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1. Introduction

Let (M2n+1, φ, ξ, η, g) be a contact metric manifold of dimension 2n + 1, n ≥ 1. The so called
D-homothetic deformation introduced by Tanno in [17] is defined by

φ̄ = φ, ξ̄ =
1
a
ξ, η̄ = aη, ḡ = ag + a(a − 1)η ⊗ η (1.1)

for certain positive constant a. It is easily seen that any D-homothetic deformation deforms a contact
metric structure into another contact metric structure. The study of invariants under a D-homothetic
deformation on a contact metric manifold is rather interesting and have been investigated by many
authors. For example, anyD-homothetic deformation preserves K-contact, Sasakian (see [1]), contact
strongly pseudo-convex CR (see [11]), the extended contact Bochner curvature tensor (see [5]), (k, µ)-
contact structure (see [2, 3]), the Jacobi (k, µ)-contact structure (see [8]) and local φ-symmetry (see [4]).
Very recently, some necessary conditions for a Ricci almost soliton invariant under a D-homothetic
deformation on a contact metric manifold is provided in [6]. Some other invariant properties and
geometric conditions under aD-homothetic deformation can also be seen in [10, 12].

A vector field V on a Riemanian manifold (M, g) is said to be conformal if LVg = ρg, where ρ
denotes a smooth function on M and L is the Lie differentiation. In particular, a conformal vector field
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V is said to be homothetic if ρ ∈ R and is said to be Killing if ρ = 0. The geometry of conformal
and Killing vector fields on contact metric manifolds have been studied in [14, 15]. In this paper, we
present a sufficient and necessary condition for a conformal vector field invariant under aD-homothetic
deformation. As an application, some conditions for a holomorphically planar conformal vector field
being invariant are provided. In addition, a complete η-Einstein K-contact metric manifold admitting a
non-trivial generalized Ricci vector field is studied. We also show that a generalized Ricci vector field
cannot be invariant under anyD-homothetic deformation on a contact metric manifold.

2. Contact metric manifolds

All notations adopted throughout this paper follow D. E. Blair [1]. A smooth manifold M of
dimension 2n + 1 is said to be a contact manifold if there exits on it a global 1-form η such that
η ∧ (dη)n , 0 everywhere. If on M there exits a Riemannian metric g compatible with the contact
structure, M is said to be a contact metric manifold. This is equivalent to that there exist a (1, 1)-type
and (1, 0)-type tensor fields φ and ξ respectively such that

φ2 = −I + η ⊗ ξ, η = g(ξ, ·), dη = Φ, (2.1)

g(φX, φY) = g(X,Y) − η(X)η(Y) (2.2)

for any vector fields X and Y , where Φ denotes the fundamental 2-form defined by Φ(X,Y) = g(X, φY).
A contact metric manifold is said to be K-contact if ξ is Killing and a Sasakian manifold if the contact
structure is normal (see [1]).

On a contact metric manifold M2n+1, we denote by l = R(·, ξ)ξ and h = 1
2Lξφ respectively, where

R denotes the Riemannian curvature tensor (defined by R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z) and
L is the Lie differentiation. One can check that both l and h are symmetric; and h is trace-free and
anti-commutes with φ. Using these notations, the following equation holds (see [1]):

∇ξ = −φ − φh. (2.3)

Applying (2.3) we see that a contact metric manifold is K-contact if and only if h = 0. Such a condition
is sufficient for a contact metric manifold to be Sasakian for dimension three.

3. Invariant vector fields

If a geometric condition or property is preserved under aD-homothetic deformation, it is said to be
invariant. In this section, we give some invariant vector fields on contact metric manifolds under D-
homothetic deformation. Notice that when a = 1, (1.1) is just the identity transformation. Therefore,
throughout this paper, for any D-homothetic deformation, a is assumed to be a positive constant and
not equal to 1.

A vector field V on a contact metric manifold (M2n+1, φ, ξ, η, g) is called an infinitesimal contact
transformation if

LVη = ση

for certain smooth function σ (see [16]). In particularly, a vector field V on a contact metric manifold
is said to be a strictly infinitesimal contact transformation if LVη = 0. A vector field V on a contact
metric manifold is said to be an infinitesimal automorphism if it leaves φ, ξ, η and g invariant.
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Theorem 3.1. A conformal vector field on contact metric manifolds is invariant under a non-identity
D-homothetic deformation if and only if it is an infinitesimal automorphism.

Proof. Suppose a vector field V on a contact metric manifold (M2n+1, φ, ξ, η, g) is conformal, we write
LVg = ρg with ρ a smooth function. In view of (1.1), we have

LV ḡ = aρg + a(a − 1)((LVη) ⊗ η + η ⊗ (LVη)) (3.1)

If V is conformal for the metric ḡ, i.e., LV ḡ = ρ̄ḡ, it follows from the above relation and (1.1) that

ρg + (a − 1)((LVη) ⊗ η + η ⊗ (LVη)) = ρ̄g + (a − 1)ρ̄η ⊗ η. (3.2)

Since V is conformal for the metric g, we get ρ = (LVg)(ξ, ξ) = 2η(∇ξV) because of (2.3). Using (2.3)
we also have (LVη)ξ = η(∇ξV). Therefore, the action of (3.2) on (ξ, ξ) gives ρ = ρ̄ due to a , 0. In
view of a , 1, now (3.2) becomes

(LVη) ⊗ η + η ⊗ (LVη) = ρη ⊗ η. (3.3)

The action of (3.3) on (ξ, φX) implies (LVη)φX = 0 for any vector field X and this shows LVη = 1
2ρη

because of (LVη)ξ = η(∇ξV) = 1
2ρ. This means that V is an infinitesimal contact transformation. It

has been proved in [15, Theorem 1] that if a conformal vector field on a contact metric manifold is an
infinitesimal contact transformation, then it is an infinitesimal automorphism. The application of this
result gives ρ = 0 and also the “only if” part proof of the theorem.

Conversely, if a conformal vector field on contact metric manifolds is an infinitesimal
automorphism, using LVη = 0 in (3.1) we have LV ḡ = aρg. Recalling again the result shown in
[15, Theorem 1] or [16], we also have ρ = 0 and this implies LV ḡ = 0. �

From proof of the above theorem, we have

Corollary 3.1. If a conformal vector field on contact metric manifolds is invariant under a non-identity
D-homothetic deformation, then it is Killing.

On a contact metric manifold, a holomorphically planar conformal vector (for short, HPCV) field
(introduced by Sharma in [13]) is defined as a vector field V satisfying

∇XV = αX + βφX (3.4)

for any vector field X and certain two smooth functions α and β. It has been proved in [13] that if a
complete and connected K-contact metric manifold M admits a non-zero HPCV field V , then either V
is a constant multiple of ξ, or M is isometric to a unit sphere. By skew-symmetry of φ with respect to
g, one can check that an HPCV field is necessarily a conformal vector field.

Theorem 3.2. An HPCV field V on contact metric manifolds of dimension > 3 is invariant under a
non-identity D-homothetic deformation if and only if V is a constant multiple of ξ, a = 0 and the
manifold is K-contact.
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Proof. Suppose V is a holomorphically planar conformal vector field, we write ∇XV = αX + βφX for
any vector field X. For any D-homothetic deformation on a contact metric manifold, from (1.1) and
the Koszul formula we have

∇̄XY = ∇XY − (a − 1)(η(X)φY + η(Y)φX) −
a − 1

a
g(φhX,Y)ξ

for any vector fields X,Y , where ∇̄ is the Levi-Civita connection of the metric ḡ. Replacing Y by V in
the above equation gives

∇̄XV = aX + bφX − (a − 1)(η(X)φV + η(V)φX) −
a − 1

a
g(φhX,V)ξ

for any vector field X.
If V is also a holomorphically planar conformal vector field for the new contact metric structure

(1.1), i.e., ∇̄XV = ᾱX + β̄φ̄X, combining this with the previous relation and using (1.1) we have

αX + βφX − (a − 1)(η(X)φV + η(V)φX) −
a − 1

a
g(φhX,V)ξ = ᾱX + β̄φX (3.5)

for any vector field X. Replacing X by ξ in (3.5) gives αξ − (a− 1)φV = ᾱξ and this implies α = ᾱ and
φV = 0, where we have used the assumption a , 1.

It has been proved by A. Ghosh in [7, Lemma 3] that if a contact metric manifold of dimension
> 3 admits a non-zero HPCV field V such that φV = 0, then M is K-contact. Using h = 0, α = ᾱ

and φV = 0, (3.5) becomes β − (a − 1)η(V) = β̄ because X is an arbitrary vector field. A. Ghosh in
[7, Lemma 1] proved that for any HPCV field on a contact metric manifold of dimension > 3, the
associated function b is constant. Thus, φV = 0 shows V =

β−β̄

a−1ξ with β−β̄

a−1 a constant. Moreover, for
any HPCV field V , according to (3.4) we have LVg = 2ag, i.e., V is conformal. Following Theorem
3.1, if V is invariant under a D-homothetic deformation, then it is Killing and hence we have a = 0.
The proof for “if” part is easy to check. �

Let (M, g) be a Riemannian manifold and Ric its Ricci tensor which is defined by Ric(X,Y) =

trace{Z → R(Z, X)Y}. We denote by Q the associated Ricci operator defined by Ric(X,Y) = g(QX,Y).
A vector field V on M is said to be a generalized Ricci vector field (see [9]) if

∇XV = µQX (3.6)

for any vector field X and certain smooth function µ, or equivalently, g(∇·V, ·) = µRic. In particularly, V
is said to be a Ricci vector field if µ in (3.6) is assumed to be a constant. If V = 0, (3.6) is meaningless
and then a generalized Ricci vector filed is always assumed to be non-zero. Notice that on an Einstein
manifold, a generalized Ricci vector field reduces to a concircular one and also a conformal one.

A contact metric manifold is said to be η-Einstein if Ric = αg + βη ⊗ η for some smooth functions
α and β. In particular, on a K-contact manifold of dimension > 3, both α and β are constant (see [18]).
Moreover, on a K-contact manifold, using h = 0 in (2.3) we get ∇ξ = −φ and hence l = Id − η⊗ ξ, and
we also have Qξ = 2nξ.

Theorem 3.3. If a complete η-Einstein K-contact manifold M of dimension > 3 admits a generalized
Ricci vector field, then M is compact and Sasakian.
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Proof. On an η-Einstein K-contact manifold M of dimension greater than three, in view of Qξ = 2nξ,
we write

Q =

( r
2n
− 1
)

Id +

(
2n + 1 −

r
2n

)
η ⊗ ξ, (3.7)

where r is the constant scalar curvature. Let V on M be a generalized Ricci vector field. Taking the
covariant derivative of (3.6) implies that ∇X∇YV = X(µ)QY + µ∇XQY for any vector fields X,Y . It
follows directly that

R(X,Y)V = X(µ)QY − Y(µ)QX + µ((∇XQ)Y − (∇Y Q)X)

for any vector fields X,Y . In view of constancy of r, contracting X in the above equation and using the
formula divQ = 1

2 Dr we obtain
QV = QDµ − rDµ, (3.8)

where by D f we mean the gradient of a function f . Comparing (3.8) with (3.7) gives( r
2n
− 1
)

V +

(
2n + 1 −

r
2n

)
η(V)ξ

=

( r
2n
− r − 1

)
Dµ +

(
2n + 1 −

r
2n

)
ξ(µ)ξ.

(3.9)

Taking the inner product of (3.9) with ξ gives η(V) = (1− r
2n )ξ(µ), which is inserted in (3.9) implying( r

2n
− 1
)

V =

( r
2n
− r − 1

)
Dµ +

r
2n

(
2n + 1 −

r
2n

)
ξ(µ)ξ. (3.10)

In view of constancy of r, taking the derivative of (3.10) and using h = 0, (2.3), we obtain( r
2n
− 1
)
∇XV

=

( r
2n
− r − 1

)
∇XDµ +

r
2n

(
2n + 1 −

r
2n

)
[X(ξ(µ))ξ − ξ(µ)φX]

for any vector field X. Recalling that V is a generalized Ricci vector field, from (3.6) and (3.7) we get

∇XV = µ
( r
2n
− 1
)

X + µ
(
2n + 1 −

r
2n

)
η(X)ξ.

Submitting the above relation into the previous one gives( r
2n
− r − 1

)
∇XDµ +

r
2n

(
2n + 1 −

r
2n

)
[X(ξ(µ))ξ − ξ(µ)φX]

=µ
( r
2n
− 1
)2

X + µ
( r
2n
− 1
) (

2n + 1 −
r

2n

)
η(X)ξ

(3.11)

for any vector field X.
By using the Poincare lemma (i.e., d2 = 0) we see that g(∇XDµ,Y) is symmetric with respect to X

and Y , and hence it follows from (3.11) that

r
2n

(
2n + 1 −

r
2n

)
[X(ξ(µ))η(Y) + 2ξ(µ)g(X, φY) − Y(ξ(µ))η(X)] = 0. (3.12)
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for any vector fields X,Y .
In view of (3.12), we discuss the following several cases. First, if the constant scalar curvature

r = 0, (3.7) becomes Q = −Id + (2n + 1)η ⊗ ξ. It was proved by Sharma in [13, Proposition 1] that
on a complete K-contact η-Einstein manifold M satisfying Ric = αg + βη ⊗ η, if α > −2, then M
is compact and Sasakian. Next, in view of (3.12) we consider r = 2n(2n + 1) and in this case the
manifold is Einstein, i.e., Q = 2nId. Following again [13, Proposition 1], the manifold M is compact
and Sasakian. Third, if r , 0 and r , 2n(2n + 1), from (3.12) we have

X(ξ(µ))η(Y) + 2ξ(µ)g(X, φY) − Y(ξ(µ))η(X) = 0

for any vector fields X,Y . Let X = φY in the above relation be two unit vector fields orthogonal to ξ, it
follows that ξ(µ) = 0. Using this in (3.11) we get( r

2n
− r − 1

)
∇XDµ

=µ
( r
2n
− 1
)2

X + µ
( r
2n
− 1
) (

2n + 1 −
r

2n

)
η(X)ξ

(3.13)

for any vector field X. Taking the inner product of (3.13) with ξ, and using ξ(µ) = 0, h = 0, and (2.3)
we obtain ( r

2n
− r − 1

)
φX(µ)

=µ
( r
2n
− 1
)2
η(X) + µ

( r
2n
− 1
) (

2n + 1 −
r

2n

)
η(X)

(3.14)

for any vector field X. Replacing φX by X in (3.14) we obtain( r
2n
− r − 1

)
φ2Dµ = 0. (3.15)

The above equation gives either r = 2n
1−2n or φ2Dµ = 0. For the former case, as similar with the above

situation, applying again [13, Proposition 1], the manifold M is compact and Sasakian. For the later
case, in view of ξ(µ) = 0, we see that µ is a constant. Using this in (3.10) we have( r

2n
− 1
)

V = 0

for any vector field X. Since we have assumed that V is non-zero, it follows that r = 2n. As similar with
the above situation, applying again [13, Proposition 1], the manifold M is compact and Sasakian. �

Let M2n+1 be a K-contact metric manifold and V its generalized Ricci vector field, i.e., ∇XV = µQX.
Note that h = 0 on a K-contact metric manifold, thus, using (1.1) for any D-homothetic deformation
(1.1) we have

∇̄XY = ∇XY − (a − 1)(η(X)φY + η(Y)φX) (3.16)

for any vector fields X,Y . Using (3.16), we have ∇̄XV = µQX − (a − 1)(η(X)φV + η(V)φX) and hence

ḡ(∇̄XV,Y) =aµRic(X,Y) + 2na(a − 1)µη(X)η(Y)
− a(a − 1)(η(X)g(φV,Y) + η(V)g(φX,Y))
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for any vector fields X,Y , where we have used Qξ = 2nξ. Suppose V is also a generalized Ricci vector
field for the metric ḡ in (1.1), i.e., ḡ(∇̄XV,Y) = µ̄Ric(X,Y). Recalling that the Ricci tensor for the metric
ḡ in (1.1) is given by (see also [6]):

Ric(X,Y) = Ric(X,Y) − 2(a − 1)g(X,Y) + 2(a − 1)(na + n + 1)η(X)η(Y)

for any vector fields X,Y . Combining this relation with the previous one gives that

(µ̄ − aµ)Ric(X,Y)
=2µ̄(a − 1)g(X,Y) − a(a − 1)(η(X)g(φV,Y) + η(V)g(φX,Y))

+ 2na(a − 1)µη(X)η(Y) − 2µ̄(a − 1)(na + n + 1)η(X)η(Y)

for any vector fields X,Y . Notice that the Ricci tensor Ric is symmetric. When the D-homothetic
deformation (1.1) is not identity, it follows from the above relation that

η(X)g(φV,Y) + η(V)g(φX,Y) = η(Y)g(φV, X) + η(V)g(φY, X)

for any vector fields X,Y . Let Y in the above relation be ξ. This shows φV = 0. Using this back
in the above relation we obtain η(V)g(X, φY) = 0 for any vector fields X,Y . Letting X = φY be two
unit vector fields orthogonal to ξ we obtain η(V) = 0. Finally, the operation of φ on φV = 0 implies
V = η(V)ξ = 0. Based on these calculations, we have

Theorem 3.4. On a K-contact metric manifold, a generalized Ricci vector field can not be invariant
under any non-identityD-homothetic deformation.
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