,

∂φi

∂t
+
σ2

i S 2

2
∂2φi

∂S 2 + σrσiρS
∂2φi

∂S ∂r
+ rS

∂φi

∂S
+
∂2φi

∂r2 + a(θ − r)
∂φi

∂r
− rφi = 0, γi−1S < φi < γiS , (2.2)

and

∂φn

∂t
+
σ2

nS 2

2
∂2φn

∂S 2 + σrσnρS
∂2φn

∂S ∂r
+ rS

∂φn

∂S
+
∂2φn

∂r2 + a(θ − r)
∂φn

∂r
− rφn = 0, φn > γn−1S , (2.3)

with terminal conditions
φi(T, r, S ) = min{S , F}, i = 1, 2, · · · , n, (2.4)

and boundary condition
φn(t, r,K) = K. (2.5)

The bond value is continuous when it passes a rating threshold, i.e., φi = φi+1 on the rating migration
boundaries, where i = 1, 2, · · · , n − 1. Also, if we construct a risk free portfolio π by longing a bond
and shorting ∆ amount asset value S , i.e., π = φ − ∆S and such that dπ = rπ, this portfolio is also
continuous when it passes the rating migration boundaries, namely that πi = πi+1 or ∆i = ∆i+1 on the
rating migration boundaries, where i = 1, 2, · · · , n − 1. By Black-Scholes theory [16], it is equivalent
to

∂φi

∂S
=
∂φi+1

∂S
on the rating migration boundary, i = 1, 2, · · · , n − 1. (2.6)

Denote by P(t, r) the value of a guaranteed zero-coupon bond with face value 1 at the maturity t = T ,
where the interest rate follows the Vasicek model. By the Feynman-Kac formula, P(t, r) satisfies the
following PDE

∂P
∂t

+
σ2

r

2
∂2P
∂r2 + a(θ − r)

∂P
∂r
− rP = 0, r > 0, 0 < t < T,

with terminal condition P(T, r) = 1, whose explicit solution is solved as P(t, r) = eA(T−t) [13], where

A(T − t) =
1
a2 (B2(T − t) − (T − t))

(
a2θ −

σ2
r

2

)
−
σ2

r

4a
B2(T − t) − rB(T − t)

and
B(T − t) =

1
a

(1 − e−a(T−t)).

Take transformations
y =

S
P(t, r)

, ψi(t, y) =
φi(t, r, S )

P(t, r)
, i = 1, 2, · · · , n.

Then ψi, i = 1, 2, · · · , n satisfy

∂ψ1

∂t
+
σ̂2

1y2

2
∂2ψ1

∂y2 = 0, ψ1 < γ1y, (2.7)

and for i = 2, 3, · · · , n − 1,
∂ψi

∂t
+
σ̂2

i y2

2
∂2ψi

∂y2 = 0, γi−1y < ψi < γiy, (2.8)
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and
∂ψn

∂t
+
σ̂2

ny2

2
∂2ψn

∂y2 = 0, ψn > γn−1y, (2.9)

where
σ̂2

i = σ2
i + 2ρσiσrB(T − t) + σ2

r B2(T − t).

The terminal conditions are given as

ψi(T, y) = min{y, F}, i = 1, 2, · · · , n, (2.10)

and the boundary conditions are
ψn(t,Ke−A(T−t)) = Ke−A(T−t) (2.11)

and
ψi = ψi+1,

∂ψi

∂y
=
∂ψi+1

∂y
, on the rating migration boundary (2.12)

for i = 1, 2, · · · , n − 1.

3. Free boundary problem

We introduce the standard transformation of variable x = log y, remaining T − t as t, and define

ϕ(t, x) = e−xψi(T − t, ex) in the i’th rating region.

Using (2.12), we drive the following equation from (2.7)-(2.9) as

∂ϕ

∂t
−
σ̂2

2
∂2ϕ

∂x2 −
σ̂2

2
∂ϕ

∂x
= 0, log K − A(t) < x < ∞, t > 0, (3.1)

where σ̂ = σ̂1 as ϕ < γ1, σ̂ = σ̂i as γi−1 < ϕ < γi for i = 1, 2, · · · , n − 1, σ̂ = σ̂n as ϕ > γn−1,

σ̂2
i (t) = σ2

i + 2ρσiσrB(t) + σ2
r B2(t), i = 1, 2, · · · , n. (3.2)

Meanwhile denote by

¯̂σ2
i = σ2

i +
2ρσiσr

a
+
σ2

r

a2 , i = 1, 2, · · · , n, (3.3)

the limits of σ̂2
i (t) as time tends to infinity, i = 1, 2, · · · , n. Without loss of generality, suppose that

F = 1 and there holds K < 1. Then (3.1) is supplemented with the initial condition

ϕ(0, x) = min{1, e−x}. (3.4)

and boundary condition
ϕ(t, s(t)) = 1, (3.5)

where s(t) = log K − A(t). Take u(t, x) = ϕ(t, x + s(t)). Then u satisfies

∂u
∂t
−
σ̂2

2
∂2u
∂x2 −

(
σ̂2

2
+ ṡ(t)

)
∂u
∂x

= 0, 0 < x < ∞, t > 0, (3.6)
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where

ṡ(t) =

( σ2
r

2a2 − θ
)
(2B(t)e−at − 1) +

σ2
r

2a
B(t)e−at + re−at

and σ̂ = σ̂1 as u < γ1, σ̂ = σ̂i as γi−1 < u < γi for i = 1, 2, · · · , n − 1, σ̂ = σ̂n as u > γn−1, with the
initial condition

u(0, x) = min{1, e−(x+s(0))} = min{1, e−(x+log K)} (3.7)

and boundary condition
u(t, 0) = 1. (3.8)

The domain will be divided into n rating regions Qi, i = 1, 2, · · · , n. We will prove that the domain
can be separated by n − 1 free boundaries x = λi(t), i = 1, 2, · · · , n − 1. These boundaries are a prior
unknown since they should be solved by equations

u(t, λi(t)) = γi, i = 1, 2, · · · , n − 1, (3.9)

where u is also a priori unknown. Since we have assumed that (3.1) is valid cross the free boundaries,
(2.12) implies that for i = 1, 2, · · · , n − 1,

u(t, λi(t)−) = u(t, λi(t)+) = γi,
∂u
∂x

(t, λi(t)−) =
∂u
∂x

(t, λi(t)+). (3.10)

In the work [35] and [12], where the former model is subject to constant interest rate and the later one
is subject to stochastic interest rate but without default boundary, the process ṡ(t) in (3.6) is replaced
by a constant. The presence of ṡ(t) indeed leads to some technical differences in deriving the estimates
in the following argument. We can rewrite the formula of ṡ(t) as

ṡ(t) = (β + r)e−at − βe−2at −
a
2

(
β −

σ2
r

2a2

)
,

where

β =
σ2

r

a3 −
2θ
a

+
σ2

r

2a2 .

It is not difficult to analyze and derive that one of the following conditions holds, then there holds
ṡ(t) ≥ 0:

0 ≤ 2a2β ≤ σ2
r ; (3.11)

or
β ≤ −r, a(β + r)2 + σ2

rβ ≤ 2a2β2; (3.12)

or
− r < β < 0. (3.13)

4. Approximated problem with some uniform estimates

4.1. Approximation

Let H(ξ) be the Heaviside function, namely that H(ξ) = 0 for ξ < 0 and H(ξ) = 1 for ξ ≥ 0. Then
we can rewrite the volatility σ̂ in (3.6) as

σ̂ = σ̂1 +

n−1∑
i=1

(σ̂i+1 − σ̂i)H(u − γi).
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We approximate H(ξ) by a C∞ function Hε(ξ) satisfying

Hε(ξ) = 0 for ξ < −ε, Hε(ξ) = 1 for ξ > 0, H′ε(ξ) ≥ 0 for −∞ < ξ < ∞.

Consider the approximated free boundary problem

L ε[uε] ≡
∂uε
∂t
−
σ̂2
ε

2
∂2uε
∂x2 −

(σ̂2
ε

2
+ ṡ(t)

)
∂uε
∂x

= 0, 0 < x < ∞, t > 0, (4.1)

with initial condition
uε(0, x) = min{1, e−(x+log K)} (4.2)

and
uε(t, 0) = 1, (4.3)

where

σ̂ε = σ̂1 +

n−1∑
i=1

(σ̂i+1 − σ̂i)Hε(uε − γi).

Problem (4.1)-(4.3) admits a unique classical solution uε . Now we proceed to derive some estimates
for uε .

4.2. Estimates for approximated problem

Some uniform estimates are presented in this section, which are sufficient to obtain the existence
and uniqueness of solution to problem (3.6)-(3.10).

Lemma 4.1. Let uε be the solution of problem (4.1)-(4.3). Suppose that one of the conditions (3.11)-
(3.13) holds. Then there holds

0 ≤ uε ≤ min{1, e−(x+log K)}, 0 < x < ∞, t > 0.

Proof. It is easy to verify that 0 is the lower solution of uε and meanwhile, e−(x+log K) and 1 are upper
solutions. The result is a direct application of comparison principle. �

Lemma 4.2. Let uε be the solution of problem (4.1)-(4.3). Then there exists a constant C > 0,
independent of ε, such that

−C ≤
∂uε
∂x
≤ 0, 0 < x < ∞, t > 0.

Proof. It is easy to see that σ̂2
ε can be written as

σ̂2
ε = σ̂2

1 +

n−1∑
i=1

(σ̂2
i+1 − σ̂

2
i )Hε(uε − γi).

Differentiating (4.1) with respect to x gives

L ε
1

[
∂uε
∂x

]
, L ε

[
∂uε
∂x

]
−

1
2

n−1∑
i=1

(σ̂2
i+1 − σ̂

2
i )H′ε(uε − γi)

(
∂2uε
∂x2 +

∂uε
∂x

)
∂uε
∂x

= 0.
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It is known that ∂uε
∂x (0, x) = 0 for 0 < x < − log K and ∂uε

∂x (0, x) = −e−(x+log K) ≤ 0 for x > − log K. Since

uε(t, x) − uε(t, 0)
x

≤ 0,

then letting x → 0, it holds that ∂uε
∂x (t, 0) ≤ 0. Thus it follows by maximum principle that there holds

∂uε
∂x ≤ 0.

On the other hand, since ṡ(t) is uniformly bounded, take an appropriate value C > 0, such that

L ε[e−Cx] =

(
−
σ̂2
ε

2
C2 +

(σ̂2
ε

2
+ ṡ(t)

)
C
)
e−Cx < 0.

Clearly, e−Cx|x=0 = 1 and e−Cx ≤ min{1, e−(x+log K)} for C sufficiently large. Then there hold uε(t, x) ≥
e−Cx and

uε(t, x) − uε(t, 0)
x

≥
e−Cx − 1

x
.

Letting x→ 0, we have ∂uε
∂x (t, 0) ≥ −C. Clearly, there holds

L ε
1 [−C] = −

C2

2

n−1∑
i=1

(σ̂2
i+1 − σ̂

2
i )H′ε(uε − γi) ≤ 0,

as σ̂2
i+1 > σ̂

2
i for i = 1, 2, · · · , n−1. It follows by the comparison principle that there holds ∂uε

∂x ≥ −C. �

Lemma 4.3. Let uε be the solution of problem (4.1)-(4.3). Suppose that one of the conditions (3.11)-
(3.13) holds. Then there exist constants C1, C2, C3 and C4, independent of ε, such that

−C3 −
C2
√

t
exp

(
−

C1

t
|x + log K|2

)
≤
∂uε
∂t
≤ C4, 0 < x < ∞, t > 0.

Proof. Differentiating (4.1) with respect to t gives

L ε
[
∂uε
∂t

]
−

1
2
∂σ̂2

ε

∂t
∂uε
∂t

+
ṡ(t)
2
∂σ̂2

ε

∂t
∂uε
∂x
− s̈(t)

∂uε
∂x

= 0,

where
s̈(t) = 2aβe−2at − a(β + r)e−at.

Since
∂σ̂2

ε

∂t
= h1(t) + h2(t)

∂uε
∂t
,

where

h1(t) =
∂σ̂2

1

∂t
+

n−1∑
i=1

(∂σ̂2
i+1

∂t
−
∂σ̂2

i

∂t

)
Hε(uε − γi),

and

h2(t) =

n−1∑
i=1

(σ̂2
i+1 − σ̂

2
i )H′ε(uε − γi),
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we can write

L ε
[
∂uε
∂t

]
=

h2(t)
2

(
∂uε
∂t

)2

+
1
2

(
h1(t) − ṡ(t)h2(t)

∂uε
∂x

)
∂uε
∂t

+

(
s̈(t) −

ṡ(t)h1(t)
2

)
∂uε
∂x

. (4.4)

According to the formulas of σ̂2
i , i = 1, 2, · · · , n, we have h1(t) ≤ ∂σ̂2

n
∂t . On the other hand, there exists

λ̃εi (t) such that H′ε(uε(t, λ̃
ε
i (t)) − γi) attains its maximum and

h2(t) ≤ h̃2(t) , max
1≤i≤n−1

(σ̂2
i+1(t) − σ̂2

i (t))H′ε(uε(t, λ̃
ε
i (t)) − γi).

Denote by y(t) the solution of the following ODE

y′(t) = h̃2(t)y2(t) +
1
2

(∂σ̂2
n

∂t
+ Cṡ(t)h̃2(t)

)
y(t) + C

(
|s̈(t)| +

ṡ(t)
2
∂σ̂2

n

∂t

)
, y(0) = y0, (4.5)

where the constant C is given as the one in Lemma 4.2. At x = − log K, ∂2uε
∂x2 (0, x) produces a Dirac

measure of density −1. Thus ∂uε
∂t (0, x) ≤ 0 in the distribution sense. In addition, since the second

order compatibility condition is satisfied at (0, 0), we have ∂uε
∂t is continuous at (0, 0). Meanwhile,

∂uε
∂t (0, t) = 0. By further approximating the initial data with smooth function if necessary, there holds

by the comparison principle that

∂uε
∂t

(t, x) ≤ y(t), 0 < x < ∞, t > 0,

if we set y0 = 0. The ODE (4.5) can be solved formally as

y(t) = q(t) exp
( ∫ t

0
p(s)ds

)
,

where

p(t) = h̃2(t)y(t) +
1
2

(∂σ̂2
n

∂t
+ Cṡ(t)h̃2(t)

)
,

and

q(t) = C
∫ t

0

(
|s̈(r)| +

ṡ(r)
2
∂σ̂2

n

∂r

)
exp

(
−

∫ r

0
p(τ)dτ

)
dr.

Since ∂σ̂2
n

∂t → 0 as t → ∞ and H′ε converges to the Dirac measure as ε → 0, this implies that
exp(

∫ t

0
p(s)ds) is uniformly bounded with respect to t. With regard to q(t), in addition to s̈(t) → 0

as t → ∞, it is known that q(t) is also uniformly bounded. Hence, we conclude that y(t) is uniformly
bounded with respect to t.

On the other hand, since uε(0, 0) = 1 > γn−1, and by Hölder continuity of solution, there exists a
ρ > 0, independent of ε, such that

uε(t, x) >
1 + γn−1

2
for |x| ≤ ρ, 0 ≤ t ≤ ρ2. Thus for sufficiently small ε < 1

2 (1 − γn−1), σ̂ε = σ̂n for |x + log K| ≤ ρ,
0 ≤ t ≤ ρ2. It follows from the standard parabolic estimates [10] that

∂uε
∂t
≥ −C2 −

C2
√

t
exp

(
−

C1

t
|x + log K|2

)
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for |x + log K| < ρ

2 , 0 < t ≤ ρ2

4 . Note that (4.4) can be rewritten as

L ε
[
∂uε
∂t

]
=

h2(t)
2

(
∂uε
∂t
− ṡ(t)

∂uε
∂x

)
∂uε
∂t

+
h1(t)

2
∂uε
∂t

+

(
s̈(t) −

ṡ(t)h1(t)
2

)
∂uε
∂x

.

As ṡ(t) is uniformly bounded, we take a sufficiently large constant C3 such that C3 ≥ supt≥0 |ṡ(t)|C,
where constant C is the one given in Lemma 4.2. Then if ∂uε

∂t < −C3, there holds

L ε
[
∂uε
∂t

]
≥

1
2
∂σ̂2

n

∂t
∂uε
∂t
−

(
|s̈(t)| +

ṡ(t)
2
∂σ̂2

n

∂t

)
C.

Denote by z(t) the solution of the following ODE

z′(t) =
1
2
∂σ̂2

n

∂t
z(t) −

(
|s̈(t)| +

ṡ(t)
2
∂σ̂2

n

∂t

)
C, z(0) = z0,

which can be solved as

z(t) = b(t) exp
(1
2

∫ t

0

∂σ̂2
n

∂s
ds

)
,

where

b(t) = z0 −C
∫ t

0

(
|s̈(r)| +

ṡ(r)
2
∂σ̂2

n

∂r

)
exp

(
−

1
2

∫ r

0

∂σ̂2
n

∂τ
dτ

)
dr.

As ∂σ̂2
n

∂t and s̈(t) tends to 0 as t → ∞, z(t) is uniformly bounded. Moreover, z(t) is also decreasing if
z0 ≤ 0. Take the initial data |z0| and constant C3 sufficiently large such that

C3 ≥ sup
t≥0
|z(t)| ≥ C2 +

C2
√

t
exp

(
−

C1

t
|x + log K|2

)
on the boundary {

|x + log K| =
ρ

2
, 0 < t <

ρ2

4

}⋃{
|x + log K| <

ρ

2
, t =

ρ2

4

}
.

We claim that the region {
∂uε
∂t

< −C3

}∖{
|x + log K| <

ρ

2
, 0 < t ≤

ρ2

4

}
is an empty set. If not, on the parabolic boundary of this region, we clearly have ∂uε

∂t ≥ −C3, which
implies by the comparison principle that

∂uε
∂t
≥ z(t) ≥ −C3

in this region. This is a contradiction. �

Remark 4.4. In the work [35], it was proved that ∂uε
∂t ≤ 0, which is different from the result shown in

Lemma 4.3. However, although we get a similar result to Lemma 5.4 in [12], the proof is very different
and more technical. This is due to the joint effect of stochastic interest rate and default boundary.
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Corollary 4.5. Let uε be the solution of problem (4.1)-(4.3). Suppose that one of the conditions (3.11)-
(3.13) holds. Then there exist constants C1, C2, C3 and C4, independents of ε, such that

−C3 −
C2
√

t
exp

(
−

C1

t
|x + log K|2

)
≤
∂2uε
∂x2 ≤ C4, 0 < x < ∞, t > t0.

Denote by λεi , i = 1, 2, · · · , n − 1 the approximated free boundaries, which are the solutions of
equations

uε(t, λεi (t)) = γi, i = 1, 2, · · · , n − 1. (4.6)

Then we have the following estimates for the approximated free boundaries.

Lemma 4.6. Let λεi , i = 1, 2, · · · , n− 1, be the approximated free boundaries defined in (4.6). Suppose
that one of the conditions (3.11)-(3.13) holds. Then there exist constants C1, C2, independent of ε, such
that

C1 ≤ λ
ε
n−1(t) ≤ λεn−2(t) ≤ · · · ≤ λε2(t) ≤ λε1(t) ≤ C2.

Proof. Since
uε(t, λεi (t)) = γi < γi+1 = uε(t, λεi+1(t)),

which implies that λεi (t) ≥ λ
ε
i+1(t) by Lemma 4.2. From Lemma 4.1, we have

uε(t, x) ≤ e−(x+log K),

which implies that
uε(t, x) < γ1 for x > − log γ1K.

This means that region {x > − log γ1K} is in the highest rating region and hence

λε1(t) ≤ C2 , − log γ1K.

Denote by m = supt≥0 ṡ(t) and

v(x) =
1 + γn−1

2
exp

(
−

(
1 +

2m
σ2

1

)
x
)
.

Then v(0) = 1
2 (1 + γn−1) < 1 = uε(t, 0). We can see that v(x) ≤ v(0) < 1 and

v(x)ex+log K =
1 + γn−1

2
exp

(
−

2m
σ2

1

x + log K
)
< 1,

which implies that
v(x) < min{1, e−(x+log K)} = uε(0, x).

In addition, we have

L ε[v] =
1 + γn−1

2
exp

(
−

(
1 +

2m
σ2

1

)
x
)(

1 +
2m
σ2

1

)(
ṡ(t) −

mσ̂2
ε

σ2
1

)
≤ 0.

By the comparison principle, we have v(x) ≤ uε(t, x), which implies that

uε(t, x) ≥
1 + γn−1

2
exp

(
−

(
1 +

2m
σ2

1

)
x
)
> γn−1
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for

x < C1 ,
σ2

1

σ2
1 + 2m

log
1 + γn−1

2γn−1
.

This means that region {x < C1} is in the lowest rating region and hence λεn−1(t) ≥ C1. �

Lemma 4.7. Let λεi , i = 1, 2, · · · , n− 1, be the approximated free boundaries defined in (4.6). Suppose
that one of the conditions (3.11)-(3.13) holds. Then there exists constant C independent of ε, such that

−C ≤
dλεi
dt
≤ C, 0 < t < T, i = 1, 2, · · · , n − 1.

Proof. Clearly, there holds

dλεi
dt

= −
∂uε
∂t

(t, λεi (t))
/
∂uε
∂x

(t, λεi (t)), i = 1, 2, · · · , n − 1.

Since λεi (0) = − log γi − log K, i = 1, 2, · · · , n− 1, by Lemma 4.3, there is a constant ρ > 0 independent
of ε such that

λεi (t) + log K ≥ ρ for 0 ≤ t ≤ ρ2, i = 1, 2, · · · , n − 1.

It follows from Lemma 4.3 that

−C0 ≤
∂uε
∂t

(t, λεi (t)) ≤ C0, i = 1, 2, · · · , n − 1,

where C0 is a constant independent of ε. To finish the proof, it is sufficient to prove that

−
∂uε
∂x

(t, λεi (t)) ≥ C∗

for some positive constant C∗ independent of ε. As shown in Lemma 4.2, we have

L ε
1

[
−
∂uε
∂x

]
= L ε

[
−
∂uε
∂x

]
+

1
2

n−1∑
i=1

(σ̂2
i+1 − σ̂

2
i )H′ε(uε − γi)

(
∂2uε
∂x2 +

∂uε
∂x

)
∂uε
∂x

= 0.

In addition, there also holds −∂uε
∂x (0, x) = 0 for 0 < x < − log K and −∂uε

∂x (0, x) = e−(x+log K) for x >

− log K, and −∂uε
∂x (t, 0) ≥ 0 for t > 0. By Lemmas 4.3 and 4.6, there exists constant R > 0 independent

of ε, such that
2
R
≤ λεi (t) ≤ R − 1 for 0 < t ≤ T, i = 1, 2, · · · , n − 1,

and
λεi (t) + log K ≥ ρ for 0 ≤ t ≤ ρ2, i = 1, 2, · · · , n − 1.

Consider the region

Ω∗ =

{
ρ

2
− log K < x < R, 0 < t < ρ2

}⋃{ 1
R
≤ x ≤ R, ρ2 ≤ t ≤ T

}
. (4.7)

The parabolic boundary of this region Ω∗ consists of five line segments. On the initial line segment {t =

0, ρ

2 − log K ≤ x ≤ R}, there holds that −∂uε
∂x (0, x) = e−(x+log K). The remaining four parabolic boundaries
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{0 ≤ t ≤ T, x = R} ∪ {0 ≤ t ≤ ρ2, x =
ρ

2 − log K} ∪ {t = ρ2, 1
R ≤ x ≤ ρ

2 − log K} ∪ {ρ2 ≤ t ≤ T, x = 1
R }

are completely and uniformly within the highest or lowest rating region (independent of ε). Thus by
compactness and the strong maximum principle, on these four boundaries, it holds that −∂uε

∂x ≥ C̄ > 0
for some C̄ independent of ε. It follows that

−
∂uε
∂x
≥ min{1, C̄} ≡ C∗ on Ω∗, (4.8)

which completes the proof of the lemma. �

5. Existence and uniqueness

Lemmas 4.1-4.3 and Corollary 4.5 provide uniform estimates for approximated solution uε . By
taking a limit ε → 0 (along a subsequence if necessary), we derive the existence of solution to problem
(3.6)-(3.10). Lemmas 4.6-4.7 show that there are uniform estimates in C1([0,T ]) for the approximated
free boundaries λεi , i = 1, 2, · · · , n− 1. Therefore, the limits of λεi as ε → 0 exist, which are denoted by
λi, i = 1, 2, · · · , n − 1. These λi, i = 1, 2, · · · , n − 1, are the free boundaries of the original problem.

Theorem 5.1. The free boundary problem (3.6)-(3.10) admits a solution (u, λi, i = 1, 2, · · · , n−1) with

u ∈ W1,2
∞ ([0,T ] × (0,∞) \ Qt0)

⋂
W0,1
∞ ([0,T ] × (0,∞))

for any t0 > 0, where
Qt0 = (0, t2

0) × (−t0 − log K, t0 − log K)

and λi ∈ W1([0,T ]), i = 1, 2, · · · , n − 1.

By the classical parabolic theory, it is also clear that the solution is in ∩n
i=1C

∞(Ωi), where

Ω1 = {(t, x) : x > λ1(t), 0 < t ≤ T },

and for i = 2, 3, · · · , n − 1

Ωi = {(t, x) : λi(t) < x < λi−1(t), 0 < t ≤ T },

and
Ωn = {(t, x) : x < λn−1(t), 0 < t ≤ T }.

Now we prove the uniqueness of solution to the problem (3.6)-(3.10).

Theorem 5.2. The solution (u, λi, i = 1, 2, · · · , n − 1) of the problem (3.6)-(3.10) with

u ∈ W1,2
∞ ([0,T ] × (0,∞) \ Qt0)

⋂
W0,1
∞ ([0,T ] × (0,∞))

and λi ∈ C([0,T ]) is unique.

Proof. Suppose that (u, λi, i = 1, 2, · · · , n − 1) and (ũ, λ̃i, i = 1, 2, · · · , n − 1) are two solutions of the
problem (3.6)-(3.10). Then u(t, λi(t)) = ũ(t, λ̃i(t)) = γi, i = 1, 2, · · · , n − 1 and

u(t, λi(t)) − ũ(t, λi(t)) = ũ(t, λ̃i(t)) − ũ(t, λi(t)), i = 1, 2, · · · , n − 1.
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Besides, at t = 0, λi(0) = λ̃i(0) = − log K − log γi, i = 1, 2, · · · , n − 1. As shown in Lemma 4.7, there
exists a constant C∗ > 0, such that ux < −C∗ and ũx < −C∗ on the region Ω∗ defined by (4.7). Then by
the implicit function theorem, there exists ρ > 0, such that when 0 < t < ρ,

|λi(t) − λ̃i(t)| ≤ C max
0<x<∞

|u(t, x) − ũ(t, x)|, i = 1, 2, · · · , n − 1, (5.1)

where C is a positive constant, whose value may change line on line but makes no difference. Let
w = u − ũ and denote by σ̂ and ˜̂σ the corresponding coefficients, then w satisfies

1
σ̂2

∂w
∂t
−

1
2
∂2w
∂x2 −

( ṡ(t)
σ̂2 +

1
2

)
∂w
∂x

=

( 1
˜̂σ2
−

1
σ̂2

)(
∂ũ
∂t
− ṡ(t)

∂ũ
∂x

)
. (5.2)

u, ũ and their derivatives decay exponentially fast to 0 as x→ ∞. Multiplying (5.2) by w on both sides
and integrating x from 0 to∞ gives

∫ ∞

0

( w
σ̂2

∂w
∂t
−

w
2
∂2w
∂x2 −

( ṡ(t)
σ̂2 +

1
2

)
w
∂w
∂x

)
dx =

∫ ∞

0

( 1
˜̂σ2
−

1
σ̂2

)(
∂ũ
∂t
− ṡ(t)

∂ũ
∂x

)
wdx. (5.3)

Since

1
˜̂σ2
−

1
σ̂2 ≡ 0 for x <

n−1⋃
i=1

[λi(t) ∧ λ̃i(t), λi(t) ∨ λ̃i(t)],

and ∂ũ
∂t and ∂ũ

∂x are uniformly bounded outside the region Qt0 , we conclude that they are bounded for
x ∈ ∪n−1

i=1 [λi(t) ∧ λ̃i(t), λi(t) ∨ λ̃i(t)]. Since w decays exponentially to 0 as x → ∞, for any t > 0, there
exists x0 < ∞ such that

max
0<x<∞

w2(t, x) = w2(t, x0).

Take

w =
1
ε

∫ x0+ε

x0

w(t, x)dx = w(t, x∗),

for some x∗ ∈ (x0, x0 + ε). Then there holds

max
0<x<∞

|w(t, x)|2 ≤2|w(t, x0) − w|2 + 2|w|2

=2
( ∫ x∗

x0

∂w
∂x

dx
)2

+
2
ε2

( ∫ x0+ε

x0

wdx
)2

≤2ε
∫ x0+ε

x0

(
∂w
∂x

)2

dx +
2
ε

∫ x0+ε

x0

w2dx

≤2ε
∫ ∞

0

(
∂w
∂x

)2

dx +
2
ε

∫ ∞

0
w2dx.

(5.4)
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It follows that ∫ ∞

0

( 1
˜̂σ2
−

1
σ̂2

)(
∂ũ
∂t
− ṡ(t)

∂ũ
∂x

)
wdx

≤C max
0<x<∞

|w(t, x)|
n−1∑
i=1

∫ λi(t)∨λ̃i(t)

λi(t)∧λ̃i(t)

∣∣∣∣∣ 1
˜̂σ2
−

1
σ̂2

∣∣∣∣∣dx

≤C max
0<x<∞

|w(t, x)|
n−1∑
i=1

|λi(t) − λ̃i(t)|

≤C max
0<x<∞

|w(t, x)|2 (by (5.1))

≤
C
ε

∫ ∞

0
w2dx + ε

∫ ∞

0

(
∂w
∂x

)2

dx.

(5.5)

We now proceed to estimate the left side of (5.3). First, we have∫ +∞

0

w
σ̂2

∂w
∂t

dx =

∫ λn−1

0

w
σ̂2

n

∂w
∂t

dx +

n−2∑
i=1

∫ λi

λi+1

w
σ̂2

i+1

∂w
∂t

dx +

∫ ∞

λ1

w
σ̂2

1

∂w
∂t

dx

=g′1(t) + g2(t) +

n−1∑
i=1

( 1
σ̂2

i

−
1
σ̂2

i+1

)
λ′i(t)

w2(t, λi(t))
2

≥g′1(t) +

n−1∑
i=1

( 1
σ̂2

i

−
1
σ̂2

i+1

)
λ′i(t)

w2(t, λi(t))
2

,

(5.6)

where

g1(t) =

∫ λn−1

0

w2

2σ̂2
n
dx +

n−2∑
i=1

∫ λi

λi+1

w2

2σ̂2
i+1

dx +

∫ ∞

λ1

w2

2σ̂2
1

dx,

and

g2(t) =

∫ λn−1

0

w2

2σ̂4
n

∂σ̂2
n

∂t
dx +

n−2∑
i=1

∫ λi

λi+1

w2

2σ̂4
i+1

∂σ̂2
i+1

∂t
dx +

∫ ∞

λ1

w2

2σ̂4
1

∂σ̂2
1

∂t
dx.

Second, we have ∫ ∞

0
−

w
2
∂2w
∂x2 dx =

1
2

∫ ∞

0

(
∂w
∂x

)2

dx (5.7)

and ∫ ∞

0

( ṡ(t)
σ̂2 +

1
2

)
w
∂w
∂x

dx ≤ ε
∫ ∞

0

(
∂w
∂x

)2

dx +
C
ε

∫ ∞

0
w2dx, (5.8)

as ṡ(t) is uniformly bounded. Combining the above inequalities (5.5)-(5.8), taking into account (5.3),
we drive

g′1(t) ≤ε
∫ ∞

0

(
∂w
∂x

)2

dx +
C
ε

∫ ∞

0
w2dx +

n−1∑
i=1

( 1
σ̂2

i+1

−
1
σ̂2

i

)
λ′i(t)

w2(t, λi(t))
2

≤ε

∫ ∞

0

(
∂w
∂x

)2

dx +
C
ε

∫ ∞

0
w2dx + C max

0≤x≤∞
|w(t, x)|2

≤Cε
∫ ∞

0

(
∂w
∂x

)2

dx +
C
ε

∫ ∞

0
w2dx.
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It is easy to see that there exists a constant C0 > 0 such that

C0

∫ ∞

0
w2dx ≤ g1(t) ≤ Cε

∫ t

0

∫ ∞

0

(
∂w
∂x

)2

dxds +
C
ε

∫ t

0

∫ ∞

0
w2dxds.

Then for sufficiently small ε, by applying the Gronwall’s inequality, we conclude that w ≡ 0. This
proves the uniqueness for 0 ≤ t ≤ ρ. A close examination of the proof indicates that the uniqueness
result can be extended to any time interval, where ∂u

∂x is strictly negative, which is already verified in
(4.8). �

6. Asymptotic behavior

6.1. Steady status

Denote by ψ the solution of the following static problem

¯̂σ2

2
∂2ψ

∂x2 +

( ¯̂σ2

2
+ θ −

σ2
r

2a2

)
∂ψ

∂x
= 0, (6.1)

with boundary conditions
ψ(0) = 1, lim

x→∞
ψ(x) = 0, (6.2)

ψ(λ∗i ) = γi,
∂ψ

∂x
(λ∗i +) =

∂ψ

∂x
(λ∗i−), i = 1, 2, · · · , n − 1, (6.3)

where ¯̂σ = ¯̂σ1 as ψ < γ1, ¯̂σ = ¯̂σi as γi−1 < ψ < γi for i = 1, 2, · · · , n − 1, ¯̂σ = ¯̂σn as ψ > γn−1, and
¯̂σi, i = 1, 2, · · · , n, are given in (3.3). We suppose that in the i’th rating region, ψ admits the following
form

ψ(x) = pi + qi exp(kix), i = 1, 2, · · · , n, (6.4)

where pi, qi and ki are undetermined constants. Substituting (6.4) into (6.1) in the corresponding rating
region gives

ki =
σ2

r

a2 ¯̂σ2
i

−
2θ
¯̂σ2

i

− 1, i = 1, 2, · · · , n.

As it is supposed that one of the conditions (3.11)-(3.13) holds, then ṡ(t) ≥ 0, which implies that ki < 0,
i = 1, 2, · · · , n. Substituting (6.4) into the boundary condition (6.3) gives

pi + qi exp(kiλ
∗
i ) = γi, (6.5)

pi+1 + qi+1 exp(ki+1λ
∗
i ) = γi, (6.6)

and
qiki exp(kiλ

∗
i ) = qi+1ki+1 exp(ki+1λ

∗
i ) (6.7)

for i = 1, 2, · · · , n − 1. Also, substituting (6.4) into the boundary condition (6.2) gives

p1 = 0, pn + qn = 1. (6.8)

It is easy to see that coefficient system (6.5)-(6.8) can be equivalently rewritten as

log qi + kiλ
∗
i = log(γi − pi), (6.9)
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log qi+1 + ki+1λ
∗
i = log(γi − pi+1), (6.10)

log qi + log ki + kiλ
∗
i = log qi+1 + log ki+1 + ki+1λ

∗
i (6.11)

for i = 1, 2, · · · , n − 1, and

log(γ1 − p1) = log γ1, log qn = log(1 − pn). (6.12)

For i = 1, 2, · · · , n − 2, from the equations

pi+1 + qi+1 exp(ki+1λ
∗
i ) = γi, pi+1 + qi+1 exp(ki+1λ

∗
i+1) = γi+1,

we can derive their relationship as

log(γi − pi+1) = log(γi+1 − pi+1) + ki+1λ
∗
i − ki+1λ

∗
i+1.

Thus, denote by xi = log qi for i = 1, 2, · · · , n, yi = log(γi−pi) for i = 1, 2, · · · , n−1 and yn = log(1−pn),
zi = log(γi − pi+1), i = 1, 2, · · · , n − 1. Then (6.9)-(6.12) can be rewritten as

xi − yi + kiλ
∗
i = 0, i = 1, 2, · · · , n − 1, (6.13)

xi+1 − zi + ki+1λ
∗
i = 0, i = 1, 2, · · · , n − 1, (6.14)

xi − xi+1 + (ki − ki+1)λ∗i + log ki − log ki+1 = 0, i = 1, 2, · · · , n − 1, (6.15)

zi − yi+1 − ki+1λ
∗
i + ki+1λ

∗
i+1 = 0, i = 1, 2, · · · , n − 1, (6.16)

λ∗n = 0, y1 = log γ1, xn = yn, (6.17)

where a virtual parameter λ∗n is added. (6.13)-(6.17) is a linearized system from (6.5)-(6.8) and can
be solved according to fundamental linear algebra theory. Thus, we obtain the explicit solution of the
static problem (6.1)-(6.3).

6.2. Convergence

The coefficients in the model of [35] are time-homogeneous and moreover, the solution is decreasing
in time. However, both of these are not the cases in our model. We cannot take advantage of the
decreasing property of solution to obtain the convergence. In this paper, we are motivated by the
idea of [12] and obtain the convergence by two steps. The first step is to show that the solution of
problem (3.6)-(3.10) converges to the solution of some auxiliary problem defined below, while in the
second step, we show that the solution of auxiliary problem converges to the solution of static problem
(6.1)-(6.3). Now define an auxiliary free boundary problem as follows

∂ū
∂t
−

¯̂σ2

2
∂2ū
∂x2 −

( ¯̂σ2

2
+ θ −

σ2
r

2a2

)
∂ū
∂x

= 0, 0 < x < ∞, t > 0, (6.18)

with initial condition ū0 and boundary condition ū(t, 0) = 1,

ū(t, λ̄i(t)−) = ū(t, λ̄i(t)+) = γi,
∂ū
∂x

(t, λ̄i(t)−) =
∂ū
∂x

(t, λ̄i(t)+), i = 1, 2, · · · , n − 1. (6.19)

All the results derived above involving the existence, uniqueness and some properties of solution
presented in Lemmas 4.1-4.6 hold for solution of problem (6.18)-(6.19). We have to notice that as the
presence of default boundary, although we follow the idea of [12], the technical proofs are different,
especially in the step, i.e., the convergence from the original solution to the auxiliary solution.
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6.2.1. Convergence from u to ū

Since σ̂i(t) → ¯̂σi, i = 1, 2, · · · , n, and ṡ(t) → θ −
σ2

r
2a2 as t → ∞, then for any ε > 0, there exists a

T > 0 such that for t ≥ T ,

1
¯̂σ2

i

− ε ≤
1

σ̂2
i (t)
≤

1
¯̂σ2

i

+ ε, θ −
σ2

r

2a2 − ε ≤ ṡ(t) ≤ θ −
σ2

r

2a2 + ε. (6.20)

Let ū0(x) = u(T, x) and denote by uT (t, x) = u(t + T, x) for t ≥ 0. We have uT (t, λi(t)) = ū(t, λ̄i(t)) = γi,
i = 1, 2, · · · , n − 1, and

uT (t, λT
i (t)) − ū(t, λT

i (t)) = ū(t, λ̄i(t)) − ū(t, λT
i (t)), i = 1, 2, · · · , n − 1,

where λT
i (t) = λi(t + T ), i = 1, 2, · · · , n − 1. Similarly to the proof of Theorem 5.2, by the implicit

function theorem, there exists a ρ > 0, such that when 0 < t < ρ,

|λ̄i(t) − λT
i (t)| ≤ C max

0≤x≤∞
|uT (t, x) − ū(t, x)|, i = 1, 2, · · · , n − 1, (6.21)

where C is a positive constant, whose value may change line on line but makes no difference. Let
w = uT − ū. Then w satisfies

1
σ̂2

T

∂w
∂t

=
1
2
∂2w
∂x2 +

(1
2

+
ṡT (t)
σ̂2

T

)
∂w
∂x

+ h1 + h2, (6.22)

where ṡT (t) = ṡ(t + T ),

h1 =

( 1
¯̂σ2
−

1
σ̂2

T

)(
∂ū
∂t
−

(
θ −

σ2
r

2a2

)
∂ū
∂x

)
,

and

h2 =

(
ṡT (t) − θ +

σ2
r

2a2

)
∂ū
∂x
.

As u, ū and their derivatives decay exponentially fast to 0 as x → ∞, multiplying (6.22) by w on both
sides and integrating x from 0 to∞ gives∫ ∞

0

w
σ̂2

T

∂w
∂t

dx =

∫ ∞

0

w
2
∂2w
∂x2 dx +

∫ ∞

0

(1
2

+
ṡT (t)
σ̂2

T

)
∂w
∂x

wdx +

∫ ∞

0
h1wdx +

∫ ∞

0
h2wdx. (6.23)

By Lemmas 4.2 and 4.3, we know that ∂ū
∂t and ∂ū

∂x are uniformly bounded as the initial data is set to be
ū0(x) = u(T, x) for a sufficiently large T . It follows that∫ ∞

0
h1wdx ≤ max

0≤x≤∞
|w(t, x)|

n−1∑
i=1

∫ λT
i ∨λ̄i

λT
i ∧λ̄i

∣∣∣∣∣ 1
¯̂σ2
−

1
σ̂2

T

∣∣∣∣∣dx + h3

≤ max
0≤x≤∞

|w(t, x)|
n−1∑
i=1

|λT
i (t) − λ̄i(t)| + h3 (by (6.21))

≤ max
0≤x≤∞

|w(t, x)|2 + h3,
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where

h3 =

( ∫ λT
n−1∧λ̄n−1

0
+

n−2∑
i=1

∫ λT
i ∧λ̄i

λT
i+1∨λ̄i+1

+

∫ ∞

λT
1∨λ̄1

)∣∣∣∣∣ 1
¯̂σ2
−

1
σ̂2

T

∣∣∣∣∣wdx ≤ ε
∫ ∞

0
wdx ≤ Cε,

hold by (6.20) and the exponential decay of w. Using (5.4), there holds∫ ∞

0
h1wdx ≤

C
ε

∫ ∞

0
w2dx + ε

∫ ∞

0

(
∂w
∂x

)2

dx + εC. (6.24)

On the other hand, there holds∫ ∞

0
h2wdx ≤ ε

∫ ∞

0

∣∣∣∣∣∂ū
∂x

∣∣∣∣∣wdx ≤ Cε
∫ ∞

0
wdx ≤ Cε. (6.25)

We now proceed to estimate the left side of (6.23) by∫ +∞

0

w
σ̂2

T

∂w
∂t

dx =

∫ λT
n−1

0

w
(σ̂T )2

n

∂w
∂t

dx +

n−2∑
i=1

∫ λT
i

λT
i+1

w
(σ̂T )2

i+1

∂w
∂t

dx +

∫ ∞

λT
1

w
(σ̂T )2

1

∂w
∂t

dx

=g′1(t) + g2(t) +

n−1∑
i=1

( 1
(σ̂T )2

i

−
1

(σ̂T )2
i+1

)1
2

dλT
i

dt
w2(t, λT

i (t))

≥g′1(t) +

n−1∑
i=1

( 1
(σ̂T )2

i

−
1

(σ̂T )2
i+1

)1
2

dλT
i

dt
w2(t, λT

i (t)),

(6.26)

where

g1(t) =

∫ λT
n−1

0

w2

2(σ̂T )2
n
dx +

n−2∑
i=1

∫ λT
i

λT
i+1

w2

2(σ̂T )2
i+1

dx +

∫ ∞

λT
1

w2

2(σ̂T )2
1

dx,

and

g2(t) =

∫ λT
n−1

0

w2

2(σ̂T )4
n

∂(σ̂T )2
n

∂t
dx +

n−2∑
i=1

∫ λT
i

λT
i+1

w2

2(σ̂T )4
i+1

∂(σ̂T )2
i+1

∂t
dx +

∫ ∞

λT
1

w2

2(σ̂T )4
1

∂(σ̂T )2
1

∂t
dx.

The remaining terms in (6.23) can be estimated by∫ ∞

0

w
2
∂2w
∂x2 dx = −

1
2

∫ ∞

0

(
∂w
∂x

)2

dx (6.27)

and ∫ ∞

0

( ṡT

σ̂2
T

+
1
2

)
w
∂w
∂x

dx ≤ ε
∫ ∞

0

(
∂w
∂x

)2

dx +
C
ε

∫ ∞

0
w2dx. (6.28)

Combining the inequalities (6.24)-(6.28), we have

g′1(t) ≤ε
∫ ∞

0

(
∂w
∂x

)2

dx +
C
ε

∫ ∞

0
w2dx +

n−1∑
i=1

( 1
(σ̂T )2

i+1

−
1

(σ̂T )2
i

)∂λT
i

∂t
w2(t, λT

i (t))
2

+ Cε

≤ε

∫ ∞

0

(
∂w
∂x

)2

dx +
C
ε

∫ ∞

0
w2dx + C max

0≤x≤∞
|w(t, x)|2 + Cε

≤Cε
∫ ∞

0

(
∂w
∂x

)2

dx +
C
ε

∫ ∞

0
w2dx + Cε.
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It follows that

C0

∫ ∞

0
w2dx ≤ g1(t) ≤ Cε

∫ t

0

∫ ∞

0

(
∂w
∂x

)2

dxds +
C
ε

∫ t

0

∫ ∞

0
w2dxds + Cεt.

Then taking a sufficiently small ε, which means a sufficiently large T , by applying the Gronwall’s
inequality, we conclude that w = 0, namely that uT (t, x) = ū(t, x) for 0 ≤ t ≤ ρ. The result can be
extended to any interval of t.

6.2.2. Convergence from ū to ψ

The convergence from the solution of auxiliary problem (6.18)-(6.19) to the solution of problem
(6.1)-(6.3) is proved by a Lyapunov argument, which is similar to the procedure in [12, 21, 32], but
with some necessary modifications to fit the model in this paper. For instance, we have extend the
solution with domain [0,∞) to the whole real line. The first step is to present the formal construction
of a Lyapunov function, ignoring the integrability of any arisen integral. The second step is to verify
the integrability of those integrals arisen in the formal construction. The third step is to complete the
proof of convergence.

Denote by Ū the extension of ū, who is the solution of auxiliary problem (6.18)-(6.19), from x ∈
[0,∞) to the real line R, namely that

Ū(t, x) = 1 for x < 0, Ū(t, x) = ū(t, x) for x ≥ 0.

Following [12], let V(x, u, q) be a undetermined function and set

E[Ū](t) =

∫ ∞

−∞

V(x, Ū(t, x), Ūx(t, x))dx.

Formally, assuming the integrability, we also have

d
dt

E[Ū] =

∫ ∞

−∞

(VuŪt + VqŪxt)dx

=

∫ ∞

−∞

Ūt(Vu − Vqx − VquŪx − VqqŪxx)dx

=

∫ ∞

−∞

Ūt(Vu − Vqx − VquŪx − Vqq

( 2
¯̂σ2

Ūt −
2
¯̂σ2

( ¯̂σ2

2
+ δ

)
Ūx

))
dx

= −

∫ ∞

−∞

2
¯̂σ2

VqqŪ2
t dx +

∫ ∞

−∞

Ūt(Vu − Vqx − VquŪx + Vqq

(
1 +

2δ
¯̂σ2

)
Ūx

)
dx

= −

∫ ∞

−∞

2
¯̂σ2

VqqŪ2
t dx,

where δ = θ −
σ2

r
2a2 , provided taking V satisfying

Vu − Vqx − qVqu + qVqq

(
1 +

2δ
¯̂σ2(u)

)
= 0. (6.29)

Denote by ρ = Vqq. Suppose that V(x, u, 0) = Vq(x, u, 0) = 0 as in [12]. Then we have∫ q

0
(q − m)ρ(x, u,m)dm =

∫ q

0
(q − m)dVq(x, u,m) =

∫ q

0
Vq(x, u,m)dm = V(x, u, q).
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It follows that
Vu(x, u, q) =

∫ q

0
(q − m)ρu(x, u,m)dm,

Vq(x, u, q) =

∫ q

0
ρ(x, u,m)dm,

Vqx(x, u, q) =

∫ q

0
ρx(x, u,m)dm,

Vqu(x, u, q) =

∫ q

0
ρu(x, u,m)dm,

and
qVqq = qρ =

∫ q

0

d
dm

(ρ(x, u,m)m)dm =

∫ q

0
(ρ(x, u,m) + ρq(x, u,m))dm.

Then (6.29) can be written as∫ q

0
(qρu(x, u,m) − mρu(x, u,m) − ρx(x, u,m) − qρu(x, u,m))dm

+

∫ q

0

(
1 +

2δ
¯̂σ2(u)

)
(ρ(x, u,m) + ρq(x, u,m)m)dm = 0.

To ensure (6.29) holds, it should be

mρu(x, u,m) + ρx(x, u,m) −
(
1 +

2δ
¯̂σ2(u)

)
(ρ(x, u,m) + ρq(x, u,m)m) = 0. (6.30)

Formally, denote by v the solution of the following equation

− vxx −

(
1 +

2δ
¯̂σ2(v)

)
vx = 0, (6.31)

with boundary conditions
v(x0) = u0, vx(x0) = q0.

Then by (6.30) and (6.31), there holds

d
dx
ρ = ρx + ρuvx + ρqvxx = ρx + ρuvx − ρq

(
1 +

2δ
¯̂σ2(v)

)
vx =

(
1 +

2δ
¯̂σ2(v)

)
ρ,

which can be solved as
ρ(x0, u0, q0) = exp

( ∫ x0

0

(
1 +

2δ
¯̂σ2(v(z))

)
dz

)
.

Replacing x0 by x, u0 by u and q0 by q, we have

ρ(x, u, q) = exp
( ∫ x

0

(
1 +

2δ
¯̂σ2(v(z))

)
dz

)
. (6.32)

Integrating the Lyapunov function and assuming E(t) ≥ 0, we have∫ t

t0

∫ ∞

−∞

2
¯̂σ2
ρ(x, Ū(s, x), Ūx(s, x))Ū2

s (s, x)dxds = E(t0) − E(t) ≤ E(t0).
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Following the formal construction, we proceed to the second step, namely that verify the
integrability of those integrals arisen in the formal construction of the Lyapunov function. As indicated
by Liang et al. [21], there are two problems, where the first one is that ρ grows exponentially as
x→ ±∞, while the second one is that the coefficient in (6.31) is discontinuous and the theory of ODE
cannot be applied directly. These two problems will be overcame through the approximated solution
of problem (4.1)-(4.3) with all the uniform estimates. We begin this step by defining

ER[Ūε](t) =

∫ R

−R
Vε

(
x, Ūε(t, x),

∂Ūε

∂x
(t, x)

)
dx,

for R > 0, where Ūε is the approximation of Ū with the coefficient of the approximated problem given
as

¯̂σε = ¯̂σ1 +

n−1∑
i=1

( ¯̂σi+1 − ¯̂σi)Hε(Ūε − γi),

and Vε satisfies

Vε(x, u, q) =

∫ q

0
(q − m)ρε(x, u,m)dm, Vε(x, u, 0) =

∂Vε

∂q
(x, u, 0) = 0,

and ρε is defined by (6.32) with ¯̂σ2 replaced by ¯̂σ2
ε . Thus, (6.31) can be solved on the real line x ∈ R

and Vε is well defined. Meanwhile, it also satisfies

∂Vε

∂u
−
∂2Vε

∂q∂x
− q

∂2Vε

∂q∂u
+ q

∂2Vε

∂q2

(
1 +

2δ
¯̂σ2
ε (u)

)
= 0.

Then we have

d
dt

ER[Ūε] =

∫ R

−R

(
∂Vε

∂u
∂Ūε

∂t
+
∂Vε

∂q
∂2Ūε

∂x∂t

)
dx =

∂Vε

∂q
∂Ūε

∂t

∣∣∣∣∣R
−R
−

∫ R

−R

2ρε
¯̂σ2
ε

(
∂Ūε

∂t

)2

dx.

Lemma 6.1. Let ūε be the approximated solution of problem (6.18)-(6.19). Then for any K1 > 0, there
exist constants C0, K2 > 0 such that for x > C2, there holds∣∣∣∣∣∂ūε

∂x

∣∣∣∣∣ +

∣∣∣∣∣∂ūε
∂t

∣∣∣∣∣ ≤ C0eK2t−K1 x,

where C2 is the constant given in Lemma 4.5.

Proof. We know that for x > C2

L ε
σ1

[ūε] = L ε
σ1

[
∂ūε
∂t

]
= L ε

σ1

[
∂ūε
∂x

]
,

where the operator

L ε
σ1

[ · ] =
∂

∂t
−

¯̂σ2
1

2
∂2

∂x2 −

( ¯̂σ2
1

2
+ δ

)
∂

∂x
.

By Lemmas 4.2 and 4.3, it has been shown that

sup
0<t<∞

(∣∣∣∣∣∂ūε
∂t

(t,C2)
∣∣∣∣∣ +

∣∣∣∣∣∂ūε
∂x

(t,C2)
∣∣∣∣∣) ≤ C,
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for some C > 0. On the other hand, there holds

∂ūε
∂t

(0, x) = −δe−(x+log K),
∂ūε
∂x

(0, x) = −e−(x+log K)

for x > C2. Then for any K1 > 0, there exist constants C0, K2 > 0 such that

L ε
σ1

[C0eK2t−K1 x] ≥ 0, x > C2, t > 0,

and C0 ≥ C, C0e−K1 x ≥ (δ ∨ 1)e−(x+log K), which implies that

−C0eK2t−K1 x ≤
∂ūε
∂x
≤ C0eK2t−K1 x, −C0eK2t−K1 x ≤

∂ūε
∂t
≤ C0eK2t−K1 x

for x > C2. �

From the formula of ρε

ρε(x, u, q) = exp
( ∫ x

0

(
1 +

2δ
¯̂σ2
ε (v(z))

)
dz

)
,

we have
exp

((
1 +

2δ
¯̂σ2

n

)
x
)
≤ ρε(x, u, q) ≤ exp

((
1 +

2δ
¯̂σ2

1

)
x
)
, (6.33)

which also clearly implies that

exp
((

1 +
2δ
¯̂σ2

n

)
x
)
q ≤

∂Vε

∂q
(x, u, q) ≤ exp

((
1 +

2δ
¯̂σ2

1

)
x
)
q

and
exp

((
1 +

2δ
¯̂σ2

n

)
x
)
q2 ≤ Vε(x, u, q) ≤ exp

((
1 +

2δ
¯̂σ2

1

)
x
)
q2

for x > 0. Thus by Lemma 6.1, we can choose K1 > 1 + 2δ
¯̂σ2

1
such that

lim
R→∞

∂Vε

∂q
(t,R)

∂Ūε

∂t
(t,R) = 0,

and

lim
R→∞

∫ R

−R

2ρε
¯̂σ2
ε

(
∂Ūε

∂t

)2

dx =

∫ ∞

−∞

2ρε
¯̂σ2
ε

(
∂Ūε

∂t

)2

dx.

Then there holds ∫ t

t0

∫ ∞

−∞

2ρε
¯̂σ2
ε

(
∂Ūε

∂s

)2

dxds ≤ E∞[Ūε](t0) ≤ C,

where the constant C is independent of ε, which implies that∫ ∞

t0

∫ ∞

0
ū2

t (s, x)dxds ≤ C, (6.34)

according to (6.28) and the setting of Ū.
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Now we arrive at the third step, completing the proof of convergence from ū to ψ. Denote by
ūm(t, x) = ū(t + m, x) and consider ūm as a sequence of functions on [0, 1] × (0,∞). Since ūm is a
bounded sequence in W1,2

∞ ([0, 1] × (0,∞)), we derive by the embedding theorem that there exists a
subsequence m j of m and a function ψ̃ such that as m j → ∞, there holds

ūm j → ψ̃ in C
(1+α)

2 ,1+α([0, 1] × (0,R)), 0 < α < 1, (6.35)

for any R > 1. Furthermore, by taking a further subsequence if necessary, there holds that

∂ūm j

∂t
w∗
−→ ψ̃t,

∂2ūm j

∂x2

w∗
−→ ψ̃xx in L∞([0, 1] × (0,∞)),

and thus

‖ ψ̃t ‖L∞≤ lim inf
m→∞

‖
∂ūm j

∂t
‖L∞≤ C, ‖ ψ̃xx ‖L∞≤ lim inf

m→∞
‖
∂2ūm j

∂x2 ‖L
∞≤ C,

for some constant C > 0. As (6.34) suggests that∫ 1

0

∫ ∞

0

(
∂ūm

∂t

)2

dxds =

∫ m+1

m

∫ ∞

0
ū2

t dxds→ 0 as m = m j → ∞.

we have ∫ 1

0

∫ ∞

0
ψ̃2

t dxdt = 0,

which implies that ψ̃t ≡ 0 and ψ̃ is independent of t and only depends on x. Now we proceed to prove
that ψ̃ satisfies (6.1). Take a test function f ∈ C∞c (0,∞), then there holds∫ ∞

0

∂ūm

∂t
f dx =

∫ ∞

0

1
2

¯̂σ2(ūm)
(
∂2ūm

∂x2 +
∂ūm

∂x

)
f dx +

∫ ∞

0
δ
∂ūm

∂x
f dx. (6.36)

Clearly, the second term on the right side converges to the corresponding integral of ψ̃ as m = m j → ∞.
With regard to the first term on the right side of (6.36), there holds∫ ∞

0

1
2

¯̂σ2(ūm)
(
∂2ūm

∂x2 +
∂ūm

∂x

)
f dx

=

∫ ∞

0

1
2

¯̂σ2(ψ̃)
(
∂2ūm

∂x2 +
∂ūm

∂x

)
f dx +

∫ ∞

0

1
2

( ¯̂σ2(ūm) − ¯̂σ2(ψ̃))
(
∂2ūm

∂x2 +
∂ūm

∂x

)
f dx.

(6.37)

By the weak-star convergence, the first term on the right side of (6.32) converges to the corresponding
integral of ψ̃. The second term on the right side of (6.37) is bounded by C

∫ ∞
0
| ¯̂σ2(ūm) − ¯̂σ2(ψ̃)| f dx,

which converges to 0 by the dominated convergence theorem. By the convergence (6.35), we have∫ 1

0

∫ ∞

0

∂ūm

∂t
f dxdt → 0 as m→ ∞.

Thus integrating (6.36) with respect to t over [0, 1] and letting m→ ∞, there holds∫ ∞

0

1
2

¯̂σ2(ψ̃)(ψ̃xx + ψ̃x) f dx +

∫ ∞

0
δψ̃x f dx = 0.
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It follows that ψ̃ satisfies (6.1). The convergence (6.35) also suggests that ψ̃ satisfies (6.2). Now
suppose that

lim inf
m j→∞

inf
0≤t≤1

λ̄i(t + m j) = λ̄min
i ≤ λ̄max

i = lim sup
m j→∞

sup
0≤t≤1

λ̄i(t + m j), i = 1, 2, · · · , n − 1. (6.38)

We choose tmin
i, j , tmax

i, j ∈ [0, 1] such that

inf
0≤t≤1

λ̄i(t + m j) = λ̄i(tmin
i, j + m j), sup

0≤t≤1
λ̄i(t + m j) = λ̄i(tmax

i, j + m j).

Taking the subsequences along which the liminf and limsup in (6.38) are attained, together with the
boundary conditions

ūm(t, λ̄i(t + n)) = γi, i = 1, 2, · · · , n − 1,

and (6.35), it is deduced that

ψ̃(λ̄min
i ) = ψ̃(λ̄max

i ) = γi, i = 1, 2, · · · , n − 1.

However, by the uniqueness of solution to static problem (6.1)-(6.3), there should hold

λ̄min
i = λ̄max

i = λ∗i , i = 1, 2, · · · , n − 1,

and ψ ≡ ψ̃. In addition, the uniqueness implies that all subsequences limit should be uniform and thus
the full sequence must converge as m→ ∞.

7. Conclusion

In this paper, we study a free boundary problem for pricing a defaultable corporate bond with
multiple credit rating migration risk and stochastic interest rate. By using PDE techniques, the
existence, uniqueness some regularities of solution are obtained to support the rationality of the model
to pricing a defaultable corporate bond. In [35], it is shown that the solution and rating boundaries
of the free boundary problem pricing a defaultable corporate bond with constant interest rate are all
decreasing with respect to time, which do not hold any more in our model with stochastic interest
rate, as the coefficients of model are all time heterogeneous. Furthermore, we present the asymptotic
behavior of solution to this pricing model. Asymptotic behaviors of solution to free boundary problems
pricing corporate bonds with credit rating migration risk have been analyzed in [12, 21, 32]. The
asymptotic solution of the model with only one migration boundary can be solved explicitly [21],
while in the works [12, 32], where the models are subject to multiple migration boundaries, it is not
the case. However, interestingly, in this paper, although our model is also subject to multiple migration
boundaries, it is proved that the asymptotic solution can be solved explicitly. We conclude that if the
maturity T is sufficiently large, we can valuate the defaultable corporate bond with multiple credit
rating migration risk and stochastic interest rate by an explicit pricing formula as follows:

φ(t) = S (t)ψ(log S (t) − log K),

where S (t) is the corporate value, K is default threshold and ψ is the steady status given in Section 6,
whose explicit form can be obtained by solving the linear algebraic equation set.
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