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1. Introduction

Line geometry possesses a close relation to spatial kinematics and has therefore found applications
in mechanism design and robot kinematics. In spatial kinematics, it is interesting to study the intrinsic
properties of the line trajectory from the concepts of ruled surface in differential geometry [1–4]. As it
is known, dual numbers are used to investigate the motion of a line trajectory. Hence, the E. Study’s
map leads to the conclusion that the family of all directed lines in Euclidean three-space E3 is one-
to- one correspondent with family of points of the dual unit sphere in the dual three- space D3 (see
[1–3, 6, 9–12]).

This work offers an approach for constructing ruled surfaces with constant Disteli-axis by using E.
Study map. Meanwhile, we determine kinematic- geometry of the Plücker conoid and its
characterization. Finally, the well-known Dupin’s indicatrix in surfaces theory has been defined for
the kinematic geometry of the Plücker’s conoid. Moreover, some characterizations equations for
special ruled surfaces undrgoing one-parameter scrow motion are obtained and investigated. In
addition, we have given some necessary and sufficient conditions to have constant dual angles with
respect to constant Disteli-axis and we have discussed some special cases which lead to some special
ruled surfaces such as the constant helicoids, One-sheeted circular hyperboloids, Archimedecs
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helicoids , circular cones and right helicoids.

2. Basic concepts

Here, we give a brief introduction of some basic definitions and formulae that are associated to the
topic (See for instance Refs. [6,10–12]). Recall that any directed line L in the Euclidean 3-space E3 has
a representation in terms of a point p on L and a directed vector x of L such that ‖x‖ = 1. Therefore,the
moment vector about the origin 0 in E3 can be given as

x∗ = p × x. (1)

p can be replaced by any point
q = p+µx, µ ∈ R (2)

on L, then x∗ does not depend on the choice of p on line. Clearly, x and x∗ are dependent of each other.
Moreover, we have

< x∗, x >=0, < x, x >=1. (3)

The components x∗i , xi(i = 1, 2, 3) of x∗ and x are referred to as the normalized Plűcker coordinates
of L. Therefore, L can be determined by the two vectors x and x∗.

The dual numbers set is

D = {X = x + εx∗ | x, x∗ ∈ R, ε , 0, ε2 = 0}, (4)

which is a commutative ring. A dual number X = a+εx∗, is referred to as proper if x , 0. A dual angle
formed by two skew lines in E3 gives an example of dual number in which it is given by Θ = ϑ + εϑ∗;
where ϑ and ϑ∗ are the projected angle and the minimal distance between the lines, respectively.

Now, the set
D3 = {X = x + εx∗; (x, x∗) ∈ E3 × E3 and ε , 0, ε2 = 0}, (5)

with the inner product
< X,Y >=< x, y > + ε(< y, x∗ > + < y∗, x >), (6)

constructs the dual 3-space D3. Hence, a point X = (X1, X2, X3)t has dual coordinates Xi = (xi + εx∗i ) ∈
D. The norm is given as

< X,X >
1
2 := ‖X‖ = ‖x‖ (1+ε

< x, x∗ >
‖x‖2

). (7)

The set
K = {X ∈D3 | ‖X‖2 = X2

1 + X2
2 + X2

3 = 1}. (8)

gives the dual unit sphere in D3. All points X in K satisfy the two formulae

x2
1 + x2

2 + x2
3 = 1, x1x∗1 + x2x∗2 + x3x∗3 = 0. (9)

Therefore, E. Study’s map ( [6,10–12]) states that: There is a one to one map between the set of all
oriented lines in E3 and the set of points of dual unit sphere in D3.
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Definition 1. A family of oriented lines L = (a, a∗) ∈ E3 satisfying

C : < a∗, x > + < x∗, a >=0, (10)

where X = (x, x∗) ∈ E3, is referred to as a line complex when < x, x∗ >, 0 and is a singular (special)
line complex when

< x∗, x >=0, < x, x >=1. (11)

Geometrically, a singular line complex is a family of all lines L = (a, a∗) intersecting the line
X = (x, x∗) [6, 10–12]. From E. Study’s map, line complex can be defined using four independent
parameters, so we can produce a finite number of lines, line congruence, given by intersecting any
two line complexes. The intersection of two independent line congruences forms a differentiable set of
lines in E3 defined as a ruled surface.

Ruled surfaces (such as cones and cylinders ) contain generating lines in which the tangent plane
touches the surface along the generator. Such generating lines are referred to as torsal lines:
• Ruled surfaces formed by only torsal generating line are known as developable surfaces;
• Ruled surfaces, in which most of its generators are non-torsal, are known as skew ruled surfaces;
• Ruled surfaces consisting of tangents of a spatial curve, , cones, and cylinders are developable
surfaces.

One-parameter dual spherical motions

Let Km and K f be two dual unit spheres with the common center O and two orthonormal dual
coordinate frames {O; E1, E2, E3} and {O; F1, F2, F3}, respectively. Let us assume that the frame
{O; F1, F2, F3} is fixed, and the set {O; E1, E2, E3} consists of real functions of parameter t (say
the time). Then under assumption, Km moves about K f and such motion is denoted by Km/K f and
referred to as a one-parameter dual spherical motion. If the line spaces Hm and H f correspond to Km

and K f , respectively, then the one-parameter spatial motion Hm/H f corresponds to Km/K f . Therefore
Hm moves about the fixed space H f . Let A = (Ai j) be a dual matrix. By putting < Fi,E j >= Ai j, the E.
Study map can be written as [2, 3, 5]:

Km/K f :


F1

F2

F3

 =


A11 A12 A13

A21 A22 A23

A31 A32 A33




E1

E2

E3

 . (12)

The dual matrix A := (Ai j) = a+εa∗ = (ai j)+ε(a∗i j) satisfies that A(u)A(u)t = I3, where I3 is the 3×3
identity matrix. Hence, det A(t) = 1 and A(t) is an orthogonal dual matrix, . The Lie algebra L(OD3×3)
of the group of positive orthogonal dual matrices A of rank 3×3 is the algebra of skew-symmetric dual
matrices of rank 3 × 3

Ω(t) = A
′

At =


0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

 ,
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where A
′

=
dA(t)

dt
. Let us consider the following convention

Ω(t) =


0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

⇔


Ω1

Ω2

Ω3

 = Ω. (13)

Consequently, we can consider the elements in L(OD3×3) as vectors of the usual 3-dimensional dual
vector space or skew-symmeteric matrices. If dash refers to the derivation about t, then the derivative
equation of the motion Km/K f is:

E′

1
E′

2
E′

3

 =


0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0




E1

E2

E3

 = Ω×


E1

E2

E3

 . (14)

where Ω(t)= ω+εω∗ = (Ω1,Ω2,Ω3) is known as the instantaneous dual rotation vector of Km/K f .

ω∗ and ω, respectively, are real vectors corresponding to the instantaneous translational differential
velocity vector and the instantaneous rotational differential velocity vector of the motion Hm/H f [2–5].

3. Ruled surfaces with constant Disteli-axis

During the motion Hm/H f , every fixed line X of the moving space Hm, constructs a ruled surface in
the fixed space H f denoted by (X). In kinematics, such ruled surface is called line trajectory. To study
the geometrical aspects of a line trajectory, we choose a moving frame, called the Blaschke frame,
associated with the point on Km [2–5] as:

X = X(t), T(t) := t(t)+εt∗(t) =
X′

‖X′
‖
, G(t) := g(t)+εg∗(t) = X × T. (15)

X, T, and G are three dual unit vectors corresponding to three concurrent mutually perpendicular lines
E3 and they intersect at a point C on X called central point. G(t) is the limit position of the shared
perpendicular to X(t) and X(t + dt), and is referred to as the central tangent of (X) at C. All central
points form the striction curve. The vector T is known as the central normal of X at C. By construction,
the Blaschke motion Km/K f is given by

Km/K f :


X′

T′

G′

 =


0 P 0
−P 0 Q
0 −Q 0




X
T
G

 = Ω×


X
T
G

 , (16)

where
P = p + εp∗ =

∥∥∥X
′
∥∥∥ , Q := q + εq∗ = det(X,X

′

,X
′′

)
∥∥∥X

′
∥∥∥−2

, (17)

are called the Blaschke invariants of (X), andΩ(t) =QX+PG. The tangent of the striction curve C may
be written as

C
′

= q∗x + p∗g. (18)

Furthermore, the distribution parameters of the surfaces (X), (T ), and (G), respectively, are:

µ(t) =
p∗

p
, δ(t) =

pp∗ + qq∗

q2 + p2 , and Γ(t) =
q∗

q
. (19)
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Now,

B(t) = b(t) + εb∗(t) =
Ω

‖Ω‖
=

QX+PG√
Q2 + P2

, (20)

is a dual unit vector such that Ω := ω + εω∗ = ‖Ω‖ is referred to as dual angular speed of the Blaschke
frame. Clearly, B is the Disteli-axis (striction axis or evolute) of (X). For each generating line of a
cylindrical surface, the Disteli-axis and the curvature axis of the perpendicular sections are identified.
From Eq (20), the Disteli-axis is perpendicular to the central normal T, and is parallel to the tangent
plane of (X). Let Ψ = ψ + εψ∗ be a dual angle between B and X, then we have that:

B(t) = cos ΨX+ sin ΨG, (21)

where
cot Ψ =

Q
P
. (22)

Note that Ψ is the dual spherical radius of curvature. The trigonometric function in Eq (22) of Ψ

can be expanded as:

cot Ψ = cotψ − εψ∗(1 + coth2 ψ) =
q + εq∗

p + εp∗
. (23)

One of the invariants of the dual curve X(t) on K f is

Σ(t) := γ + ε (Γ − µγ) =
Q
P
, (24)

called the dual geodesic curvature. Here γ(t) =
q
p is the geodesic curvature of the spherical image curve

t ∈ I 7→ x(t) of (X). Hence, from the dual and real parts of Eqs (23) and (24), respectively, we get

ψ∗(t) =
1
2

(µ − Γ) sin 2ψ, (25)

and
γ(t) = cotψ =

q
p
. (26)

Here, ψ∗ is the normal distance from X to the Distelli-axis B along the central tangent of (X). The
functions Γ(t), µ(t) and γ(t) are referred to as construction parameters of (X) or the curvature functions.

3.1. Kinematic-geometry and Plücker’s Conoid

We now are interesting to research kinematics and the geometrical properties of the line trajectory
(X). So, we are going to do a detailed study of the Blaschke invariants P(t), and Q(t). To carry out this,
from Eq (16), we can write the following equations:

X
′

(t) = (‖Ω‖B) × X, T
′

(t) = (‖Ω‖B) × T, G
′

(t) = (‖Ω‖B) ×G. (27)

Hence, at any instant, it is seen that:‖Ω‖ = Ω = ω + εω∗ is the dual angular speed of the motion
Km/K f about B. The parts

ω∗(t) =
pp∗ + qq∗√

q2 + p2
, and ω(t) =

√
p2 + q2, (28)
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corresponding to translational angular speed and the rotational angular speed of the motion Hm/H f

along B, respectively.
Hence, we have the following corollary:

Corollary 1. For the one-parameter Blaschke motion, at any instant t, the pitch of the motion h(t) can
be given by

h(t) :=
< ω,ω∗>

‖ω‖2
= µ cos2 ψ + Γ sin2 ψ. (29)

Now, assume that the dual vector Ω = ω+εω∗ is given, then the list of the following physical
properties of the Blaschke motion can be determined:
(i) The Disteli-axis B can be represented by Eq (20).
(ii) The dual angular speed of its dual angular velocity can be expressed as ‖Ω‖ = ω(1 + εh).
(iii) If y is a point on the Disteli-axis B, then we get:

y(t, v)= b × b∗ + vb, v ∈ R. (30)

This parametrization defines a non-developable ruled surface (B). If h(u) = 0, i.e., the Blaschke
motion is pure rotation, then

B(t)= b(t) + εb∗(t) =
1
‖ω‖

(ω + εω∗), (31)

whereas if h(t) = 0, and ‖ω‖2 = 1, then Ω is an directed line. However, if Ω = 0+εω∗, i.e., of the
Blaschke motion is pure translational, we put ω∗ = ‖Ω∗‖ ; ω∗b =ω∗ for arbitrary b∗ such that ω∗ , 0,
otherwise b can be arbitrarily chosen, too.

The Eqs in (26) and (29), respectively, are resemblances to the Mannhiem and Hamilton formulae
of surfaces theory in Euclidean 3-space. Now we intend to give geometrical interpretations of these
formulae. Next, the parametric representation of ψ∗ in Eq (26) is the well known Plücker’s conoid,
or cylindroid. The Plücker conoid is a differentiable regular ruled surface [6, 10, 11]. The parametric
representation can also be given by using point coordinates. To do that, let T and y−axis of a fixed
Euclidean space frame (oxyz) be coincident and the position of the dual unit vector B be determined by
angle ψ and distance ψ∗ along the positive direction of y−axis. The dual unit vectors X and G can be
chosen in terms of x and z-axes, respectively. This shows that the dual unit vectors X and G together
with T form the coordinate system of the Plücker’s conoid, as depicted in Figure 1. Let y be a point on
the surface, then we have the point coordinates

M : y(t, v)=(0, ψ∗, 0) + v(cosψ, 0, sinψ), v ∈ R, (32)

Using such representation, the generator B is clearly visible passing through the y−axis. Thus,

ψ∗ := y =
1
2

(µ − Γ) sin 2ψ, x = v cosψ, and z = v sinψ, (33)

where ψ∗ gives the point of the intersection of the principal axes X and G which locates at a half of the
conoid height. By direct calculations,(

y2 + z2
)

y + (Γ − µ) zy = 0, (34)
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which is the algebraic equation for Plücker’s conoid. The Plücker’s conoid described by Eq (34)
depends only on the difference of its two integral invariants of the first order; Γ − µ = 1, 0 ≤ ψ ≤ 2π,
−4 ≤ υ ≤ 4 (Figure 2). Furthermore, one can get a second-order equation in y

z in which its solutions
are given by

y
z

=
1
2y

[
µ − Γ ±

√
(Γ − µ)2

− 4y2

]
. (35)

Figure 1. B = cosΨX+sinΨG. Figure 2. Plücker’s conoid.

By equating the discriminant of Eq (35) to zero, we get the limits of the Plücker’s conoid. Hence,
the two extreme positions are given by,

y = ± (Γ − µ) /2. (36)

Equation (36) gives the positions of the two torsal planes, each of which contains one torsal line L.
On the other hand, h(u) in Eq (29) is periodic function and to have at most two extreme values, the

curvature functions µ and Γ. Therefore, the directed lines X and G are principal axes of the Plücker’s
conoid. However, the geometric aspects of the Plücker’s conoid are discussed as follows:
(i)- If h(t) , 0, then we have two real generating lines moving through the point (0, y, 0) if y <

(Γ − µ) /2; and for the two limit points y = ± (Γ − µ) /2, the generators and the principal axes X and G
are coincident.
(ii)- If h(t) = 0, then the two torsal lines L1, L2 are represented by

L1, L2 :
x
z

= cotψ = ±

√
−
µ

Γ
, y = ± (Γ − µ) /2, (37)

which shows that the two torsal lines L1, and L2 are perpendicular each other. So, if µ and Γ are equal,
then the Plücker’s conoid becomes pencil of lines through the origin “o” in the torsal plane y = 0. In
this case L1 and L2 are the principal axes of an elliptic line congruence. However, if µ and Γ have
opposite signs, then L1 and L2 are real and to be coincident with the principal axes of a hyperbolic line
congruence. If either µ or Γ is zero then the lines L1 and L2 both coincide with y−axis; for µ , 0, Γ = 0
or for Γ , 0, µ = 0 they coincide with z−axis.
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Furthermore, to convert from polar coordinates to Cartesian, we use the substitution

y =
cosψ
√

h
, z =

sinψ
√

h
,

in Hamilton’s formula, one obtain the equation

D : |µ| y2 + |Γ| z2 = 1,

of a conic section. This conic section is the Dupin’s indicatrix of the Plücker’s conoid. We now
examine three cases in detail:
(1) If µ, and Γ are both positive, the Dupin’s indicatrix is an ellipse has the principal semi-axes are 1

√
µ
,

and 1
√

Γ
. The lines through the center intersects the ellipse in the points:

y = ±
cosψ
√

h
, z = ±

sinψ
√

h
.

The distance intercepted by the ellipse on the line z
y = tanψ is:

√
y2 + z2 =

1
√

h
.

(2) If µ, and Γ have opposite signs the Dupin’s indicatrix is set of conjugate hyperbolas

D : µx2 ∓ Γy2 = ±1.

The two asymptotic directions of the hyperbolas represent the torsal lines at which h = 0;
(3) If either µ or Γ is zero the Dupin’s indicatrix is a set of parallels lines corresponding to one of the
forms:

z2 =

∣∣∣∣∣1Γ
∣∣∣∣∣ with µ = 0, or y2 =

∣∣∣∣∣1µ
∣∣∣∣∣ with Γ = 0.

Serret–Frenet motion

If p∗ = 0 in Eq (18), then (X) is a tangential developable ruled surface, that is, C
′

= x. In this case,
the Blaschke frame {x, t, g} coincides with the classic Serret–Frenet frame and then the striction curve
C becomes the edge of regression of (X). Hence, p and q are the curvature κ, and the torsion τ of C,
respectively. Moreover, q∗ = 1, and Γ = 1/τ. Also Γ is the radius of torsion of C. By similar argument,
we can also have the following equations:

h(u) =
τ

τ2 + κ2 =
1
τ

sin2 ψ, ψ∗ =
1
2τ

sin 2ψ, with tanψ =
τ

κ
. (38)

The corresponding Plücker conoid is

M : ζ(t, v)=(0, ψ∗, 0) + v(cosψ, 0, sinψ), υ ∈ R. (39)

This yields (
z2 + y2

)
y + Γzy = 0. (40)
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3.2. Constant Disteli-axis ruled surfaces

In the following, when we say (X) is a constant Disteli-axis, we mean that all the generators of the
ruled surface (X) have a constant dual angle from its Disteli-axis. The dual arc length dŝ = ds + εds∗

of X(t) is

ŝ(t) =

u∫
0

Pdt =

u∫
0

p(1 + εµ)dt. (41)

Now, we use the dual arc length parameter ŝ instead of t. If the prime means to differentiate with
respect to ŝ, then from Eq (16), we get

X′

T′

G′

 =


0 1 0
−1 0 Σ

0 −Σ 0




X
T
G

 = Ω×


X
T
G

 , (42)

where Ω = ΣX + G. Thus, we may write the following relationships:

κ̂ := κ + εκ∗ =
√

1 + Σ2 = sin Ψ =
1
ρ̃

, τ̂ := τ + ετ∗ = ±
Σ
′

√
1 + Σ2

= ±Ψ
′

. (43)

Here, κ̂ and τ̂ refer to the dual curvature function and the dual torsion function of X = X(̂s),
respectively. The terms found in Eq (43) are analogous to their counterparts in 3-dimensional
Euclidean spherical geometry.

Definition 2. For one-parameter Blaschke motion, at the instant ŝ ∈ D, a directed line Y in fixed space
is said to be Bk-Disteli-axis of (X)

< Y,Xi(̂s) >= 0 , 1 ≤ i ≤ k
< Y,Xk+1(̂s) >, 0.

}
Here Xi refers to the i-th differentiation of X.

Based on above, consider
ρ̃ = cos−1 (< Y,X >) , (44)

which a dual angle such that Y, and ρ̃ remain constant up to the second order at ŝ = ŝ0, hence

ρ̃
′

| ŝ = ŝ0 = 0, X
′

| ŝ = ŝ0 = 0, (45)

and
ρ̃
′′

| ŝ = ŝ0 = 0, X
′′

| ŝ = ŝ0 = 0.

Therefore,
< X

′

,Y > = 0, (46)

and
< X

′′

,Y > = 0.
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Then, ρ̃ is invariant in the second approximation if and only if Y is the Disteli-axis B of (X), i.e.,

ρ̃
′

= ρ̃
′′

= 0⇔ Y=
X′

× X′′

‖X′
× X′′

‖
= ± B. (47)

Now, we shall act as we have done in the last. Using the definition of the Disteli-axis, we get the
dual frame;

U1 = B(̂s), U2(̂s) =
B′

‖B′
‖
, U3(̂s) = B × U2, (48)

as the Blaschke frame along B(t). Thus, the calculations give that:
U1

U2

U3

 =


cos Ψ 0 sin Ψ

− sin Ψ 0 cos Ψ

0 −1 0




X
T
G

 . (49)

The variations of this frame are analogous to Eqs. (16) and is given by:
U′

1
U′

2
U′

3

 =


0 Ψ

′

0
−Ψ

′

0 κ̂

0 −̂κ 0




U1

U2

U3

 = Ω̃×


U1

U2

U3

 , (50)

where Ω̃(̂s)=̂κU1 + Ψ
′U3 is the Darboux vector. From Eqs (42) and (50), we obtain that:

Ω − Ω̃ = −Ψ
′

T. (51)

From Eqs (43) and (51), we obtain that: If T (t) = τ + ετ∗ = 0(Σ
′

= 0), i.e. ψ and ψ∗ are constants,
then the line X moves about it with constant pitch h and the Disteli-axis is fixed to the second order.
Therefore, the surface (X) is locally traced during a one-parameter screw motion with respect to the
constant Disteli-axis B, by the line X positioned at a constant distance ψ∗ and constant angle ψ

relative to B. Consequently, we have:

Theorem 1. Any non-developable ruled surface (X) is a constant Disteli-axis if and only if (a)
γ =constant, and (b) Γ − µγ =constant.

We will now construct ruled surfaces with the constant Disteli-axis. From Eq (42), we have the
following ordinary dual differential equation

X
′′′

+ κ̃2X′ = 0. (52)

Case (I). If Σ , 0, then without loss of generality, we may assume X′

(0)=(0, 1, 0). Under such initial
condition, a dual unit vector X′

is given as

X
′

(̂s)=A1 sin
(̃
κ ŝ

)
F1 +

(
cos

(̃
κ ŝ

)
+ A2 sin

(̃
κ ŝ

))
F2 + A3 sin

(̃
κ ŝ

)
F3,

where A1, A2, and A3 are some dual constants satisfying A2
1 + A2

3 = 1, and A2 = 0. From this, we can
obtain

X(̂s)=
(
−ρ̃A1 cos

(̃
κ ŝ

)
+ D1

)
F1 + ρ̃ sin

(̃
κ ŝ

)
F2 +

(
−ρ̃A3 cos

(̃
κ ŝ

)
+ D3

)
F3,
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where D1, D3, are some dual constants satisfying A1D1 + A3D3 = 0, and D2
1 + D2

3 = 1. If we adopt the
dual coordinates transformation such that

X1

X2

X3

 =


A1 0 A3

0 1 0
−A3 0 A1




X1

X2

X3

 ,
with respect to the new coordinates Xi , the dual vector X(̂s) becomes

X(̂s)= − ρ̃ cos
(̃
κ ŝ

)
F1+ρ̃ sin

(̃
κ ŝ

)
F2 + DF3, (53)

for a dual constant D = A1D3 − A3D3, with D = ± cos Ψ. It is noted that X(̂s) does not depend on the
choice of the upper or lower sign of ±. Hence, throughout the study we choose upper sign, that is,

X(Φ)= − cos Φ sin ΨF1+ sin Φ sin ΨF2 + cos ΨF3. (54)

where Φ = ϕ + εϕ∗ = κ̃ ŝ. This means that the lines B and F3 are coincident, and

ψ = c1(real const.), ψ∗ = c2(real const.). (55)

Since ϕ, and ϕ∗ are two-independent parameters, the surface (X) is a line congruence E3.
Now, the Plücker coordinates can be used to determine the equation of this line congruence.

Computing the dual and real parts of Eq (54), we get

x∗(ϕ, ϕ∗) =


x∗1
x∗2
x∗3

 =


−ψ∗ cosψ cosϕ + ϕ∗ sinψ sinϕ
ψ∗ cosψ sinϕ + ϕ∗ sinψ cosϕ

−ψ∗ sinψ

 . (56)

and
x(ϕ)= (− cosϕ sinψ, sinϕ sinψ, cosψ) , (57)

Let r(r1, r2, r3) be a point on the line X. Since r × x = x∗, we get a system of linear equations in r1, r2,

and r3:
−r3 sinϕ sinψ + r2 cosψ = x∗1,
−r3 cosϕ sinψ − r1 cosψ = x∗2,

r1 sinϕ sinψ + r2 cosϕ sinψ = x∗3.


The matrix of coefficients of unknowns r1, r2, and r3 is the skew 3 × 3 matrix

0 cosψ − sinψ sinϕ
− cosψ 0 − sinψ cosϕ
sinψ sinϕ sinψ cosϕ 0

 ,
and therefore its rank is 2 with ψ , 0, and ϕ , 0. Moreover, the rank of the augmented matrix

0 cosψ − sinψ sinϕ x∗1
− cosψ 0 − sinψ cosϕ x∗2
sinψ sinϕ sinψ cosϕ 0 x∗3

 ,
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equals 2. Therefore, the system has infinitely many solutions represented by

−r1 = (r3 + ϕ∗) cosϕ tanψ + ψ∗ sinϕ,
r2 = (r3 + ϕ∗) sinϕ tanψ − ψ∗ cosϕ,
r1 sinψ sinϕ + r2 sinψ cosϕ = x∗3.

(58)

Since r3 is taken at random, then we may take r3 + ϕ∗ = 0 . Then, Eq (58) becomes

r1(t) = −ψ∗ sinϕ,
r2(t) = −ψ∗ cosϕ,

r3(t) = −ϕ∗.

 (59)

Let y be a point on such line congruence. According to Eq (2), we get

y(ϕ, ϕ∗, v) = r(ϕ, ϕ∗) + vx(ϕ, ϕ∗), v ∈ R. (60)

By means of Eqs (57) and (59) we obtain:

y(ϕ, ϕ∗, v) =


−ψ∗ sinϕ − v cosϕ sinψ
−ψ∗ cosϕ + v sinϕ sinψ
−ϕ∗ + v cosψ

 , (61)

which contains the family of ruled surfaces y(ϕ0, ϕ
∗, v), y(ϕ, ϕ∗0, v), and y(ϕ(t), ϕ∗(t), v). Here ϕ∗0, ϕ0,

and t are real constants. Let (x, y, z) be coordinates of y, then Eq (61) yield

x = −ψ∗ sinϕ − v cosϕ sinψ,
y = −ψ∗ cosϕ + v sinϕ sinψ,

z = −ϕ∗ + v cosψ,

 (62)

By eliminating the parameter ϕ, we get

(X) :
x2

ψ∗2
+

y2

ψ∗2
−

Z2

k2 = 1, (63)

where k = ψ∗ cotψ and Z = z + ϕ∗. Then (X) is a one-parameter set of one-sheeted hyperboloids.
The intersection of every hyperboloid and its corresponding plane z + ϕ∗ = 0 is the circular cylinder
y2 + x2 = ψ∗2. Therefore the envelope of (X) is the cylinder y2 + x2 = ψ∗2. Notice that if ϕ∗ = 0, then

(X) :
x2

ψ∗2
+

y2

ψ∗2
−

z2

(ψ∗ cothψ)2 = 1. (64)

Constant parameter ruled surfaces

A correlation between the two parameters ϕ and ϕ∗ such as f (ϕ, ϕ∗) = 0 reduces the line congruence
Eq (54) (resp. (61)) to a one-parameter set of lines ( a ruled surface). So, if we set ϕ∗ = hϕ in which
h and ϕ are the pitch and the parameter of the motion Hm/H f , resp., then Eq (54) (resp. (61)) gives a
ruled surface in H f−space. Hence we get the following relation:

X
T
G

 =


− sin Ψ cos Φ sin Ψ sin Φ cos Ψ

sin Φ cos Φ 0
− cos Ψ cos Φ cos Ψ sin Φ − sin Ψ




F1

F2

F3

 .
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Hence, the Blaschke equations are given as the following matrix:

d
dϕ


X
T
G

 =


0 P 0
−P 0 Q
0 −Q 0




X
T
G

 ,

where

P = (1 + εh) sin Ψ, Q = (1 + εh) cos Ψ, and cot Ψ =
Q
P
. (65)

Thus we reach, by computing the real and dual parts of Eq (65), to the result

µ = h + ψ∗ cotψ, Γ = h − ψ∗ tanψ, γ = tanψ, (66)

where µ, Γ, and γ are constants. Hence, as a direct consequence of Definition 2, (X) is a constant
parameter ruled surface. We can also show that < dr

dϕ ,
dx
dϕ >= 0; so the base curve r(ϕ) of (X) is its

striction curve. Also, the curvature and the torsion of r(ϕ) can be given, respectively, by

κ(ϕ) =
ψ∗

ψ∗2 + h2 , and τ(ϕ) =
h

ψ∗2 + h2 ,

which leads to r(ϕ) is a circular helix. Therefore, the constant parameter ruled surface can be
characterized as follows:
(1) The constant helicoid: If we take h = 1, ψ = π

4 , ψ∗ = 1, ϕ ∈ [−π, π], and v ∈ [−4, 4], the surface is
shown in Figure 3. (2) The one-sheeted circular hyperboloid: Figure 4 shows the surface with ψ = π

4 ,
ψ∗ = 1, ϕ ∈ [−π, π], v ∈ [−4, 4], and h = 0.(3) Archimedes helicoid: Figure 5 shows the surface with
ψ = π

4 , h = 1, ϕ ∈ [−π, π], v ∈ [−4, 4], and ψ∗ = 0. (4) A circular cone: Figure 6 shows the surface
with ψ = π

4 , ϕ ∈ [−π, π], v ∈ [−4, 4], and ψ∗ = h = 0.
Case (II). If Σ = 0, then we have:

X
′′′

+ X′ = 0. (67)

Also, from Eq (26), we can see that

Σ = 0⇔ cot Ψ = 0⇔ ψ = 0, and ψ∗ = 0. (68)
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Figure 3. The constant helicoid.
Figure 4. One-sheeted circular
hyperboloid.

Figure 5. Archimedecs helicoid. Figure 6. A circular cone.

In such instant, the lines X, T and B construct the Blaschke frame and meet at the striction point
of the (X). Moreover, the oriented lines B and G coincide, That is, the line X moves with respect to B
with constant pitch. Hence, we have a great circle on K f is described by

S =
{
X(S ) ∈ K f | < X,B >= 0, with ‖B‖2 = 1

}
.

Therefore, we conclude that all lines of (X) intersect perpendicularly the Disteli-axis B. Quite similarly
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as we did, we obtain
X(̂s) =

(
− cos ŝ, sin ŝ, 0

)
.

The central normal can be found as T(̂s) = (sin ŝ, cos ŝ, 0). Thus G has the form G = (0, 0,−1).
Furthermore, an analogous arguments show that: µ = h, and γ = Γ = 0. Also, it can be shown that the
ruled surface (X) is

x = v cos s, y = hs, and z = v sin s. (69)

Or, in Cartesian coordinates,

y = h cot−1
( x

z

)
, (70)

which represents a one-parameter family of right helicoids. If we take h = 1, 0 ≤ s ≤ 2π, and
−3 ≤ v ≤ 3, then a member of such family can be formed, see Figure 7.

Figure 7. A right helicoid.

Corollary 2. Let X = X(̂s) be a dual spherical curve. Then, the curve X is a great circle if its
dual geodesic curvature function Σ = Σ(̂s) vanishes. Moreover, the ruled surface is classified as a right
helicoid and its striction curve is geodesic.

4. Conclusions

This paper presents a new approach for constructing ruled surfaces having constant Disteli-axis by
means of the E. Study map. In terms of this, for the motion of the Blaschke frame on a regular dual
spherical curve, some well-known formulae of surfaces theory into line space and their geometrical
explanations are investigated. Finally, the geometric invariants of a line trajectory undrgoing one-
parameter scrow motion are examined. The study of spatial kinematics in Euclidean 3-space E3 via the
E. Study map may used to solve some problems and conclude new applications.
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