
AIMS Mathematics, 5(6): 7719–7745.

DOI: 10.3934/math.2020494

Received: 03 August 2020

Accepted: 07 October 2020

Published: 14 October 2020

http://www.aimspress.com/journal/Math

Research article

Study on weighted-based noniterative algorithms for centroid

type-reduction of interval type-2 fuzzy logic systems

Yang Chen*, Jinxia Wu and Jie Lan

College of Science, Liaoning University of Technology, Jinzhou, Liaoning, 121001, P. R. China

* Correspondence: Email: lxychenyang@lnut.edu.cn; Tel: +8613897856294; Fax: +864164199415.

Abstract: Interval type-2 fuzzy logic systems (IT2 FLSs) have been widely used in many areas.

Among which, type-reduction (TR) is an important block for theoretical study. Noniterative

algorithms do not involve the complicated iteration process and obtain the system output directly. By

discovering the inner relations between discrete and continuous noniterative algorithms, this paper

proposes three types of weighted-based noniterative according to the Newton-Cotes quadrature

formulas in numerical integration techniques. Moreover, the continuous noniterative algorithms are

considered as the benchmarks for computing. Four simulation experiments are provided to illustrate

the performances of weighted-based noniterative algorithms for computing the defuzzified values of

IT2 FLSs. Compared with the original noniterative algorithms, the proposed weighted-based

algorithms can obtain smaller absolute errors and faster convergence speeds under the same sampling

rate, which afford the potential values for designing T2 FLSs.

Keywords: type-reduction; weighted Nagar-Bardini algorithms; weighted Nie-Tan algorithms;

weighted Begian-Melek-Mendel algorithms; absolute errors

Mathematics Subject Classification: 68XX, 68Uxx

1. Introduction

The computationally relative simple interval type-2 fuzzy sets (IT2 FSs) are currently the most

commonly used T2 FSs. Therefore, interval type-2 fuzzy logic systems (IT2 FLSs [1,2,57]) based on

IT2 FSs have superior ability to cope with uncertainties environments like power systems [3],

permanent magnetic drive [4–6], intelligent controllers [7], medical systems [8], pattern recognition

systems [9], database and information systems [10] and so on. The footprint of uncertainty (FOU) of

7720

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

an IT2 FS [11] make it own more design degrees of freedom compared with a T1 FS. Generally

speaking, a T2 FLS (see Figure 1) is composed of fuzzifier, rules, inference, type-reducer and

defuzzifier. Among which, the block of type-reduction plays the central role of transforming the T2

to the T1 FS. Finally the defuzzification changes the T1 FS to the crisp output.

Figure 1. A T2 FLS [12].

In the past decades, many types of type-reduction (TR) were proposed gradually. Among which,

the most famous one is the Karnik-Mendel (KM) algorithms [13]. This type of algorithms has the

advantages of preserving the uncertainties flow between the upper and lower membership functions

(MFs) of T2 FLSs. Then the continuous KM (CKM) algorithms [14] were put forward, in addition,

the monotoncity and super convergence property of them were proved. For the sake of improving the

calculation efficiency, Wu and Mendel proposed the enhanced KM (EKM) algorithms [15].

Extensive simulation experiments show that the EKM algorithms can save two iterations on average

compared with the KM algorithms. Then Liu et al. gave the theoretical explanations for the

initialization of EKM algorithms and extended the EKM algorithms to three different forms of

weighted-based EKM (WEKM) algorithms [16,17] to calculate the more accurate centroids of type-2

fuzzy sets.

However, the iterative natures of KM types of algorithms make the applications of

corresponding IT2 FLSs more challenge. Therefore, other types of noniterative algorithms [18] are

proposed gradually, and they are Nagar-Bardini (NB) algorithms [19], Nie-Tan (NT) algorithms [20],

Begian-Melek-Mendel (BMM) algorithms [21,22] and so on. Among which, IT2 FLSs based on the

NB algorithms are proved to have superior performances to respond to the affect of uncertainties in

systems’ parameters to the IT2 FLSs according to other algorithms like EKM, BMM,

Greenfield-Chiclana Collapsing Defuzzifier (GCCD [24]) and Wu-Mendel Uncertainty Bound

(UB [24]). Moreover, Nie-Tan (NT) algorithms have the simple closed form. Recent studies prove

that the continuous NT (CNT) algorithms [20] to be accurate algorithms to calculate the centroid of

IT2 FSs. In addition, BMM algorithms [18] are proved to be more generalized forms of NB and NT

algorithms. All these works have laid theoretical foundations for studying the TR of T2 FLSs.

In order to obtain more accurate centroid TR of IT2 FLSs, this paper extends the NB, NT, and

BMM algorithms to the corresponding WNB, WNT, and WBMM algorithms according to the

Newton-Cotes quadrature formulas. The rest of this paper is organized as follows. Section 2

introduces the background of IT2 FLSs. Section 3 provides the Newton-Cotes formulas, the

weighted-based noniterative algorithms, and how to adopt them to perform the centroid TR of IT2

FLSs. Section 4 gives four computer simulation examples to illustrate the performances of

weighted-based noniterative algorithms. Finally Section 5 is the conclusions and expectations.

7721

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

2. IT2 FLSs

Definition 1. A T2 FS A
~

 can be characterized by its T2 MF),(~ ux
A

 , i.e.,

]}1,0[,|),(),,{(
~

~  uXxuxuxA
A

 (1)

where the primary variable Xx , the secondary variable]1,0[u , here Eq (1) is called as the

point-value expression, whose compact form is as:

),/(),(
~

]1,0[
~ uxuxA

Xx u A  
  (2)

Definition 2. The secondary MF of A
~

 is a vertical slice of),(~ ux
A

 , i.e.,

 


]1,0[
~~ /)()(),(

u
xAA

uufxuxx  . (3)

Definition 3. The two dimensional support of),(~ ux
A

 is referred to as the footprint of uncertainty

(FOU) of A
~

, i.e.,

}0),(|]1,0[),{()
~

(FOU ~ 


uxXuxJA
AXx x  (4)

The upper and lower bounds of)
~

(FOU A are called as the upper MF (UMF) and lower MF

(LMF), respectively, i.e.,

)
~

(FOU)()
~

UMF(~ AxA A   ,)
~

(FOU)()
~

(LMF ~ AxA
A

  . (5)

Because the secondary membership grades of IT2 FSs are all uniformly equal to 1, i.e.,

1)(uf x , every IT2 FS can be completely described by its UMF and LMF. Then the vertical slices

representation of A
~

 can be as:

 


XxXx A
xxAxxA /)(

~
/)(

~
~ (6)

Here)(~ x
A

 can be denoted as)(
~

xA for simplicity.

Definition 4. An embedded T1 FS eA depends on),(~ ux
A

 , i.e.,

},|)(,{(xe JuXxxuxA  . (7)

Definition 5. An IT2 FS can be considered as the union of all its embedded T2 FSs j

eA
~

, i.e.,





m

j

j

eAA
1

~~
 (8)

where m denotes the number of embedded T2 FSs, j

e

j

e AA /1
~

 , and Eq (8) is referred to as the

wavy slices representation [28] of A
~

.

From the aspect of inference structure, IT2 FLSs can usually be divided into two categories:

Mamdani type [3,6,12,18,25] and Takagi-Sugeno-Kang type [4,25–27]. Without loss of generality,

7722

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

here we consider a Mamdani IT2 FLS with n inputs nn XxXx  ,11 and one output Yy .

The IT2 FLS can be characterized by M fuzzy rules, where the sth fuzzy rule is of the form:

sR
~

: If 1x is sF1

~
 and … and nx is s

nF
~

, then y is),,2,1(
~

MsG s  (9)

in which),,1;,,1(
~

MsniF s

i   is the antecedent IT2 FS, and),,1(
~

MsG s  is the

consequent IT2 FS.

For simplicity, here we use the singleton fuzzifier, i.e., the input measurements are modeled as

crisp sets (type-0 FSs). As xx  , the firing interval of each fuzzy rule is computed as:























)()(

),()(

)],(),([)(

:

~
1

~1

iF

n

i

s

iF

n

i

s

sss

s

xTxf

xTxf

xfxfxF

F

s
i

s
i



 (10)

where T denotes the minimum or product t-norm, and)(xf
s

 and)(xf s  are the left and right

end points of the firing interval, respectively.

As for the centroid TR, we combine the firing interval of each rule with its consequent IT2 FS

to obtain the fired-rule output FS lB
~

(which can be described by its FOU):

sB
~

:



















)()()|(

),()()|(

)],|(),|([)
~

(FOU

~~

~~

~~

yxfxy

yxfxy

xyxyB

ss

ss

ss

G

s

B

G

s

B

BB

s







 (11)

where  represents the minimum or product t-norm.

Then the output IT2 FS B
~

 can be obtained by aggregating all the fired-rule output FSs as :

B
~

:
















)|()|()|()|(

),|()|()|()|(

)],|(),|([)
~

(FOU

~~~~

~~~~

~~

21

21

xyxyxyxy

xyxyxyxy

xyxyB

M

M

BBBB

BBBB

BB









 (12)

where  denotes the maximum operation.

Finally the type-reduced set)(xYC
 can be obtained by computing the centroid of B

~
, i.e.,

)](),(/[1)(~~ xrxlxY
BBC

 (13)

where the two end points)(~ xl
B

 and)(~ xr
B

 can be calculated by different types of TR algorithms

[13–24,29].

3. Weighted-based noniterative algorithms

Before introducing the weighted-based noniterative algorithms, we first give the preliminary

knowledge: Newton-Cotes quadrature formulas [16,30].

7723

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

3.1. Newton-Cotes quadrature formulas

Generally speaking, the numerical integration is an approach that approximates the definite

integral 
b

a
dxxf)(according to the functional value)(ixf on some certain discrete points.

Therefore, the calculation of definite integral can be ascribed to computing functional values.

Definition 6. (Quadrature formula [16,17,46,47]) Let the discrete points satisfy that

bxxxxa N  210 , and the definite integral  
b

a
fEfQdxxf)()()(with the property:

)()()()(00

0

NNi

N

i

i xfwxfwxfwfQ 


 (14)

then Eq (14) is referred to as the numerical integration or quadrature formula, where)(fE is called

as the remainder or truncation error of integration, N

iiw 0}{  is called as the weight coefficient, and
N

iix 0}{  is the integration node.

Next, the composite trapezoidal rule, composite Simpson rule, and composite Simpson 3/8 rule

to adopted to approximate)(xf as the straight line, quadratic polynomial function, and cubic

polynomial function, respectively.

Theorem 1. (Composite trapezoidal rule [16,17,46,47]) Let)(xfy  be a function defined on

],[ba . Divide the interval],[ba into N subintervals N

iii xx 11 },{  with the equidistance
N

ab
h


 ,

where the equidistance node is as),,1,0(0 Niihxxi  , then the numerical approximation of

definite integral with the composite trapezoidal rule is as

)()([
2

)(bfaf
h

dxxf
b

a
),()](2

1

1

hfExf
N

i

Ti




 (15)

Suppose that f be second order continuous differentiable on],[ba , then the remainder

2

12

)()(
),(h

fab
hfET


 , where),(ba .

Theorem 2. (Composite Simpson rule [16,17,46,47]) Let)(xfy  be a function defined on],[ba .

Divide the interval],[ba into N2 subintervals N

iii xx 2

11 },{  with the equidistance
N

ab
h

2


 ,

where the equidistance node is as)2,,1,0(0 Niihxxi  , then the numerical approximation of

definite integral with the composite Simpson rule is as







1

1

)(2)()([
3

)(2

N

i

xfbfaf
h

dxxf i

b

a
),(])(4

1

0

12 hfExf S

N

i

i  




 (16)

Suppose that f be fourth order continuous differentiable on],[ba , then the remainder

4
)4(

180

)()(
),(h

fab
hfES


 , where),(ba .

Theorem 3. (Composite Simpson 3/8 rule [16,17,46,47]) Let)(xfy  be a function defined on

7724

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

],[ba . Divide the interval],[ba into N3 subintervals N

iii xx 3

11 },{  with the equidistance

N

ab
h

3


 , where the equidistance node is as)3,,1,0(0 Niihxxi  , then the numerical

approximation of definite integral with the composite Simpson 3/8 rule is as

),()](3)(3)(2)()([
8

3
)(

1

13

1

23

1

3 hfExfxfxfbfaf
h

dxxf SC

N

i

i

N

i

i

N

i

i

b

a
 











 (17)

Suppose that f be fourth order continuous differentiable on],[ba , then the remainder

4
)4(

80

)()(
),(h

fab
hfESC


 , where),(ba .

Here all the integrals are measured in the Lebesgue sense.

3.2. Weighted-based noniterative algorithms

3.2.1. Weighted Nagar-Bardini algorithms

IT2 FLSs based on the closed form of Nagar-Bardini (NB) algorithms [19,46,47] can make

distinctly improvement on coping with uncertainties. For the centroid output IT2 FS B
~

, suppose

that the primary variable y be equally discretized into N points, i.e., Nyyy  21 , then the

left and right centroid interval can be computed as:








N

i

iB

N

i

iBi

B

y

yy

l

1

~

1

~

~

)(

)(





, and








N

i

iB

N

i

iBi

B

y

yy

r

1

~

1

~

~

)(

)(





. (18)

Then the defuzzified output can be obtained as:

.
2

~~
BB

NB

rl
y


 (19)

Similar to the continuous KM types of algorithms [13–17,31], the continuous NB (CNB)

algorithms can be adopted for studying the theoretical property of centroid TR and defuzzification of

IT2 FLSs.

Let byyya N  21 , where a and b are the left and right end point of y ,

respectively, then the CNB algorithms calculate the centroids as:






b

a B

b

a B

B

dyy

dyyy
l

)(

)(

~

~

~




, and






b

a
B

b

a
B

B

dyy

dyyy
r

)(

)(

~

~

~




. (20)

Here the output centroid two end points can be computed without iterations. Furthermore, the

output is a linear combination of the output of two T1 FLSs: one constructed from the LMFs, and the

other constructed from the UMFs.

In this section, we propose a type of weighted NB (WNB) algorithms, i.e.,

7725

AIMS Mathematics Volume 5, Issue 6, 7719–7745.








N

i

iBi

N

i

iBii

B

yw

yyw

l

1

~

1

~

~

)(

)(





, and








N

i

iBi

N

i

iBii

B

yw

yyw

r

1

~

1

~

~

)(

)(





. (21)

WNB algorithms can be considered as the numerical implementation of CNB algorithms.

Comparing Eqs (18) and (20), it is found that the CNB and NB algorithms are very similar, i.e., the

sum operations in the discrete version are transformed into the definite integral operations in the

continuous version, i.e., the sum operations for the sampling points iy play the role of integrating

for the integrand.

Table 1. Weights assignment for the weighted-based noniterative algorithms.

Algorithms Integration rule Weights

NB,NT,BMM ______________
),,1(1 Niwi 

TWNB,TWNT,TWBMM Composite Trapezoidal rule










.,1,1

,,1,2/1

Ni

Ni
wi

SWNB,SWNT,SWBMM Composite Simpson rule

















.),2mod(0,2

,,1),2mod(1,1

,,1,2/1

Nii

Nii

Ni

wi

S3/8WNB,S3/8WNT,S3/8WBMM Composite Simpson 3/8 rule























.),2mod(0,1

,),3mod(2,1

,,1),3mod(1,3/2

,,1,3/1

Nii

Nii

Nii

Ni

wi

According to the quadrature formula (see Eq (14)), the corresponding weights iw for every

MF of sampling points iy can be assigned appropriately, then the more accurate computational

results may be obtained. Actually, many types of weights assignment method can be used. However,

this paper only considers the numerical integration methods based on the Composite trapezoidal rule,

Composite Simpson rule, and Composite Simpson 3/8 rule in Newton-Cotes quadrature formulas.

And the corresponding WNB algorithms are referred to as the TWNB, SWNB, and S3/8WNB

algorithms, respectively. Table 1 provides the weights assignment approach for the three types of

weighted-based noniterative algorithms.

3.2.2. Weighted Nie-Tan algorithms

The closed form of discrete Nie-Tan (NT) algorithms can compute the centroid output of B
~

straightly as:

7726

AIMS Mathematics Volume 5, Issue 6, 7719–7745.














N

i

iBiB

N

i

iBiBi

NT

yy

yyy

y

1

~~

1

~~

)]()([

)]()([





. (22)

Most recent studies prove the continuous NT (CNT) algorithms [20] to be an accurate method

for computing the centroids of IT2 FSs, i.e.,









b

a
BB

b

a
BB

CNT

dyyy

dyyyy
y

)]()([

)]()([

~~

~~




. (23)

This section proposes a type of weighted NT (WNT) algorithms, i.e.,














N

i

iBiBi

N

i

iBiBii

WNT

yyw

yyyw

y

1

~~

1

~~

)]()([

)]()([





. (24)

WNT algorithms can be viewed as the numerical implementation of CNT algorithms. The sum

operations in the discrete NT algorithms are transformed into the definite integral operations in the

continuous NT (CNT) algorithms, i.e., the sum operations for the sampling points iy act as

integrating for the integrand. Therefore, we can assign weights for every MF of sampling points iy

to try to obtain more accurate computational results. Here the corresponding WNT algorithms are

referred to as the TWNT, SWNT, and S3/8WNT algorithms, respectively.

3.2.3. Weighted Begian-Melek-Mendel algorithms

Begian-Melek-Mendel (BMM) algorithms can also obtain the output of IT2 FLSs directly, i.e.,















 
N

i

iB

N

i

iBi

N

i

iB

N

i

iBi

BMM

y

yy

y

yy

y

1

~

1

~

1

~

1

~

)(

)(

)(

)(











 (25)

where  and  are two adjustable coefficients.

IT2 FLSs based on BMM algorithms [13,21,22] are superior to T1 FLSs counterparts on both

robustness and stability. In addition, the BMM algorithms are more generalized form of NB and NT

algorithms. Observing the Eqs (19) and (25), it can be found that BMM and NB algorithms are

exactly the same while
2

1
 NB , and

2

1
 NB . For the NT algorithms, the Eq (22) can be

simply transformed to:

7727

AIMS Mathematics Volume 5, Issue 6, 7719–7745.





























































N

i

iB

N

i

iBi

NTN

i

iB

N

i

iBi

NT

N

i

iB

N

i

iBi

N

i

iBiB

N

i

iB

N

i

iB

N

i

iBi

N

i

iBiB

N

i

iB

NT

y

yy

y

yy

y

yy

yy

y

y

yy

yy

y

y

1

~

1

~

1

~

1

~

1

~

1

~

1

~~

1

~

1

~

1

~

1

~~

1

~

)(

)(

)(

)(

)(

)(

)]()([

)(

)(

)(

)]()([

)(





























(26)

in which












N

i

iBiB

N

i

iB

NT

yy

y

1

~~

1

~

)]()([

)(





 , and












N

i

iBiB

N

i

iB

NT

yy

y

1

~~

1

~

)]()([

)(





 . (27)

Comparing the Eqs (25) and (26), it can be found that, as NT  and NT  , BMM and

NT algorithms become the same.

Continuous BMM (CBMM) algorithms can also be used for studying the theoretical properties

of TR of IT2 FLSs, i.e.,










b

a
B

b

a
B

b

a B

b

a B

CBMM

dyy

dyyy

dyy

dyyy
y

)(

)(

)(

)(

~

~

~

~









 . (28)

Based on the quadrature formula, this section gives a type of weighted BMM (WBMM)

algorithms, i.e.,















 
N

i

iBi

N

i

iBii

N

i

iBi

N

i

iBii

WBMM

yw

yyw

yw

yyw

y

1

~

1

~

1

~

1

~

)(

)(

)(

)(











 . (29)

Here WBMM algorithms can be considered as the numerical implementation of CBMM

algorithms. Comparing Eqs (25) and (28), it is found that the CBMM and BMM algorithms are very

similar, i.e., the sum operations in the discrete version are transformed into the definite integral

operations in the continuous version, i.e., the sum operations for the sampling points iy play the

role of integrating for the integrand. This paper considers the numerical integration methods based

on the Composite trapezoidal rule, Composite Simpson rule, and Composite Simpson 3/8 rule in

Newton-Cotes quadrature formulas. And the corresponding WBMM algorithms are referred to as the

TWBMM, SWBMM, and S3/8WBMM algorithms, respectively.

For the above three types of weighed-based noniterative algorithms (see Table 1), suppose that

the primary variable be the letter x , and x is uniformly sampled on],[ba , i.e.,

)(
1

1
ab

N

i
axi 




 , Ni ,,1 , and mod represents the modular arithmetic.

7728

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

Next we can make conclusions about assigning weights for three types of weighted-based

noniterative algorithms as:

1) Substitute),,1,0(Nixi  , ax 0 , bxN  in Eq (15),)2,,1,0(Nixi  , ax 0 , bx N 2

in Eq (16), and)3,,1,0(Nixi  , ax 0 , bx N 3 in Eq (17) all by),,1(Nixi  , ax 1 ,

bxN  .

2) The coefficients 2/h ， 3/h ， 8/3h in Eqs (15)-(17) can be cancelled straightly by the quotient

of two definite integrals.

3) In Tables 1–3, for the TWNB, TWNT, TWBMM, and SWNB, SWNT, SWBMM algorithms,

the weights are assigned as 2/1 of the right of Eqs (15) and (16); while for the S3/8WNB,

S3/8WNT, and S3/8WBMM algorithms, the weighted are assigned as 3/1 of the right of

Eq (17).

4) In Tables 1–3, for the SWNB, SWNT, and SWBMM, and S3/8WNB, S3/8WNT, and

S3/8WBMM algorithms, the number of sampling N is not only restricted to 12  nN and

13  nN (as the requirements of)2mod(1N and)3mod(1N in Eqs (16) and (17) ,

where n is an integer).

Finally the inner relations between weighted-based noniterative algorithms and continuous

noniterative algorithms for performing the centroid TR of IT2 FLSs can be made as:

1) Weighted-based noniterative algorithms calculate the type-reduced set iveWNontieratY based on the

linear combinations of functional values on sampling points. While the benchmark continuous

noniterative algorithms compute according to the integral operations. In theory, the solutions of

weighted-based noniterative algorithms will approach to the continuous noniterative algorithms

as the number of sampling N .

2) As the number of sampling increases, weighted-based noniterative algorithms may obtain more

accurate computational results.

3) Weighted-based noniterative algorithms perform the numerical calculations according to the sum

operation, whereas the continuous noniterative algorithms perform the calculations symbolically

by means of the integral operations. On the whole, weighted-based noniterative algorithms can

be viewed as the numerical implementation of continuous noniterative algorithms according to

the numerical integration approaches.

4. Simulations

Four computer simulation examples are provided in this section. Here we suppose that the

centroid output IT2 FS [16,18,29,32] has been obtained by merging or weighting fuzzy rules under

the guidance the inference before the TR and defuzzification. For the first example, the FOU is

bounded by the piece-wise linear functions. For the second example, the FOU is bounded by both the

piece-wise linear functions and Gaussian functions. For the third example, the FOU is bounded by

the Gaussian functions. For the last example, the FOU is defined as the symmetric Gaussian primary

MF with uncertainty derivations. Then Figure 2 and Table 2 show the defined FOUs for four

examples. In examples 1, 3 and 4, here we choose the primary variable]10,0[x for tests. In

example 2, the primary variable is selected as]15,5[x for test.

Firstly, the CNB, CNT, and CBMM algorithms are considered the benchmarks to compute the

centroid defuzzified values for four examples. And they are provided in Table 3. Here the adjustable

7729

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

coefficient  for CBMM algorithms is chosen as the average of 1000 random numbers distributed

on [0, 1], and the other adjustable coefficient is defined as  1 .

Table 2. MF expressions for FOUs.

Num Expression

1

}

otherwise ,0

85 ,
9

8

53 ,
6

3

,

otherwise ,0

74 ,
6

7

41 ,
6

1

max{)(
1

~





























































 x
x

x
x

x
x

x
x

x
A

 ,

}

otherwise ,0

86 ,
5

216

62 ,
5

2

,

otherwise ,0

73 ,
4

7

31 ,
2

1

max{)(
1

~





























































 x
x

x
x

x
x

x
x

xA

2


















146.2,
19

)14(4.0

6.25,
19

)5(6.0

)(
2

~

x
x

x
x

x
A

 ,






















14185.7],)
75.1

9
(

2

1
exp[

185.75],)
5

2
(

2

1
exp[

)(
2

2

~
2

x
x

x
x

xA

3

]}
2

)6(
exp[4.0],

2

)3(
exp[5.0max{)(

22

~
3







xx
x

A
 ,

]}
4

)6(
5.0exp[8.0],

4

)3(
5.0max{exp[)(

22

~
3







xx
xA ,

4])
25.0

3
(

2

1
exp[)(2

~
4




x
x

A
 ,])

75.1

3
(

2

1
exp[)(2

~
4




x
xA ,

7730

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

(a) (b)

(c) (d)

Figure 2. Graphs of FOUs, (a) example 1; (b) example 2; (c) example 3; and (d) example 4.

Table 3. Defuzzified values obtained by three types of continuous noniterative algorithms.

Num Approach

CNB CNT CBMM

1 4.3050 4.3208 4.3041

2 3.7774 3.7141 3.7747

3 4.3702 4.3953 4.3690

4 5.0000 5.0000 5.0000

Next, we study the performances of proposed three types of weighted-based noniteraitve

algorithms, respectively. Here the number of sampling is chosen as 4000:50:50N for tests, then

the graphs of centroid defuzzified values computed by weighted-based noniterative algorithms are

shown in Figures 3–5, respectively. Furthermore, the functional graphs of absolute errors between

the continuous noniteraive algorithms and weighted-based noniteraive algorithms are shown in

Figures 6–8.

7731

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

(a) (b)

(c) (d)

Figure 3. Defuzzified values computed by the WNB algorithms, (a) example 1; (b)

example 2; (c) example 3; and (d) example 4.

0 500 1000 1500 2000 2500 3000 3500 4000
4.3048

4.305

4.3052

4.3054

4.3056

4.3058

4.306

4.3062

4.3064

4.3066

4.3068

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
N

B
 a

lg
o
ri
th

m
s

NB

TWNB

SWNB

S3/8WNB

0 500 1000 1500 2000 2500 3000 3500 4000
3.75

3.755

3.76

3.765

3.77

3.775

3.78

N
T

h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
N

B
 a

lg
o
ri
th

m
s

NB

TWNB

SWNB

S3/8WNB

0 500 1000 1500 2000 2500 3000 3500 4000
4.363

4.364

4.365

4.366

4.367

4.368

4.369

4.37

4.371

4.372

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
N

B
 a

lg
o
ri
th

m
s

NB

TWNB

SWNB

S3/8WNB

0 500 1000 1500 2000 2500 3000 3500 4000
4.9995

5

5.0005

5.001

5.0015

5.002

5.0025

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
N

B
 a

lg
o
ri
th

m
s

NB

TWNB

SWNB

S3/8WNB

7732

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

 (a) (b)

 (c) (d)

Figure 4. Defuzzified values computed by the WNT algorithms, (a) example 1; (b)

example 2; (c) example 3; and (d) example 4.

0 500 1000 1500 2000 2500 3000 3500 4000
4.3204

4.3206

4.3208

4.321

4.3212

4.3214

4.3216

4.3218

4.322

4.3222

4.3224

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
N

T
 a

lg
o
ri
th

m
s

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
3.67

3.675

3.68

3.685

3.69

3.695

3.7

3.705

3.71

3.715

3.72

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
N

T
 a

lg
o
ri
th

m
s

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
4.384

4.386

4.388

4.39

4.392

4.394

4.396

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
N

T
 a

lg
o
ri
th

m
s

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
4.9995

4.9996

4.9997

4.9998

4.9999

5

5.0001

5.0002

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
N

T
 a

lg
o
ri
th

m
s

NT

TWNT

SWNT

S3/8WNT

7733

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

(a) (b)

(c) (d)

Figure 5. Defuzzified values computed by the WBMM algorithms, (a) example 1; (b)

example 2; (c) example 3; and (d) example 4.

0 500 1000 1500 2000 2500 3000 3500 4000
4.304

4.3042

4.3044

4.3046

4.3048

4.305

4.3052

4.3054

4.3056

4.3058

4.306

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
B

M
M

 a
lg

o
ri
th

m
s

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
3.75

3.755

3.76

3.765

3.77

3.775

3.78

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
B

M
M

 a
lg

o
ri
th

m
s

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
4.362

4.363

4.364

4.365

4.366

4.367

4.368

4.369

4.37

4.371

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
B

M
M

 a
lg

o
ri
th

m
s

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
4.9995

5

5.0005

5.001

5.0015

5.002

5.0025

5.003

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r

W
B

M
M

 a
lg

o
ri
th

m
s

BMM

TWBMM

SWBMM

S3/8WBMM

7734

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

(a) (b)

(c) (d)

Figure 6. Absolute errors of defuzzified values between the CNB and WNB algorithms,

(a) example 1; (b) example 2; (c) example 3; and (d) example 4.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-3

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

N
B

 a
n
d
 W

N
B

 a
lg

o
ri
th

m
s

NB

TWNB

SWNB

S3/8WNB

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

N
T

h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

N
B

 a
n
d
 W

N
B

 a
lg

o
ri
th

m
s

NB

TWNB

SWNB

S3/8WNB

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7
x 10

-3

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

N
B

 a
n
d
 W

N
B

 a
lg

o
ri
th

m
s

NB

TWNB

SWNB

S3/8WNB

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

N
B

 a
n
d
 W

N
B

 a
lg

o
ri
th

m
s

NB

TWNB

SWNB

S3/8WNB

7735

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

(a) (b)

 (c) (d)

Figure 7. Absolute errors of defuzzified values between the CNT and WNT algorithms,

(a) example 1; (b) example 2; (c) example 3; and (d) example 4.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5
x 10

-3

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

N
B

 a
n
d
 W

N
B

 a
lg

o
ri
th

m
s

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

N
T

h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

N
B

 a
n
d
 W

N
B

 a
lg

o
ri
th

m
s

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

N
B

 a
n
d
 W

N
B

 a
lg

o
ri
th

m
s

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-4

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

N
B

 a
n
d
 W

N
B

 a
lg

o
ri
th

m
s

NT

TWNT

SWNT

S3/8WNT

7736

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

(a) (b)

 (c) (d)

Figure 8. Absolute errors of defuzzified values between the CBMM and WBMM

algorithms, (a) example 1; (b) example 2; (c) example 3; and (d) example 4.

Next, let’s quantitatively measure the calculation accuracies of proposed weighted-based

noniterative algorithms. For the number of sampling 4000:50:50N , we compute the defined

average relative errors)4,,1(||/||   iyyy iveiCNoniterativeiCNoniterateiWNoniteriv . Then Tables 4–6 provide

the values of average of relative errors with respect to N , in which the last line represents the total

averages for four examples.

Table 4. Averages of relative errors for)4,,1(||/|(|  iyyy
iii CNBCNBWNB .

Algorithm NB TWNB SWNB S3/8WNB

Example 1 0.000029 0.000029 0.000572 0.000067

Example 2 0.038400 0.001690 0.001450 0.001390

Example 3 0.009800 0.000094 0.000122 0.001908

Example 4 0.000110 0.000110 0.000110 0.000731

Total average 0.016110 0.000640 0.000750 0.001370

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

-3

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

B
M

M
 a

n
d
 W

B
M

M
 a

lg
o
ri
th

m
s

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

B
M

M
 a

n
d
 W

B
M

M
 a

lg
o
ri
th

m
s

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7
x 10

-3

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

B
M

M
 a

n
d
 W

B
M

M
 a

lg
o
ri
th

m
s

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5
x 10

-3

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

B
M

M
 a

n
d
 W

B
M

M
 a

lg
o
ri
th

m
s

BMM

TWBMM

SWBMM

S3/8WBMM

7737

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

Table 5. Averages of relative errors for)4,,1(||/||  iyyy
iii CNTCNTWNT .

Algorithm NT TWNT SWNT S3/8WNT

Example 1 0.000043 0.000043 0.000519 0.00096

Example 2 0.067610 0.002170 0.002430 0.002280

Example 3 0.013730 0.000050 0.000050 0.002770

Example 4 0.000028 0.000028 0.000028 0.000458

Total average 0.027140 0.000760 0.001010 0.001870

Table 6. Averages of relative errors for)4,,1(||/||  iyyy
iii CBMMCBMMWBMM .

Algorithm BMM TWBMM SWBMM S3/8WBMM

Example 1 0.000028 0.000028 0.000576 0.000056

Example 2 0.039650 0.001590 0.001320 0.001290

Example 3 0.009598 0.000096 0.000125 0.001866

Example 4 0.000112 0.000112 0.000112 0.000738

Total average 0.016460 0.000610 0.000710 0.001320

Then we study the specific computation times of weighted-based noniterative algorithms for

better applications. The number of sampling is still chosen as 4000:50:50N . Here the

unrepeatable computation times depend on the hardware and software environments. The simulations

are performed by a dual-core CPU dell desktop with E5300@2.60GHz and 2.00 GB memory. The

programs are operated by Matlab 2013a on Windows XP. Figures 9–11 provide the comparisons of

computation times of weighted-based noniteraitve algorithms for these four examples.

7738

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

(a) (b)

 (c) (d)

Figure 9. Comparsions of computation times for WNB algorithms, (a) example 1; (b)

example 2; (c) example 3; and (d) example 4.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

NB

TWNB

SWNB

S3/8WNB

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

NB

TWNB

SWNB

S3/8WNB

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

NB

TWNB

SWNB

S3/8WNB

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3

N

R
u
n
ti
m

e

NB

TWNB

SWNB

S3/8WNB

7739

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

(a) (b)

(c) (d)

Figure 10. Comparsions of computation times for WNT algorithms, (a) example 1; (b)

example 2; (c) example 3; and (d) example 4.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3

N

R
u
n
ti
m

e

NT

TWNT

SWNT

S3/8WNT

7740

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

(a) (b)

(c) (d)

Figure 11. Comparsions of computation times for WBMM algorithms, (a) example 1; (b)

example 2; (c) example 3; and (d) example 4.

Considering the Figures 3–8, Tables 4–6, and Figures 9–11 comprehensively, the following

conclusions can be obtained:

1) In these four examples, the absolute errors of three types of weighted-based noniterative

algorithms all converge as the number of sampling increases. In example 1, NB, TWNB, NT,

TWNT, and BMM, TWBMM algorithms can obtain the smallest absolute errors and errors

amplitudes of variation, while SNB, SNT, and SBMM algorithms get the largest absolute errors

and errors amplitude of variation. In both examples 2 and 3, the proposed weighted-based

noniterative can obtain the values of absolute errors and errors amplitudes of variation that are

obviously less than their corresponding original noniterative algorithms. In the last example, the

first three types of weighted-based noniterative algorithms can get almost the same absolute

errors and errors amplitudes of variation, while the last type of weighted-based noniterative

algorithms obtain the larger ones.

2) For the NB algorithms, the largest average of relative error is 3.84%. While the largest average

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7
x 10

-3

N

R
u
n
ti
m

e

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3

N

R
u
n
ti
m

e

BMM

TWBMM

SWBMM

S3/8WBMM

7741

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

of relative error of proposed WNB algorithms is only 0.169%. For the NT algorithms, the largest

average of relative error is 6.761%. The largest average of relative error of proposed WNT

algorithms is only 0.243%. For the BMM algorithms, the largest average of relative error is

3.965%. The largest average of relative error of proposed WBMM algorithms is only 0.159%.

3) The total mean of average of relative error of NB algorithms is 1.611%. While the largest total

mean of average of relative error of proposed WNB algorithms is only 0.137%. The total mean

of average of relative error of NT algorithms is 2.714%. While the largest total mean of average

of relative error of proposed WNT algorithms is only 0.187%. The total mean of average of

relative error of BMM algorithms is 1.646%. While the largest total mean of average of relative

error of proposed WBMM algorithms is only 0.132%.

4) In general, see Figures 9–11, the computational speeds of original noniteraive algorithms are

faster than their corresponding weighted-based noniterative algorithms. However, the

computational speeds first two types on weighted-based noniterative algorithms are almost

completely the same. As the number of sampling is fixed, the size relation of computation times

is as: S3/8WNoiteraive > SWNoiteraive > TWNoniterative > Noniterative. It may just because

the weights of proposed weighted-based noniterative algorithms are more complex than the

noniterative algorithms. In other words, the convergence speeds of proposed weighted-based

noniteraive algorithms are faster than the original noniterative algorithms.

5) From the above analysis, it can be found that, by choosing the proposed weighted-based

noniteraive algorithms appropriately, which can improve both the calculation accuracies and

convergence speeds.

The proposed weighted-based noniteraive algorithms can be used to investigate the TR and

defuzzification of IT2 FLSs. If only the computational accuracy were considered, the proposed three

types of weighted-based noniteraive algorithms outperformed the original noniteraive algorithms, in

which the second type of weighed-based noniteraive algorithms were the best. Moreover, the

computation time of proposed weighted-based noniteraive algorithms were not much different from

the original noniteraive algorithms. Considering the above analysis comprehensively, we advise to

use the second or third types of weighted-based noniterative algorithms for the TR and

defuzzification of IT2 FLSs with the combination of linear functions and nonlinear functions as in

examples 1 and 4, and adopt the first or second types of weighted-based noniteraive algorithms for

the TR and defuzzification of IT2 FLSs with the combination of linear and nonlinear functions and

nonlinear functions as in examples 2 and 3.

Finally, it is important to point out that, we only focus on the experimental performances of

weighted-based noniteraive algorithms. It can be obtained from the simulation examples that,

compare with the noniteraive algorithms, the proposed weighted-based noniteraive algorithms can

improve the computational accuracies. However, if the requirements of computational accuracy were

not high, the weighted-based noniteraive algorithms can not show their advantages, as the simplest

noniteraive algorithms could attain well results.

5. Conclusions and expectations

This paper compares the operations between three types of discrete noniterative algorithms with

their corresponding continuous versions. According to the Newton-Cotes quadrature formulas in the

7742

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

numerical integration technique, three types of noniterative algorithms are extended to the

weighted-based noniterative algorithms. The continuous noniterative algorithms are considered as

the benchmarks for performing the centroid TR and defuzzification of IT2 FLSs. Four simulation

examples illustrate and analyze the computational accuracies and computation times of the proposed

algorithms. Compared with the original noniterative algorithms, the proposed weighted-based

noniteraive algorithms can obtain both higher calculation accuracies and faster convergence speeds.

In the future work, we will concentrate on designing the centroid TR of T2 FLSs

[13–24,29,31,33,56] with weighted-based reasonable initialization enhanced Karnik-Mendel

algorithms, the center-of-sets TR [12,13,34,45–49] of T2 FLSs, and seeking for global optimization

algorithms [3–6,25–27,35–44,52,53] for designing and applying IT2 or GT2 FLSs in real world

problems like forecasting, control [50,51,54,55] and so on.

Acknowledgments

The paper is supported by the National Natural Science Foundation of China (No. 61973146,

No. 61773188, No. 61903167, No. 61803189), the Liaoning Province Natural Science Foundation

Guidance Project (No. 20180550056), and Talent Fund Project of Liaoning University of Technology

(No. xr2020002). The author is very thankful to Professor Jerry Mendel, who has given the author

some important advices.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. O. Castillo, P. Melin, Type-2 fuzzy logic theory and applications, Berlin, Germany:

Springer-Verlag, 2008.

2. H. Hagras, C. Wagner, Towards the wide spread use of type-2 fuzzy logic systems in real world

applications, IEEE Comput. Intell. M., 7 (2012), 14–24.

3. Y. Chen, D. Z. Wang, S. C. Tong, Forecasting studies by designing Mamdani interval type-2

fuzzy logic systems: with combination of BP algorithms and KM algorithms, Neurocomputing,

174 (2016), 1133–1146.

4. D. Z. Wang, Y. Chen, Study on permanent magnetic drive forecasting by designing Takagi

Sugeno Kang type interval type-2 fuzzy logic systems, T. I. Meas. Control, 40 (2018),

2011–2023.

5. S. Barkat, A. Tlemcani, H. Nouri, Noninteracting adaptive control of PMSM using interval

type-2 fuzzy logic systems, IEEE T. Fuzzy Syst., 19 (2011), 925–936.

6. Y. Chen, D. Z. Wang, Forecasting by designing Mamdani general type-2 fuzzy logic systems

optimized with quantum particle swarm optimization algorithms, T. I. Meas. Control, 41 (2019),

2886–2896.

7. B. Safarinejadian, P. Ghane, H. Monirvaghefi, Fault detection in non-linear systems based on

type-2 fuzzy logic, International Journal of Systems Sciences, 46 (2015), 394–404.

7743

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

8. C. S. Lee, M. H. Wang, H. Hagras, Type-2 fuzzy ontology and its application to personal

diabetic-diet recommendation, IEEE T. Fuzzy Syst., 18 (2010), 316–328.

9. O. Mendoza, P. Melin, O. Castillo, Interval type-2 fuzzy logic and modular networks for face

recognition applications, Appl. Soft Comput., 9 (2009), 1377–1387.

10. A. Niewiadomski, On finity, countability, cardinalities, and cylindric extensions of type-2 fuzzy

sets in linguistic summarization of databases, IEEE T. Fuzzy Syst., 18 (2010), 532–545.

11. J. M. Mendel, R. I. John, F. L. Liu, Interval type-2 fuzzy logic systems made simple, IEEE T.

Fuzzy Syst., 14 (2006), 808–821.

12. J. M. Mendel, General type-2 fuzzy logic systems made simple: a tutorial, IEEE T. Fuzzy Syst.,

22 (2014), 1162–1182.

13. J. M. Mendel, On KM algorithms for solving type-2 fuzzy set problems, IEEE T. Fuzzy Syst., 21

(2013), 426–446.

14. J. M. Mendel, F. L. Liu, Super-exponential convergence of the Karnik-Mendel algorithms for

computing the centroid of an interval type-2 fuzzy set, IEEE T. Fuzzy Syst., 15 (2007), 309–320.

15. D. R. Wu, J. M. Mendel, Enhanced Karnik-Mendel algorithms, IEEE T. Fuzzy Syst., 17 (2009),

923–934.

16. X. W. Liu, J. M. Mendel, D. R. Wu, Study on enhanced Karnik-Mendel algorithms: initialization

explanations and computation improvements, Inform. Sciences, 184 (2012), 75–91.

17. Y. Chen, D. Z. Wang, Study on centroid type-reduction of general type-2 fuzzy logic systems

with weighted enhanced Karnik-Mendel algorithms, Soft Comput., 22 (2018), 1361–1380.

18. Y. Chen, Study on centroid type-reduction of interval type-2 fuzzy logic systems based on

noniterative algorithms, Complexity, 2019 (2019), 1–12.

19. A. M. EI-Nagar, M. EI-Bardini, Simplified interval type-2 fuzzy logic system based on new

type-reduction, J. Intell. Fuzzy Syst., 27 (2014), 1999–2010.

20. J. W. Li, R. John, S. Coupland, G. Kendall, On Nie-Tan operator and type-reduction of interval

type-2 fuzzy sets, IEEE T. Fuzzy Syst., 26 (2018), 1036–1039.

21. M. Biglarbegian, W. W. Melek, J. M. Mendel, On the robustness of type-1 and interval type-2

fuzzy logic systems in modeling, Inform. Sciences, 181 (2011), 1325–1347.

22. M. Biglarbegian, W. W. Melek, J. M. Mendel, On the stability of interval type-2 TSK fuzzy logic

systems, IEEE T. Cybernetics, 40 (2010), 798–818.

23. S. Greenfield, F. Chiclana, S. Coupland, R. John, The collapsing method of defuzzification for

discretised interval type-2 fuzzy sets, Inform. Sciences, 179 (2009), 2055–2069.

24. H. W. Wu, J. M. Mendel, Uncertainty bounds and their use in the design of interval type-2

fuzzy logic systems, IEEE T. Fuzzy Syst., 10 (2002), 622–639.

25. M. d. l. A. Hernandez, P. Melin, G. M. Méndez, O. Castillo, I. López-Juarez, A hybrid learning

method composed by the orthogonal least-squares and the back-propagation learning algorithms

for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems, Soft Comput., 19

(2015), 661–678.

26. Y. Chen, D. Z. Wang, W. Ning, Forecasting by TSK general type-2 fuzzy logic systems

optimized with genetic algorithms, Optim. Contr. Appl. Met., 39 (2018), 393–409.

27. A. Khosravi, S. Nahavandi, Load forecasting using interval type-2 fuzzy logic systems: optimal

type reduction, IEEE T. Ind. Inform., 10 (2014), 1055–1063.

28. C. Wagner, H. Hagras, Towards general type-2 fuzzy logic systems based on zSlices, IEEE T.

Fuzzy Syst., 18 (2010), 637–660.

http://xueshu.baidu.com/s?wd=author%3A%28Maria%20de%20los%20Angeles%20Hern%C3%A1ndez%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Maria%20de%20los%20Angeles%20Hern%C3%A1ndez%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson

7744

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

29. S. Greenfield, F. Chiclana, Accuracy and complexity evaluation of defuzzification strategies for

the discretised interval type-2 fuzzy set, Int. J. Approx. Reason., 54 (2013), 1013–1033.

30. J. H. Mathews, K. K. Fink, Numerical Methods Using Matlab, Prentice-Hall Inc, Upper Saddle

River, NJ, 2004.

31. X. W. Liu, J. M. Mendel, Connect Karnik-Mendel algorithms to root-finding for computing the

centroid of an interval type-2 fuzzy set, IEEE T. Fuzzy Syst., 19 (2011), 652–665.

32. Y. Chen, Study on sampling based discrete Nie-Tan algorithms for computing the centroids of

general type-2 fuzzy sets, IEEE Access, 7 (2019), 156984–156992.

33. D. R. Wu, Approaches for reducing the computational cost of interval type-2 fuzzy logic systems:

overview and comparisons, IEEE T. Fuzzy Syst., 21 (2013), 80–99.

34. M. A. Khanesar, A. Jalalian, O. Kaynak, Improving the speed of center of set type-reduction in

interval type-2 fuzzy systems by eliminating the need for sorting, IEEE T. Fuzzy Syst., 25 (2017),

1193–1206.

35. D. R. Wu, J. M. Mendel, Recommendations on designing practical interval type-2 fuzzy systems,

Eng. Appl. Artif. Intel., 85 (2019), 182–193.

36. F. Gaxiola, P. Melin, F. Valdez, J. R. Castro, O. Castillo, Optimization of type-2 fuzzy weights in

backpropagation learning for neural networks using GAs and PSO, Appl. Soft Comput., 38

(2016), 860–871.

37. C. H. Hsu, C. F. Juang, Evolutionary robot wall-following control using type- 2 fuzzy controller

with species-de-activated continuous ACO, IEEE T. Fuzzy Syst., 21 (2013), 100–112.

38. A. Khosravi, S. Nahavandi, D. Creighton, D. Srinivasan, Interval type-2 fuzzy logic systems for

load forecasting: a comparative study, IEEE T. Power Syst., 27 (2012), 1274–1282.

39. C. W. Tao, J. S. Taur, C. W. Chang, Y. H. Chang, Simplified type-2 fuzzy sliding controller for

wing rocket system, Fuzzy Sets Syst., 207 (2012), 111–129.

40. M. A. Sanchez, O. Castillo, J. R. Castro, Generalized type-2 fuzzy systems for controlling a

mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems,

Expert Syst. Appl., 42 (2015), 5904–5914.

41. L. Cervantes, O. Castillo, Type-2 fuzzy logic aggregation of multiple fuzzy controllers for

airplane flight control, Inform. Sciences, 324 (2015), 247–256.

42. O. Castillo, L. Amador-Angulo, J. R. Castro, M. Garcia-Valdez, A comparative study of type-1

fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic

systems in control problems, Inform. Sciences, 354 (2016), 257–274.

43. O. Castillo, P. Melin, E. Ontiveros, C. Peraza, P. Ochoa, F. Valdez, J. Soria, A high-speed

interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics, Eng.

Appl. Artif. Intel., 85 (2019), 666–680.

44. E. Ontiveros-Robles, P. Melin, O. Castillo, Comparative analysis of noise robustness of type 2

fuzzy logic controllers, Kybernetika, 54 (2018), 175–201.

45. E. Ontiveros-Robles, P. Melin, O. Castillo, New methodology to approximate type-reduction

based on a continuous root-finding karnik mendel algorithm, Algorithms, 10 (2017), 77–96.

46. Y. Chen, Study on weighted Nagar-Bardini algorithms for centroid type-reduction of interval

type-2 fuzzy logic systems, J. Intell. Fuzzy Syst., 34 (2018), 2417–2428.

47. Y. Chen, Study on weighted Nagar-Bardini algorithms for centroid type-reduction of general

type-2 fuzzy logic systems, J. Intell. Fuzzy Syst., 37 (2019), 6527–6544.

7745

AIMS Mathematics Volume 5, Issue 6, 7719–7745.

48. T. Kumbasar, Revisiting Karnik-Mendel algorithms in the framework of linear fractional

programming, Int. J. Approx. Reason., 82 (2017), 1–21.

49. Y. Chen, J. X. Wu, J. Lan, Study on reasonable initialization enhanced Karnik-Mendel

algorithms for centroid type-reduction of interval type-2 fuzzy logic systems, AIMS Math., 5

(2020), 6149–6168.

50. S. C. Tong, Y. M. Li, Robust adaptive fuzzy backstepping output feedback tracking control for

nonlinear system with dynamic uncertainties, Science China Information Sciences, 53 (2010),

307–324.

51. S. C. Tong, Y. M. Li, Observer-based adaptive fuzzy backstepping control of uncertain

pure-feedback systems, Science China Information Sciences, 57 (2014), 1–14.

52. Q. F. Fan, T. Wang, Y. Chen, et al, Design and application of interval type-2 fuzzy logic system

based on QPSO algorithm, Int. J. Fuzzy Syst., 20 (2018), 835–846.

53. M. Deveci, I. Z. Akyurt, S. Yavuz, GIS-based interval type-2 fuzzy set for public bread factory

site selection, Journal of Enterprise Information Management, 31 (2018), 820–847.

54. L. Liu, Y. J. Liu, S. C. Tong, C. L. P. Chen, Integral barrier Lyapunov function based adaptive

control for switched nonlinear systems, Science China Information Sciences, 63 (2020), 1–14.

55. L. Liu, Y. J. Liu, D. P. Li, S. C. Tong, Z. S. Wang, Barrier Lyapunov function based adaptive

fuzzy FTC for switched systems and its applications to resistance inductance capacitance circuit

system, IEEE T. Cybernetics, 50 (2020), 3491–3502.

56. F. Chiclana, S. M. Zhou, Type-reduction of general type-2 fuzzy sets: The type-1 OWA approach,

Int. J. Intell. Syst., 28 (2013), 505–522.

57. J. M. Mendel, H. Hagars, W. W. Tan, W. W. Melek, H. Ying, Introduction to type-2 fuzzy logic

control: theory and applications,Wiley-IEEE Press, 2014.

© 2020 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

