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Abstract: Interval type-2 fuzzy logic systems (IT2 FLSs) have been widely used in many areas. 

Among which, type-reduction (TR) is an important block for theoretical study. Noniterative 

algorithms do not involve the complicated iteration process and obtain the system output directly. By 

discovering the inner relations between discrete and continuous noniterative algorithms, this paper 

proposes three types of weighted-based noniterative according to the Newton-Cotes quadrature 

formulas in numerical integration techniques. Moreover, the continuous noniterative algorithms are 

considered as the benchmarks for computing. Four simulation experiments are provided to illustrate 

the performances of weighted-based noniterative algorithms for computing the defuzzified values of 

IT2 FLSs. Compared with the original noniterative algorithms, the proposed weighted-based 

algorithms can obtain smaller absolute errors and faster convergence speeds under the same sampling 

rate, which afford the potential values for designing T2 FLSs. 
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1. Introduction 

The computationally relative simple interval type-2 fuzzy sets (IT2 FSs) are currently the most 

commonly used T2 FSs. Therefore, interval type-2 fuzzy logic systems (IT2 FLSs [1,2,57]) based on 

IT2 FSs have superior ability to cope with uncertainties environments like power systems [3], 

permanent magnetic drive [4–6], intelligent controllers [7], medical systems [8], pattern recognition 

systems [9], database and information systems [10] and so on. The footprint of uncertainty (FOU) of 
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an IT2 FS [11] make it own more design degrees of freedom compared with a T1 FS. Generally 

speaking, a T2 FLS (see Figure 1) is composed of fuzzifier, rules, inference, type-reducer and 

defuzzifier. Among which, the block of type-reduction plays the central role of transforming the T2 

to the T1 FS. Finally the defuzzification changes the T1 FS to the crisp output. 

 

Figure 1. A T2 FLS [12]. 

In the past decades, many types of type-reduction (TR) were proposed gradually. Among which, 

the most famous one is the Karnik-Mendel (KM) algorithms [13]. This type of algorithms has the 

advantages of preserving the uncertainties flow between the upper and lower membership functions 

(MFs) of T2 FLSs. Then the continuous KM (CKM) algorithms [14] were put forward, in addition, 

the monotoncity and super convergence property of them were proved. For the sake of improving the 

calculation efficiency, Wu and Mendel proposed the enhanced KM (EKM) algorithms [15]. 

Extensive simulation experiments show that the EKM algorithms can save two iterations on average 

compared with the KM algorithms. Then Liu et al. gave the theoretical explanations for the 

initialization of EKM algorithms and extended the EKM algorithms to three different forms of 

weighted-based EKM (WEKM) algorithms [16,17] to calculate the more accurate centroids of type-2 

fuzzy sets. 

However, the iterative natures of KM types of algorithms make the applications of 

corresponding IT2 FLSs more challenge. Therefore, other types of noniterative algorithms [18] are 

proposed gradually, and they are Nagar-Bardini (NB) algorithms [19], Nie-Tan (NT) algorithms [20], 

Begian-Melek-Mendel (BMM) algorithms [21,22] and so on. Among which, IT2 FLSs based on the 

NB algorithms are proved to have superior performances to respond to the affect of uncertainties in 

systems’ parameters to the IT2 FLSs according to other algorithms like EKM, BMM, 

Greenfield-Chiclana Collapsing Defuzzifier (GCCD [24]) and Wu-Mendel Uncertainty Bound 

(UB [24]). Moreover, Nie-Tan (NT) algorithms have the simple closed form. Recent studies prove 

that the continuous NT (CNT) algorithms [20] to be accurate algorithms to calculate the centroid of 

IT2 FSs. In addition, BMM algorithms [18] are proved to be more generalized forms of NB and NT 

algorithms. All these works have laid theoretical foundations for studying the TR of T2 FLSs. 

In order to obtain more accurate centroid TR of IT2 FLSs, this paper extends the NB, NT, and 

BMM algorithms to the corresponding WNB, WNT, and WBMM algorithms according to the 

Newton-Cotes quadrature formulas. The rest of this paper is organized as follows. Section 2 

introduces the background of IT2 FLSs. Section 3 provides the Newton-Cotes formulas, the 

weighted-based noniterative algorithms, and how to adopt them to perform the centroid TR of IT2 

FLSs. Section 4 gives four computer simulation examples to illustrate the performances of 

weighted-based noniterative algorithms. Finally Section 5 is the conclusions and expectations. 
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2. IT2 FLSs 

Definition 1. A T2 FS A
~

 can be characterized by its T2 MF ),(~ ux
A

 , i.e., 

]}1,0[,|),(),,{(
~

~  uXxuxuxA
A

                    (1) 

where the primary variable Xx , the secondary variable ]1,0[u , here Eq (1) is called as the 

point-value expression, whose compact form is as: 

),/(),(
~

]1,0[
~ uxuxA

Xx u A  
                            (2) 

Definition 2. The secondary MF of A
~

 is a vertical slice of ),(~ ux
A

 , i.e., 

 


]1,0[
~~ /)()(),(

u
xAA

uufxuxx  .                      (3) 

Definition 3. The two dimensional support of ),(~ ux
A

  is referred to as the footprint of uncertainty 

(FOU) of A
~

, i.e., 

}0),(|]1,0[),{()
~

(FOU ~ 


uxXuxJA
AXx x            (4) 

The upper and lower bounds of )
~

(FOU A  are called as the upper MF (UMF) and lower MF 

(LMF), respectively, i.e., 

)
~

(FOU)()
~

UMF( ~ AxA A   , )
~

(FOU)()
~

(LMF ~ AxA
A

  .    (5) 

Because the secondary membership grades of IT2 FSs are all uniformly equal to 1, i.e., 

1)( uf x , every IT2 FS can be completely described by its UMF and LMF. Then the vertical slices 

representation of A
~

 can be as: 

 


XxXx A
xxAxxA /)(

~
/)(

~
~                     (6) 

Here )(~ x
A

  can be denoted as )(
~

xA  for simplicity. 

Definition 4. An embedded T1 FS eA  depends on ),(~ ux
A

 , i.e., 

},|)(,{( xe JuXxxuxA  .                      (7) 

Definition 5. An IT2 FS can be considered as the union of all its embedded T2 FSs j

eA
~

, i.e., 





m

j

j

eAA
1

~~
                                      (8) 

where m  denotes the number of embedded T2 FSs, j

e

j

e AA /1
~

 , and Eq (8) is referred to as the 

wavy slices representation [28] of A
~

. 

From the aspect of inference structure, IT2 FLSs can usually be divided into two categories: 

Mamdani type [3,6,12,18,25] and Takagi-Sugeno-Kang type [4,25–27]. Without loss of generality, 
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here we consider a Mamdani IT2 FLS with n  inputs nn XxXx  ,11  and one output Yy . 

The IT2 FLS can be characterized by M  fuzzy rules, where the sth  fuzzy rule is of the form: 

sR
~

: If 1x  is sF1

~
 and … and nx  is s

nF
~

, then y  is ),,2,1(
~

MsG s      (9) 

in which ),,1;,,1(
~

MsniF s

i    is the antecedent IT2 FS, and ),,1(
~

MsG s   is the 

consequent IT2 FS.  

For simplicity, here we use the singleton fuzzifier, i.e., the input measurements are modeled as 

crisp sets (type-0 FSs). As xx  , the firing interval of each fuzzy rule is computed as: 























)()(

),()(

)],(),([)(

:

~
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iF
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iF

n

i

s

sss

s

xTxf

xTxf

xfxfxF

F

s
i

s
i



                        (10) 

where T  denotes the minimum or product t-norm, and )(xf
s

  and )(xf s   are the left and right 

end points of the firing interval, respectively.  

As for the centroid TR, we combine the firing interval of each rule with its consequent IT2 FS 

to obtain the fired-rule output FS lB
~

(which can be described by its FOU): 

sB
~

:
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
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                   (11) 

where   represents the minimum or product t-norm. 

Then the output IT2 FS B
~

 can be obtained by aggregating all the fired-rule output FSs as : 

B
~

:
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

       (12) 

where   denotes the maximum operation. 

Finally the type-reduced set )(xYC
  can be obtained by computing the centroid of B

~
, i.e., 

)](),(/[1)( ~~ xrxlxY
BBC

                                   (13) 

where the two end points )(~ xl
B

  and )(~ xr
B

  can be calculated by different types of TR algorithms 

[13–24,29]. 

3. Weighted-based noniterative algorithms 

Before introducing the weighted-based noniterative algorithms, we first give the preliminary 

knowledge: Newton-Cotes quadrature formulas [16,30].  
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3.1. Newton-Cotes quadrature formulas 

Generally speaking, the numerical integration is an approach that approximates the definite 

integral 
b

a
dxxf )(  according to the functional value )( ixf  on some certain discrete points. 

Therefore, the calculation of definite integral can be ascribed to computing functional values.  

Definition 6. (Quadrature formula [16,17,46,47]) Let the discrete points satisfy that 

bxxxxa N  210 , and the definite integral  
b

a
fEfQdxxf )()()( with the property: 

)()()()( 00

0

NNi

N

i

i xfwxfwxfwfQ 


                         (14) 

then Eq (14) is referred to as the numerical integration or quadrature formula, where )( fE  is called 

as the remainder or truncation error of integration, N

iiw 0}{   is called as the weight coefficient, and 
N

iix 0}{   is the integration node. 

Next, the composite trapezoidal rule, composite Simpson rule, and composite Simpson 3/8 rule 

to adopted to approximate )(xf  as the straight line, quadratic polynomial function, and cubic 

polynomial function, respectively. 

Theorem 1. (Composite trapezoidal rule [16,17,46,47]) Let )(xfy   be a function defined on 

],[ ba . Divide the interval ],[ ba  into N  subintervals N

iii xx 11 },{   with the equidistance 
N

ab
h


 , 

where the equidistance node is as ),,1,0(0 Niihxxi  , then the numerical approximation of 

definite integral with the composite trapezoidal rule is as 

)()([
2

)( bfaf
h

dxxf
b

a
 ),()](2

1

1

hfExf
N

i

Ti




           (15) 

Suppose that f  be second order continuous differentiable on ],[ ba , then the remainder 

2

12

)()(
),( h

fab
hfET


 , where ),( ba . 

Theorem 2. (Composite Simpson rule [16,17,46,47]) Let )(xfy   be a function defined on ],[ ba . 

Divide the interval ],[ ba  into N2  subintervals N

iii xx 2

11 },{   with the equidistance 
N

ab
h

2


 , 

where the equidistance node is as )2,,1,0(0 Niihxxi  , then the numerical approximation of 

definite integral with the composite Simpson rule is as 







1

1

)(2)()([
3

)( 2

N

i

xfbfaf
h

dxxf i

b

a
),(])(4

1

0

12 hfExf S

N

i

i  




   (16) 

Suppose that f  be fourth order continuous differentiable on ],[ ba , then the remainder 

4
)4(

180

)()(
),( h

fab
hfES


 , where ),( ba . 

Theorem 3. (Composite Simpson 3/8 rule [16,17,46,47]) Let )(xfy   be a function defined on 
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],[ ba . Divide the interval ],[ ba  into N3  subintervals N

iii xx 3

11 },{   with the equidistance 

N

ab
h

3


 , where the equidistance node is as )3,,1,0(0 Niihxxi  , then the numerical 

approximation of definite integral with the composite Simpson 3/8 rule is as 

),()](3)(3)(2)()([
8

3
)(

1

13

1

23

1

3 hfExfxfxfbfaf
h

dxxf SC

N

i

i

N

i

i

N

i

i

b

a
 











      (17) 

Suppose that f  be fourth order continuous differentiable on ],[ ba , then the remainder 

4
)4(

80

)()(
),( h

fab
hfESC


 , where ),( ba . 

Here all the integrals are measured in the Lebesgue sense.  

3.2. Weighted-based noniterative algorithms 

3.2.1. Weighted Nagar-Bardini algorithms 

IT2 FLSs based on the closed form of Nagar-Bardini (NB) algorithms [19,46,47] can make 

distinctly improvement on coping with uncertainties. For the centroid output IT2 FS B
~

, suppose 

that the primary variable y  be equally discretized into N  points, i.e., Nyyy  21 , then the 

left and right centroid interval can be computed as: 








N

i

iB

N

i

iBi

B

y

yy

l

1

~

1

~

~

)(

)(





, and 








N

i

iB

N

i

iBi

B

y

yy

r

1

~

1

~

~

)(

)(





.                (18) 

Then the defuzzified output can be obtained as: 

.
2

~~
BB

NB

rl
y


                              (19) 

Similar to the continuous KM types of algorithms [13–17,31], the continuous NB (CNB) 

algorithms can be adopted for studying the theoretical property of centroid TR and defuzzification of 

IT2 FLSs.  

Let byyya N  21 , where a  and b  are the left and right end point of y , 

respectively, then the CNB algorithms calculate the centroids as: 






b

a B

b

a B

B

dyy

dyyy
l

)(

)(

~

~

~




, and 






b

a
B

b

a
B

B

dyy

dyyy
r

)(

)(

~

~

~




.               (20) 

Here the output centroid two end points can be computed without iterations. Furthermore, the 

output is a linear combination of the output of two T1 FLSs: one constructed from the LMFs, and the 

other constructed from the UMFs. 

In this section, we propose a type of weighted NB (WNB) algorithms, i.e., 
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


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



.             (21) 

WNB algorithms can be considered as the numerical implementation of CNB algorithms. 

Comparing Eqs (18) and (20), it is found that the CNB and NB algorithms are very similar, i.e., the 

sum operations in the discrete version are transformed into the definite integral operations in the 

continuous version, i.e., the sum operations for the sampling points iy  play the role of integrating 

for the integrand. 

Table 1. Weights assignment for the weighted-based noniterative algorithms. 

Algorithms Integration rule Weights 

NB,NT,BMM ______________ 
),,1(1 Niwi 

 

TWNB,TWNT,TWBMM Composite Trapezoidal rule 










.,1,1

,,1,2/1

Ni

Ni
wi

 

SWNB,SWNT,SWBMM Composite Simpson rule 

















.),2mod(0,2

,,1),2mod(1,1

,,1,2/1

Nii

Nii

Ni

wi

 

S3/8WNB,S3/8WNT,S3/8WBMM Composite Simpson 3/8 rule 























.),2mod(0,1

,),3mod(2,1

,,1),3mod(1,3/2

,,1,3/1

Nii

Nii

Nii

Ni

wi

 

According to the quadrature formula (see Eq (14)), the corresponding weights iw  for every 

MF of sampling points iy  can be assigned appropriately, then the more accurate computational 

results may be obtained. Actually, many types of weights assignment method can be used. However, 

this paper only considers the numerical integration methods based on the Composite trapezoidal rule, 

Composite Simpson rule, and Composite Simpson 3/8 rule in Newton-Cotes quadrature formulas. 

And the corresponding WNB algorithms are referred to as the TWNB, SWNB, and S3/8WNB 

algorithms, respectively. Table 1 provides the weights assignment approach for the three types of 

weighted-based noniterative algorithms. 

3.2.2. Weighted Nie-Tan algorithms 

The closed form of discrete Nie-Tan (NT) algorithms can compute the centroid output of B
~

 

straightly as: 
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


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



.                      (22) 

Most recent studies prove the continuous NT (CNT) algorithms [20] to be an accurate method 

for computing the centroids of IT2 FSs, i.e., 








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a
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
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This section proposes a type of weighted NT (WNT) algorithms, i.e., 




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


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.                   (24) 

WNT algorithms can be viewed as the numerical implementation of CNT algorithms. The sum 

operations in the discrete NT algorithms are transformed into the definite integral operations in the 

continuous NT (CNT) algorithms, i.e., the sum operations for the sampling points iy  act as 

integrating for the integrand. Therefore, we can assign weights for every MF of sampling points iy  

to try to obtain more accurate computational results. Here the corresponding WNT algorithms are 

referred to as the TWNT, SWNT, and S3/8WNT algorithms, respectively.  

3.2.3. Weighted Begian-Melek-Mendel algorithms 

Begian-Melek-Mendel (BMM) algorithms can also obtain the output of IT2 FLSs directly, i.e., 















 
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i
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1
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~
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









                     (25) 

where   and   are two adjustable coefficients. 

IT2 FLSs based on BMM algorithms [13,21,22] are superior to T1 FLSs counterparts on both 

robustness and stability. In addition, the BMM algorithms are more generalized form of NB and NT 

algorithms. Observing the Eqs (19) and (25), it can be found that BMM and NB algorithms are 

exactly the same while 
2

1
 NB , and 

2

1
 NB . For the NT algorithms, the Eq (22) can be 

simply transformed to: 
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Comparing the Eqs (25) and (26), it can be found that, as NT   and NT  , BMM and 

NT algorithms become the same.  

Continuous BMM (CBMM) algorithms can also be used for studying the theoretical properties 

of TR of IT2 FLSs, i.e., 


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Based on the quadrature formula, this section gives a type of weighted BMM (WBMM) 

algorithms, i.e., 
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Here WBMM algorithms can be considered as the numerical implementation of CBMM 

algorithms. Comparing Eqs (25) and (28), it is found that the CBMM and BMM algorithms are very 

similar, i.e., the sum operations in the discrete version are transformed into the definite integral 

operations in the continuous version, i.e., the sum operations for the sampling points iy  play the 

role of integrating for the integrand. This paper considers the numerical integration methods based 

on the Composite trapezoidal rule, Composite Simpson rule, and Composite Simpson 3/8 rule in 

Newton-Cotes quadrature formulas. And the corresponding WBMM algorithms are referred to as the 

TWBMM, SWBMM, and S3/8WBMM algorithms, respectively.  

For the above three types of weighed-based noniterative algorithms (see Table 1), suppose that 

the primary variable be the letter x , and x  is uniformly sampled on ],[ ba , i.e., 

)(
1

1
ab

N

i
axi 




 , Ni ,,1 ,  and mod represents the modular arithmetic. 
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Next we can make conclusions about assigning weights for three types of weighted-based 

noniterative algorithms as: 

1) Substitute ),,1,0( Nixi  , ax 0 , bxN   in Eq (15), )2,,1,0( Nixi  , ax 0 , bx N 2  

in Eq (16), and )3,,1,0( Nixi  , ax 0 , bx N 3  in Eq (17) all by ),,1( Nixi  , ax 1 , 

bxN  . 

2) The coefficients 2/h ， 3/h ， 8/3h  in Eqs (15)-(17) can be cancelled straightly by the quotient 

of two definite integrals. 

3) In Tables 1–3, for the TWNB, TWNT, TWBMM, and SWNB, SWNT, SWBMM algorithms, 

the weights are assigned as 2/1  of the right of Eqs (15) and (16); while for the S3/8WNB, 

S3/8WNT, and S3/8WBMM algorithms, the weighted are assigned as 3/1  of the right of 

Eq (17). 

4) In Tables 1–3, for the SWNB, SWNT, and SWBMM, and S3/8WNB, S3/8WNT, and 

S3/8WBMM algorithms, the number of sampling N  is not only restricted to 12  nN  and 

13  nN (as the requirements of )2mod(1N and )3mod(1N  in Eqs (16) and (17) , 

where n  is an integer). 

Finally the inner relations between weighted-based noniterative algorithms and continuous 

noniterative algorithms for performing the centroid TR of IT2 FLSs can be made as: 

1) Weighted-based noniterative algorithms calculate the type-reduced set iveWNontieratY  based on the 

linear combinations of functional values on sampling points. While the benchmark continuous 

noniterative algorithms compute according to the integral operations. In theory, the solutions of 

weighted-based noniterative algorithms will approach to the continuous noniterative algorithms 

as the number of sampling N .  

2) As the number of sampling increases, weighted-based noniterative algorithms may obtain more 

accurate computational results.  

3) Weighted-based noniterative algorithms perform the numerical calculations according to the sum 

operation, whereas the continuous noniterative algorithms perform the calculations symbolically 

by means of the integral operations. On the whole, weighted-based noniterative algorithms can 

be viewed as the numerical implementation of continuous noniterative algorithms according to 

the numerical integration approaches. 

4. Simulations 

Four computer simulation examples are provided in this section. Here we suppose that the 

centroid output IT2 FS [16,18,29,32] has been obtained by merging or weighting fuzzy rules under 

the guidance the inference before the TR and defuzzification. For the first example, the FOU is 

bounded by the piece-wise linear functions. For the second example, the FOU is bounded by both the 

piece-wise linear functions and Gaussian functions. For the third example, the FOU is bounded by 

the Gaussian functions. For the last example, the FOU is defined as the symmetric Gaussian primary 

MF with uncertainty derivations. Then Figure 2 and Table 2 show the defined FOUs for four 

examples. In examples 1, 3 and 4, here we choose the primary variable ]10,0[x  for tests. In 

example 2, the primary variable is selected as ]15,5[x  for test. 

Firstly, the CNB, CNT, and CBMM algorithms are considered the benchmarks to compute the 

centroid defuzzified values for four examples. And they are provided in Table 3. Here the adjustable 
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coefficient   for CBMM algorithms is chosen as the average of 1000 random numbers distributed 

on [0, 1], and the other adjustable coefficient is defined as  1 . 

Table 2. MF expressions for FOUs. 

Num Expression 
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(a)                             (b) 

 

(c)                             (d) 

Figure 2. Graphs of FOUs, (a) example 1; (b) example 2; (c) example 3; and (d) example 4. 

Table 3. Defuzzified values obtained by three types of continuous noniterative algorithms. 

Num Approach 

CNB CNT CBMM 

1 4.3050 4.3208 4.3041 

2 3.7774 3.7141 3.7747 

3 4.3702 4.3953 4.3690 

4 5.0000 5.0000 5.0000 

Next, we study the performances of proposed three types of weighted-based noniteraitve 

algorithms, respectively. Here the number of sampling is chosen as 4000:50:50N  for tests, then 

the graphs of centroid defuzzified values computed by weighted-based noniterative algorithms are 

shown in Figures 3–5, respectively. Furthermore, the functional graphs of absolute errors between 

the continuous noniteraive algorithms and weighted-based noniteraive algorithms are shown in 

Figures 6–8.  
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(a)                               (b) 

 

(c)                              (d) 

Figure 3. Defuzzified values computed by the WNB algorithms, (a) example 1; (b) 

example 2; (c) example 3; and (d) example 4. 
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                         (a)                              (b) 

 

                         (c)                               (d) 

Figure 4. Defuzzified values computed by the WNT algorithms, (a) example 1; (b) 

example 2; (c) example 3; and (d) example 4. 

 

 

 

 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
4.3204

4.3206

4.3208

4.321

4.3212

4.3214

4.3216

4.3218

4.322

4.3222

4.3224

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r 

W
N

T
 a

lg
o
ri
th

m
s

 

 

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
3.67

3.675

3.68

3.685

3.69

3.695

3.7

3.705

3.71

3.715

3.72

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r 

W
N

T
 a

lg
o
ri
th

m
s

 

 

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
4.384

4.386

4.388

4.39

4.392

4.394

4.396

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r 

W
N

T
 a

lg
o
ri
th

m
s

 

 

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
4.9995

4.9996

4.9997

4.9998

4.9999

5

5.0001

5.0002

N

T
h
e
 d

e
fu

z
z
if
ie

d
 v

a
lu

e
s
 f

o
r 

W
N

T
 a

lg
o
ri
th

m
s

 

 

NT

TWNT

SWNT

S3/8WNT



7733 
 

AIMS Mathematics  Volume 5, Issue 6, 7719–7745. 

 

 

 

 

 

(a)                               (b) 

 

(c)                               (d) 

Figure 5. Defuzzified values computed by the WBMM algorithms, (a) example 1; (b) 

example 2; (c) example 3; and (d) example 4. 
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(a)                              (b) 

 

(c)                              (d) 

Figure 6. Absolute errors of defuzzified values between the CNB and WNB algorithms, 

(a) example 1; (b) example 2; (c) example 3; and (d) example 4. 
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(a)                              (b) 

 

   (c)                              (d) 

Figure 7. Absolute errors of defuzzified values between the CNT and WNT algorithms, 

(a) example 1; (b) example 2; (c) example 3; and (d) example 4. 
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(a)                              (b) 

 

   (c)                              (d) 

Figure 8. Absolute errors of defuzzified values between the CBMM and WBMM 

algorithms, (a) example 1; (b) example 2; (c) example 3; and (d) example 4. 

Next, let’s quantitatively measure the calculation accuracies of proposed weighted-based 

noniterative algorithms. For the number of sampling 4000:50:50N , we compute the defined 

average relative errors )4,,1(||/||   iyyy iveiCNoniterativeiCNoniterateiWNoniteriv . Then Tables 4–6 provide 

the values of average of relative errors with respect to N , in which the last line represents the total 

averages for four examples. 

Table 4. Averages of relative errors for )4,,1(||/|(|  iyyy
iii CNBCNBWNB . 

Algorithm NB TWNB SWNB S3/8WNB 

Example 1 0.000029 0.000029 0.000572 0.000067 

Example 2 0.038400 0.001690 0.001450 0.001390 

Example 3 0.009800 0.000094 0.000122 0.001908 

Example 4 0.000110 0.000110 0.000110 0.000731 

Total average 0.016110 0.000640 0.000750 0.001370 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

-3

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

B
M

M
 a

n
d
 W

B
M

M
 a

lg
o
ri
th

m
s

 

 

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

B
M

M
 a

n
d
 W

B
M

M
 a

lg
o
ri
th

m
s

 

 

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7
x 10

-3

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

B
M

M
 a

n
d
 W

B
M

M
 a

lg
o
ri
th

m
s

 

 

BMM

TWBMM

SWBMM

S3/8WBMM

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5
x 10

-3

N

T
h
e
 a

b
s
o
lu

te
 e

rr
o
rs

 b
e
tw

e
e
n
 t

h
e
 C

B
M

M
 a

n
d
 W

B
M

M
 a

lg
o
ri
th

m
s

 

 

BMM

TWBMM

SWBMM

S3/8WBMM



7737 
 

AIMS Mathematics  Volume 5, Issue 6, 7719–7745. 

 

Table 5. Averages of relative errors for )4,,1(||/||  iyyy
iii CNTCNTWNT . 

Algorithm NT TWNT SWNT S3/8WNT 

Example 1 0.000043 0.000043 0.000519 0.00096 

Example 2 0.067610 0.002170 0.002430 0.002280 

Example 3 0.013730 0.000050 0.000050 0.002770 

Example 4 0.000028 0.000028 0.000028 0.000458 

Total average 0.027140 0.000760 0.001010 0.001870 

Table 6. Averages of relative errors for )4,,1(||/||  iyyy
iii CBMMCBMMWBMM . 

Algorithm BMM TWBMM SWBMM S3/8WBMM 

Example 1 0.000028 0.000028 0.000576 0.000056 

Example 2 0.039650 0.001590 0.001320 0.001290 

Example 3 0.009598 0.000096 0.000125 0.001866 

Example 4 0.000112 0.000112 0.000112 0.000738 

Total average 0.016460 0.000610 0.000710 0.001320 

 

Then we study the specific computation times of weighted-based noniterative algorithms for 

better applications. The number of sampling is still chosen as 4000:50:50N . Here the 

unrepeatable computation times depend on the hardware and software environments. The simulations 

are performed by a dual-core CPU dell desktop with E5300@2.60GHz and 2.00 GB memory. The 

programs are operated by Matlab 2013a on Windows XP. Figures 9–11 provide the comparisons of 

computation times of weighted-based noniteraitve algorithms for these four examples. 
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(a)                               (b) 

  

                       (c)                                (d) 

Figure 9. Comparsions of computation times for WNB algorithms, (a) example 1; (b) 

example 2; (c) example 3; and (d) example 4. 
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(c)                              (d) 

Figure 10. Comparsions of computation times for WNT algorithms, (a) example 1; (b) 

example 2; (c) example 3; and (d) example 4. 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

 

 

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

 

 

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

-3

N

R
u
n
ti
m

e

 

 

NT

TWNT

SWNT

S3/8WNT

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3

N

R
u
n
ti
m

e

 

 

NT

TWNT

SWNT

S3/8WNT



7740 
 

AIMS Mathematics  Volume 5, Issue 6, 7719–7745. 

 

(a)                               (b) 

 

(c)                               (d) 

Figure 11. Comparsions of computation times for WBMM algorithms, (a) example 1; (b) 

example 2; (c) example 3; and (d) example 4. 

Considering the Figures 3–8, Tables 4–6, and Figures 9–11 comprehensively, the following 

conclusions can be obtained: 

1) In these four examples, the absolute errors of three types of weighted-based noniterative 

algorithms all converge as the number of sampling increases. In example 1, NB, TWNB, NT, 

TWNT, and BMM, TWBMM algorithms can obtain the smallest absolute errors and errors 

amplitudes of variation, while SNB, SNT, and SBMM algorithms get the largest absolute errors 

and errors amplitude of variation. In both examples 2 and 3, the proposed weighted-based 

noniterative can obtain the values of absolute errors and errors amplitudes of variation that are 

obviously less than their corresponding original noniterative algorithms. In the last example, the 

first three types of weighted-based noniterative algorithms can get almost the same absolute 

errors and errors amplitudes of variation, while the last type of weighted-based noniterative 

algorithms obtain the larger ones. 

2) For the NB algorithms, the largest average of relative error is 3.84%. While the largest average 
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of relative error of proposed WNB algorithms is only 0.169%. For the NT algorithms, the largest 

average of relative error is 6.761%. The largest average of relative error of proposed WNT 

algorithms is only 0.243%. For the BMM algorithms, the largest average of relative error is 

3.965%. The largest average of relative error of proposed WBMM algorithms is only 0.159%.  

3) The total mean of average of relative error of NB algorithms is 1.611%. While the largest total 

mean of average of relative error of proposed WNB algorithms is only 0.137%. The total mean 

of average of relative error of NT algorithms is 2.714%. While the largest total mean of average 

of relative error of proposed WNT algorithms is only 0.187%. The total mean of average of 

relative error of BMM algorithms is 1.646%. While the largest total mean of average of relative 

error of proposed WBMM algorithms is only 0.132%.  

4) In general, see Figures 9–11, the computational speeds of original noniteraive algorithms are 

faster than their corresponding weighted-based noniterative algorithms. However, the 

computational speeds first two types on weighted-based noniterative algorithms are almost 

completely the same. As the number of sampling is fixed, the size relation of computation times 

is as: S3/8WNoiteraive > SWNoiteraive > TWNoniterative > Noniterative. It may just because 

the weights of proposed weighted-based noniterative algorithms are more complex than the 

noniterative algorithms. In other words, the convergence speeds of proposed weighted-based 

noniteraive algorithms are faster than the original noniterative algorithms. 

5) From the above analysis, it can be found that, by choosing the proposed weighted-based 

noniteraive algorithms appropriately, which can improve both the calculation accuracies and 

convergence speeds. 

The proposed weighted-based noniteraive algorithms can be used to investigate the TR and 

defuzzification of IT2 FLSs. If only the computational accuracy were considered, the proposed three 

types of weighted-based noniteraive algorithms outperformed the original noniteraive algorithms, in 

which the second type of weighed-based noniteraive algorithms were the best. Moreover, the 

computation time of proposed weighted-based noniteraive algorithms were not much different from 

the original noniteraive algorithms. Considering the above analysis comprehensively, we advise to 

use the second or third types of weighted-based noniterative algorithms for the TR and 

defuzzification of IT2 FLSs with the combination of linear functions and nonlinear functions as in 

examples 1 and 4, and adopt the first or second types of weighted-based noniteraive algorithms for 

the TR and defuzzification of IT2 FLSs with the combination of linear and nonlinear functions and 

nonlinear functions as in examples 2 and 3.  

Finally, it is important to point out that, we only focus on the experimental performances of 

weighted-based noniteraive algorithms. It can be obtained from the simulation examples that, 

compare with the noniteraive algorithms, the proposed weighted-based noniteraive algorithms can 

improve the computational accuracies. However, if the requirements of computational accuracy were 

not high, the weighted-based noniteraive algorithms can not show their advantages, as the simplest 

noniteraive algorithms could attain well results.  

5. Conclusions and expectations 

This paper compares the operations between three types of discrete noniterative algorithms with 

their corresponding continuous versions. According to the Newton-Cotes quadrature formulas in the 
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numerical integration technique, three types of noniterative algorithms are extended to the 

weighted-based noniterative algorithms. The continuous noniterative algorithms are considered as 

the benchmarks for performing the centroid TR and defuzzification of IT2 FLSs. Four simulation 

examples illustrate and analyze the computational accuracies and computation times of the proposed 

algorithms. Compared with the original noniterative algorithms, the proposed weighted-based 

noniteraive algorithms can obtain both higher calculation accuracies and faster convergence speeds. 

In the future work, we will concentrate on designing the centroid TR of T2 FLSs 

[13–24,29,31,33,56] with weighted-based reasonable initialization enhanced Karnik-Mendel 

algorithms, the center-of-sets TR [12,13,34,45–49] of T2 FLSs, and seeking for global optimization 

algorithms [3–6,25–27,35–44,52,53] for designing and applying IT2 or GT2 FLSs in real world 

problems like forecasting, control [50,51,54,55] and so on. 
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