Mathematics
http://www.aimspress.com/journal/Math

Research article

On graded 2-absorbing I_{e}-prime submodules of graded modules over graded commutative rings

Shatha Alghueiri and Khaldoun Al-Zoubi*

Department of Mathematics and Statistics, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110, Jordan

* Correspondence: Email: kfzoubi @just.edu.jo.

Abstract

Let G be an abelian group with identity e. Let R be a G-graded commutative ring with identity and M a graded R-module. In this paper, we introduce the concept of graded 2 -absorbing I_{e}-prime submodule as a generalization of a graded 2-absorbing prime submodule for $I=\oplus_{g \in G} I_{g}$ a fixed graded ideal of R. We give a number of results concerning these classes of graded submodules and their homogeneous components. A proper graded submodule N of M is said to be a graded 2absorbing I_{e}-prime submodule of M if whenever $r_{h}, s_{\lambda} \in h(R)$ and $m_{\alpha} \in h(M)$ with $r_{h} s_{\lambda} m_{\alpha} \in N \backslash I_{e} N$, implies either $r_{h} s_{\lambda} \in\left(N:_{R} M\right)$ or $r_{h} m_{\alpha} \in N$ or $s_{\lambda} m_{\alpha} \in N$.

Keywords: graded 2-absorbing I_{e}-prime submodules; graded I_{e}-prime submodules; graded 2-absorbing submodules; graded prime submodules; graded 2-absorbing I_{e}-prime ideals Mathematics Subject Classification: 13A02, 16W50

1. Introduction and preliminaries

Throughout this paper all rings are commutative with identity and all modules are unitary.
Badawi in [15] introduced the concept of 2-absorbing ideals of commutative rings. The notion of 2-absorbing ideals was extended to 2-absorbing submodules in [17] and [24]. Recently, Farshadifar in [18] introduced and studied the concept of 2-absorbing I-prime submodules.

Refai and Al-Zoubi in [25] introduced the concept of graded primary ideal. The concept of graded 2absorbing ideal was introduced and studied by Al-Zoubi, Abu-Dawwas and Ceken in [4]. The concept of graded prime submodule was introduced and studied by many authors, see for example [1,2,10-12, $14,23]$. The concept of graded 2 -absorbing submodule, generalizations of graded prime submodule, was introduced by Al-Zoubi and Abu-Dawwas in [3] and studied in [7, 8]. Then many generalizations of graded 2-absorbing submodules were studied such as graded 2-absorbing primary (see [16]), graded weakly 2 -absorbing primary (see [6]) and graded classical 2-absorbing (see [5]). Recently, Alghueiri
and Al-Zoubi in [13] introduced the concept of graded I_{e}-prime submodule over a commutative ring as a new generalization of graded prime submodule. Here, we introduce the concept of graded 2absorbing I_{e}-prime submodule as a new generalization of a graded 2 -absorbing prime submodule on the one hand and a generalization of a graded I_{e}-prime submodule on other hand.

First, we recall some basic properties of graded rings and modules which will be used in the sequel. We refer to [19-22] for these basic properties and more information on graded rings and modules.

Let G be an abelian multiplicative group with identity element e. A ring R is called a graded ring (or G-graded ring) if there exist additive subgroups R_{h} of R indexed by the elements $h \in G$ such that $R=\oplus_{h \in G} R_{h}$ and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. The non-zero elements of R_{h} are said to be homogeneous of degree h and all the homogeneous elements are denoted by $h(R)$, i.e., $h(R)=\cup_{h \in G} R_{h}$. If $a \in R$, then a can be written uniquely as $\sum_{h \in G} a_{h}$, where a_{g} is called a homogeneous component of a in R_{h}. Moreover, R_{e} is a subring of R and $1 \in R_{e}$ (see [22]). Let $R=\oplus_{h \in G} R_{h}$ be a G-graded ring. An ideal J of R is said to be a graded ideal if $J=\sum_{h \in G}\left(J \cap R_{h}\right):=\sum_{h \in G} J_{h}$ (see [22]).

Let $R=\oplus_{h \in G} R_{h}$ be a G-graded ring. A left R-module M is said to be a graded R-module (or G graded R-module) if there exists a family of additive subgroups $\left\{M_{h}\right\}_{h \in G}$ of M such that $M=\oplus_{h \in G} M_{h}$ and $R_{g} M_{h} \subseteq M_{g h}$ for all $g, h \in G$. Also if an element of M belongs to $\cup_{h \in G} M_{h}=h(M)$, then it is called a homogeneous. Note that M_{h} is an R_{e}-module for every $h \in G$. Let $R=\oplus_{h \in G} R_{h}$ be a G-graded ring. A submodule N of M is said to be a graded submodule of M if $N=\oplus_{h \in G}\left(N \cap M_{h}\right):=\oplus_{h \in G} N_{h}$. In this case, N_{h} is called the h-component of N. Moreover, M / N becomes a G-graded R-module with h-component $(M / N)_{h}:=\left(M_{h}+N\right) / N$ for $h \in G$ (see [22]).

2. Results

Definition 2.1. Let R be a G-graded ring, M a graded R-module, $I=\oplus_{g \in G} I_{g}$ a graded ideal of R, $N=\oplus_{g \in G} N_{g}$ a graded submodule of M and $g \in G$.
(i) We say that N_{g} is a g-2-absorbing I_{e}-prime submodule of the R_{e}-module M_{g}, if $N_{g} \neq M_{g}$; and whenever $r_{e}, s_{e} \in R_{e}$ and $m_{g} \in M_{g}$ with $r_{e} s_{e} m_{g} \in N_{g} \backslash I_{e} N_{g}$, implies either $r_{e} s_{e} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r_{e} m_{g} \in N_{g}$ or $s_{e} m_{g} \in N_{g}$.
(ii) We say that N is a graded 2-absorbing I_{e}-prime submodule of M, if $N \neq M$; and whenever $r_{h}, s_{\lambda} \in h(R)$ and $m_{\alpha} \in h(M)$ with $r_{h} s_{\lambda} m_{\alpha} \in N \backslash I_{e} N$, implies either $r_{h} s_{\lambda} \in\left(N:_{R} M\right)$ or $r_{h} m_{\alpha} \in N$ or $s_{\lambda} m_{\alpha} \in N$.

Proposition 2.2. Let R be a G-graded ring, M a graded R-module, $I=\oplus_{g \in G} I_{g}$ a graded ideal of R and $N=\oplus_{g \in G} N_{g}$ a graded submodule of M. If N is a graded 2 -absorbing I_{e}-prime submodule of M, then for any $g \in G$ with $N_{g} \neq M_{g}, N_{g}$ is a g-2-absorbing I_{e}-prime submodule of the R_{e}-module M_{g}.

Proof. Let $r_{e}, s_{e} \in R_{e}$ and $m_{g} \in M_{g}$ such that $r_{e} s_{e} m_{g} \in N_{g} \backslash I_{e} N_{g}$, so $r_{e} s_{e} m_{g} \in N \backslash I_{e} N$ and then either $r_{e} s_{e} \in\left(N:_{R} M\right)$ or $r_{e} m_{g} \in N$ or $s_{e} m_{g} \in N$ as N is a graded 2-absorbing I_{e}-prime submodule of M. Since $M_{g} \subseteq M$ and $N_{g}=N \cap M_{g}$, we conclude that either $r_{e} s_{e} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r_{e} m_{g} \in N_{g}$ or $s_{e} m_{g} \in N_{g}$. Therefore, N_{g} is a g-2-absorbing I_{e}-prime submodule of M_{g}.

Recall from [3] that a proper graded submodule N of a graded R-module M is said to be a graded weakly 2 -absorbing submodule of M if whenever $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ with $0 \neq r_{g} s_{h} m_{\lambda} \in N$, then either $r_{g} m_{\lambda} \in N$ or $s_{h} m_{\lambda} \in N$ or $r_{g} s_{h} \in\left(N:_{R} M\right)$.

Remark 2.3. Let R be a G-graded ring, M a graded R-module and $I=\oplus_{g \in G} I_{g}$ a graded ideal of R. If $I=(0)$, then the notion of graded 2 -absorbing I_{e}-prime submodule is exactly the notion of graded weakly 2 -absorbing submodule.

Recall from [3] that a proper graded submodule N of a graded R-module M is said to be a graded 2-absorbing submodule of M if whenever $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ with $r_{g} s_{h} m_{\lambda} \in N$, then either $r_{g} m_{\lambda} \in N$ or $s_{h} m_{\lambda} \in N$ or $r_{g} s_{h} \in\left(N:_{R} M\right)$.

It is easy to see that every graded 2 -absorbing submodule is a graded 2 -absorbing I_{e}-prime submodule. The following example shows that the converse is not true in general.

Example 2.4. Let $G=\mathbb{Z}_{2}$ and $R=\mathbb{Z}$ be a G-graded ring with $R_{0}=\mathbb{Z}$ and $R_{1}=\{0\}$. Let $M=\mathbb{Z}_{12}$ be a graded R-module with $M_{0}=\mathbb{Z}_{12}$ and $M_{1}=\{\overline{0}\}$. Now, consider the graded submodule $N=(\overline{0})$ of M, then N is not a graded 2-absorbing submodule of M since $\overline{2} \cdot \overline{2} \cdot \overline{3} \in N$ and neither $\overline{2} \cdot \overline{3} \in N$ nor $\overline{2} \cdot \overline{2} \in\left(N: \mathbb{Z} \mathbb{Z}_{12}\right)$. However, for any graded ideal $I=\oplus_{g \in G} I_{g}$ of R, N is a graded 2-absorbing I_{e}-prime submodule of M.

Let R be a G-graded ring, M a graded R-module and $I=\oplus_{g \in G} I_{g}$ a graded ideal of R. Recall from [13] that a proper graded submodule N of M is said to be a graded I_{e}-prime submodule of M if whenever $r_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ with $r_{h} m_{\lambda} \in N-I_{e} N$, implies either $m_{\lambda} \in N$ or $r_{h} \in\left(N:_{R} M\right)$.

It is easy to see that every graded I_{e}-prime submodule is a graded 2 -absorbing I_{e}-prime submodule. The following example shows that the converse is not true in general.

Example 2.5. Let $G=\mathbb{Z}_{2}$ and $R=\mathbb{Z}$ be a G-graded ring with $R_{0}=\mathbb{Z}$ and $R_{1}=\{0\}$. Let $M=\mathbb{Z}$ be a graded R-module with $M_{0}=\mathbb{Z}$ and $M_{1}=\{0\}$. Now, consider the graded ideal $I=2 \mathbb{Z}$ of R and the graded submodule $N=4 \mathbb{Z}$ of M. Then N is not a graded I_{e}-prime submodule of M since $2 \cdot 2 \in 4 \mathbb{Z} \backslash 8 \mathbb{Z}$ and neither $2 \in 4 \mathbb{Z}$ nor $2 \in(4 \mathbb{Z}: \mathbb{Z} \mathbb{Z})$. However, easy computations show that N is a graded 2 -absorbing submodule of M and then a graded 2 -absorbing I_{e}-prime.

Let R be a G-graded ring, M a graded R-module, $N=\oplus_{g \in G} N_{g}$ a graded submodule of M and $g \in G$. Recall from [3] that N_{g} is said to be a g-2-absorbing submodule of the R_{e}-module M_{g} if $N_{g} \neq M_{g}$; and whenever $r, s \in R_{e}$ and $m \in M_{g}$ with $r s m \in N_{g}$, then either $r s \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r m \in N_{g}$ or $s m \in N_{g}$.

Theorem 2.6. Let R be a G-graded ring, M a graded R-module, $I=\oplus_{g \in G} I_{g}$ a graded ideal of R and $N=\oplus_{g \in G} N_{g}$ a graded 2-absorbing I_{e}-prime submodule of M. Then for any $g \in G$ with $N_{g} \neq M_{g}$, either N_{g} is g-2-absorbing submodule of the R_{e}-module M_{g} or $\left(N_{g}:_{R_{e}} M_{g}\right)^{2} N_{g} \subseteq I_{e} N_{g}$.

Proof. Let $g \in G$ with $N_{g} \neq M_{g}$. Then N_{g} is a g-2-absorbing I_{e}-prime submodule of the R_{e}-module M_{g} by Proposition 2.2. Suppose that $\left(N_{g}:_{R_{e}} M_{g}\right)^{2} N_{g} \nsubseteq I_{e} N_{g}$. Now, let $r_{e}, s_{e} \in R_{e}$ and $m_{g} \in M_{g}$ such that $r_{e} s_{e} m_{g} \in N_{g}$. If $r_{e} s_{e} m_{g} \notin I_{e} N_{g}$, then either $r_{e} s_{e} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r_{e} m_{g} \in N_{g}$ or $s_{e} m_{g} \in N_{g}$ as N_{g} is a g-2-absorbing I_{e}-prime submodule of the R_{e}-module M_{g}. So now we can assume that $r_{e} s_{e} m_{g} \in I_{e} N_{g}$. First, suppose that $r_{e} s_{e} N_{g} \nsubseteq I_{e} N_{g}$, so there exists $n_{g} \in N_{g}$ such that $r_{e} s_{e} n_{g} \notin I_{e} N_{g}$ and it follows that $r_{e} s_{e}\left(m_{g}+n_{g}\right) \in N_{g} \backslash I_{e} N_{g}$. Then we get either $r_{e} s_{e} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r_{e}\left(m_{g}+n_{g}\right) \in N_{g}$ or $s_{e}\left(m_{g}+n_{g}\right) \in N_{g}$ as N_{g} is a g-2-absorbing I_{e}-prime submodule of M_{g}. Hence, either $r_{e} s_{e} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r_{e} m_{g} \in N_{g}$ or $s_{e} m_{g} \in N_{g}$. Now, we may assume that $r_{e} s_{e} N_{g} \subseteq I_{e} N_{g}$. If $r_{e}\left(N_{g}:_{R_{e}} M_{g}\right) m_{g} \nsubseteq I_{e} N_{g}$, then there exists $t_{e} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ such that $r_{e} t_{e} m_{g} \notin I_{e} N_{g}$. This yields that $r_{e}\left(s_{e}+t_{e}\right) m_{g} \in N_{g} \backslash I_{e} N_{g}$ and then we have either $r_{e}\left(s_{e}+t_{e}\right) \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r_{e} m_{g} \in N_{g}$ or $\left(s_{e}+t_{e}\right) m_{g} \in N_{g}$ as N_{g} is a g-2-absorbing I_{e}-prime submodule of the R_{e}-module M_{g}. Thus, either $r_{e} s_{e} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r_{e} m_{g} \in N_{g}$ or $s_{e} m_{g} \in N_{g}$. We get the same
result if $s_{e}\left(N_{g}:_{R_{e}} M_{g}\right) m_{g} \nsubseteq I_{e} N_{g}$, so assume that $r_{e}\left(N_{g}:_{R_{e}} M_{g}\right) m_{g} \subseteq I_{e} N_{g}$ and $s_{e}\left(N_{g}:_{R_{e}} M_{g}\right) m_{g} \subseteq I_{e} N_{g}$. Now, since $\left(N_{g}:_{R_{e}} M_{g}\right)^{2} N_{g} \nsubseteq I_{e} N_{g}$, there exist $r_{e}^{\prime}, s_{e}^{\prime} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ and $n_{g}^{\prime} \in N_{g}$ with $r_{e}^{\prime} s_{e}^{\prime} n_{g}^{\prime} \notin I_{e} N_{g}$. If $r_{e} s_{e}^{\prime} n_{g}^{\prime} \notin I_{e} N_{g}$, then $r_{e}\left(s_{e}+s_{e}^{\prime}\right)\left(m_{g}+n_{g}^{\prime}\right) \in N_{g} \backslash I_{e} N_{g}$ implies that either $r_{e}\left(s_{e}+s_{e}^{\prime}\right) \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r_{e}\left(m_{g}+n_{g}^{\prime}\right) \in N_{g}$ or $\left(s_{e}+s_{e}^{\prime}\right)\left(m_{g}+n_{g}^{\prime}\right) \in N_{g}$. Hence, either $r_{e} s_{e} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r_{e} m_{g} \in N_{g}$ or $s_{e} m_{g} \in N_{g}$. Now, assume that $r_{e} s_{e}^{\prime} n_{g}^{\prime} \in I_{e} N_{g}$. Similarly, assume that $r_{e}^{\prime} s_{e}^{\prime} m_{g} \in I_{e} N_{g}$ and $r_{e}^{\prime} s_{e} n_{g}^{\prime} \in I_{e} N_{g}$. Then from $\left(r_{e}+r_{e}^{\prime}\right)\left(s_{e}+s_{e}^{\prime}\right)\left(m_{g}+n_{g}^{\prime}\right) \in N_{g} \backslash I_{e} N_{g}$, we get $\left(r_{e}+r_{e}^{\prime}\right)\left(s_{e}+s_{e}^{\prime}\right) \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $\left(r_{e}+r_{e}^{\prime}\right)\left(m_{g}+n_{g}^{\prime}\right) \in N_{g}$ or $\left(s_{e}+s_{e}^{\prime}\right)\left(m_{g}+n_{g}^{\prime}\right) \in N_{g}$ and it follows that either $r_{e} s_{e} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ or $r_{e} m_{g} \in N_{g}$ or $s_{e} m_{g} \in N_{g}$. Therefore, N_{g} is a g-2-absorbing submodule of the R_{e}-module M_{g}.

Theorem 2.7. Let R be a G-graded ring, M a graded R-module, $I=\oplus_{g \in G} I_{g}$ a graded ideal of R, N a graded 2-absorbing I_{e}-prime submodule of M and $K=\oplus_{\lambda \in G} K_{\lambda}$ a graded submodule of M. If $r_{g}, s_{h} \in h(R)$ and $\lambda \in G$ with $r_{g} s_{h} K_{\lambda} \subseteq N$ and $2 r_{g} s_{h} K_{\lambda} \nsubseteq I_{e} N$, then either $r_{g} s_{h} \in\left(N:_{R} M\right)$ or $r_{g} K_{\lambda} \subseteq N$ or $s_{h} K_{\lambda} \subseteq N$.

Proof. Suppose that $r_{g} s_{h} \notin\left(N:_{R} M\right)$. Now, let $k_{\lambda_{1}} \in K_{\lambda}$. If $r_{g} s_{h} k_{\lambda_{1}} \notin I_{e} N$, then either $r_{g} k_{\lambda_{1}} \in N$ or $s_{h} k_{\lambda_{1}} \in N$ as N is a graded 2-absorbing I_{e}-prime submodule of M and $r_{g} s_{h} \notin\left(N:_{R} M\right.$), which yields that $k_{\lambda_{1}} \in\left(N:_{M} r_{g}\right) \cup\left(N:_{M} s_{h}\right)$. Now, we can assume that $r_{g} s_{h} k_{\lambda_{1}} \in I_{e} N$. Since $2 r_{g} s_{h} K_{\lambda} \nsubseteq I_{e} N$, there exists $k_{\lambda_{2}} \in K_{\lambda}$ such that $2 r_{g} s_{h} k_{\lambda_{2}} \notin I_{e} N$ and then $r_{g} s_{h} k_{\lambda_{2}} \in N \backslash I_{e} N$. Hence, we get either $r_{g} k_{\lambda_{2}} \in N$ or $s_{h} k_{\lambda_{2}} \in N$ as N is a graded 2-absorbing I_{e}-prime and $r_{g} s_{h} \notin\left(N:_{R} M\right)$. Also, $r_{g} s_{h}\left(k_{\lambda_{1}}+k_{\lambda_{2}}\right) \in N \backslash I_{e} N$ implies either $r_{g}\left(k_{\lambda_{1}}+k_{\lambda_{2}}\right) \in N$ or $s_{h}\left(k_{\lambda_{1}}+k_{\lambda_{2}}\right) \in N$. Hence, we consider three cases.

Case 1: $r_{g} k_{\lambda_{2}} \in N$ and $s_{h} k_{\lambda_{2}} \in N$. Then $r_{g}\left(k_{\lambda_{1}}+k_{\lambda_{2}}\right) \in N$ or $s_{h}\left(k_{\lambda_{1}}+k_{\lambda_{2}}\right) \in N$ implies either $r_{g} k_{\lambda_{1}} \in N$ or $s_{h} k_{\lambda_{1}} \in N$.

Case 2: $r_{g} k_{\lambda_{2}} \in N$ and $s_{h} k_{\lambda_{2}} \notin N$. Assume that $r_{g} k_{\lambda_{1}} \notin N$. Then $r_{g}\left(k_{\lambda_{1}}+k_{\lambda_{2}}\right) \notin N$ and so $s_{h}\left(k_{\lambda_{1}}+k_{\lambda_{2}}\right) \in N$. Thus, $r_{g}\left(k_{\lambda_{1}}+2 k_{\lambda_{2}}\right) \notin N$ and $s_{h}\left(k_{\lambda_{1}}+2 k_{\lambda_{2}}\right) \notin N$. Now, we get $r_{g} s_{h}\left(k_{\lambda_{1}}+2 k_{\lambda_{2}}\right) \in I_{e} N$ as N is a graded 2-absorbing I_{e}-prime submodule of M and $r_{g} s_{h} \notin\left(N:_{R} M\right)$, and so $2 r_{g} s_{h} k_{\lambda_{2}} \in I_{e} N$, a contradiction. Thus, $r_{g} k_{\lambda_{1}} \in N$.

Case 3: $r_{g} k_{\lambda_{2}} \notin N$ and $s_{h} k_{\lambda_{2}} \in N$. Then the proof is similar to that of Case 2. Therefore, $K_{\lambda} \subseteq\left(N:_{M}\right.$ $\left.r_{g}\right) \cup\left(N:_{M} s_{h}\right)$ and then either $r_{g} K_{\lambda} \subseteq N$ or $s_{h} K_{\lambda} \subseteq N$.

Theorem 2.8. Let R be a G-graded ring, M a graded R-module, $I=\oplus_{g \in G} I_{g}$ a graded ideal of R and $N a$ graded 2-absorbing I_{e}-prime submodule of M. Let $J=\oplus_{h \in G} J_{h}$ be a graded ideal of R and $K=\oplus_{\ell \in G} K_{\lambda}$ a graded submodule of M. If $r_{g} \in h(R)$ and $h, \lambda \in G$ with $r_{g} J_{h} K_{\lambda} \subseteq N$ and $4 r_{g} J_{h} K_{\lambda} \nsubseteq I_{e} N$, then either $r_{g} J_{h} \subseteq\left(N:_{R} M\right)$ or $r_{g} K_{\lambda} \subseteq N$ or $J_{h} K_{\lambda} \subseteq N$.

Proof. Suppose that $r_{g} J_{h} \nsubseteq\left(N:_{R} M\right)$ and $r_{g} K_{\lambda} \nsubseteq N$. Now, since $r_{g} J_{h} \nsubseteq\left(N:_{R} M\right)$, there exists $j_{h_{1}} \in J_{h}$ such that $r_{g} j_{h_{1}} \notin\left(N:_{R} M\right)$. Also, since $4 r_{g} J_{h} K_{\lambda} \nsubseteq I_{e} N$, there exists $j_{h_{2}} \in J_{h}$ such that $4 r_{g} j_{h_{2}} K_{\lambda} \nsubseteq I_{e} N$ and then $2 r_{g} j_{h_{2}} K_{\lambda} \nsubseteq I_{e} N$. Now, let $j_{h} \in J_{h}$, if $2 r_{g} j_{h} K_{\lambda} \nsubseteq I_{e} N$, then by Theorem 2.7, we get $j_{h} \in\left(\left(N:_{R} M\right):_{R} r_{g}\right) \cup\left(N:_{R} K_{\lambda}\right)$ as N is a graded 2-absorbing I_{e}-prime submodule of M. So we can assume that $2 r_{g} j_{h} K_{\lambda} \subseteq I_{e} N$. If $4 r_{g} j_{h_{1}} K_{\lambda} \nsubseteq I_{e} N$, then $2 r_{g} j_{h_{1}} K_{\lambda} \nsubseteq I_{e} N$. Thus $j_{h_{1}} K_{\lambda} \subseteq N$ by Theorem 2.7 as N is a graded 2-absorbing I_{e}-prime submodule of M. So, $2 r_{g}\left(j_{h}+j_{h_{1}}\right) K_{\lambda} \nsubseteq I_{e} N$ implies that $j_{h}+j_{h_{1}} \in\left(\left(N:_{R} M\right):_{R} r_{g}\right) \cup\left(N:_{R} K_{\lambda}\right)$. Assume that $j_{h}+j_{h_{1}} \in\left(\left(N:_{R} M\right):_{R} r_{g}\right) \backslash\left(N:_{R} K_{\lambda}\right)$ then consider $2 r_{g}\left(j_{h}+j_{h_{1}}+j_{h_{1}}\right) K_{\lambda}=2 r_{g} j_{h} K_{\lambda}+4 r_{g} j_{h_{1}} K_{\lambda} \nsubseteq I_{e} N$, which yields that $j_{h}+j_{h_{1}}+j_{h_{1}} \in\left(\left(N:_{R}\right.\right.$ $\left.M):_{R} r_{g}\right) \cup\left(N:_{R} K_{\lambda}\right)$. But $j_{h_{1}} K_{\lambda} \subseteq N$ and $\left(j_{h}+j_{h_{1}}\right) K_{\lambda} \nsubseteq N$ implies that $\left(j_{h}+j_{h_{1}}+j_{h_{1}}\right) K_{\lambda} \nsubseteq N$, also $r_{g} j_{h_{1}} \notin\left(N:_{R} M\right)$ and $r_{g}\left(j_{h}+j_{h_{1}}\right) \in\left(N:_{R} M\right)$ implies that $r_{g}\left(j_{h}+j_{h_{1}}+j_{h_{1}}\right) \notin\left(N:_{R} M\right)$, a contradiction. Hence, $j_{h}+j_{h_{1}} \in\left(N:_{R} K_{\lambda}\right)$. Thus $j_{h} K_{\lambda} \subseteq N$ since $j_{h_{1}} K_{\lambda} \subseteq N$. Similarly, if $r_{g} j_{h_{2}} \notin\left(N:_{R} M\right)$, then we
get the result in the same manner. So now we can assume that $r_{g} j_{h_{2}} \in\left(N:_{R} M\right)$ and $4 r_{g} j_{h_{1}} K_{\lambda} \subseteq I_{e} N$. Thus, $4 r_{g}\left(j_{h_{1}}+j_{h_{2}}\right) K_{\lambda} \nsubseteq I_{e} N$, then $2 r_{g}\left(j_{h_{1}}+j_{h_{2}}\right) K_{\lambda} \nsubseteq I_{e} N$. It follows that $\left(j_{h_{1}}+j_{h_{2}}\right) K_{\lambda} \subseteq N$ by Theorem 2.7 as N is a graded 2-absorbing I_{e}-prime submodule of M and $r_{g}\left(j_{h_{1}}+j_{h_{2}}\right) \notin\left(N:_{R} M\right)$. So, $2 r_{g}\left(j_{h}+\left(j_{h_{1}}+j_{h_{2}}\right)\right) K_{\mathcal{\lambda}} \nsubseteq I_{e} N$ implies that $j_{h}+\left(j_{h_{1}}+j_{h_{2}}\right) \in\left(\left(N:_{R} M\right):_{R} r_{g}\right) \cup\left(N:_{R} K_{\lambda}\right)$. Assume that $j_{h}+\left(j_{h_{1}}+j_{h_{2}}\right) \in\left(\left(N:_{R} M\right):_{R} r_{g}\right) \backslash\left(N:_{R} K_{\lambda}\right)$ then consider $2 r_{g}\left(j_{h}+2\left(j_{h_{1}}+j_{h_{2}}\right)\right) K_{\lambda}=$ $2 r_{g} j_{h} K_{\lambda}+4 r_{g}\left(j_{h_{1}}+j_{h_{2}}\right) K_{\lambda} \nsubseteq I_{e} N$, which yields that $j_{h}+2\left(j_{h_{1}}+j_{h_{2}}\right) \in\left(\left(N:_{R} M\right):_{R} r_{g}\right) \cup\left(N:_{R} K_{\lambda}\right)$. But $\left(j_{h_{1}}+j_{h_{2}}\right) K_{\lambda} \subseteq N$ and $\left(j_{h}+\left(j_{h_{1}}+j_{h_{2}}\right)\right) K_{\lambda} \nsubseteq N$ implies that $\left(j_{h}+2\left(j_{h_{1}}+j_{h_{2}}\right)\right) K_{\lambda} \nsubseteq N$, also $r_{g}\left(j_{h_{1}}+j_{h_{2}}\right) \notin\left(N:_{R} M\right)$ and $r_{g}\left(j_{h}+\left(j_{h_{1}}+j_{h_{2}}\right)\right) \in\left(N:_{R} M\right)$ implies that $r_{g}\left(j_{h}+2\left(j_{h_{1}}+j_{h_{2}}\right)\right) \notin\left(N:_{R} M\right)$, a contradiction. Hence, $j_{h}+\left(j_{h_{1}}+j_{h_{2}}\right) \in\left(N:_{R} K_{\lambda}\right)$. Thus $j_{h} K_{\lambda} \subseteq N$ since $\left(j_{h_{1}}+j_{h_{2}}\right) K_{\lambda} \subseteq N$. Therefore, $J_{h} \subseteq\left(\left(N:_{R} M\right):_{R} r_{g}\right) \cup\left(N:_{R} K_{\lambda}\right)$ and then $r_{g} J_{h} \subseteq\left(N:_{R} M\right)$ or $J_{h} K_{\lambda} \subseteq N$, but $r_{g} J_{h} \nsubseteq\left(N:_{R} M\right)$, so $J_{h} K_{\lambda} \subseteq N$.

Theorem 2.9. Let R be a G-graded ring, M a graded R-module, $I=\oplus_{g \in G} I_{g}$ be a graded ideal of R and N a proper graded submodule of M. Then the following statements are equivalent:
(i) N is a graded 2-absorbing I_{e}-prime submodule of M.
(ii) $N / I_{e} N$ is a graded weakly 2-absorbing submodule of $M / I_{e} N$.

Proof. (i) \Rightarrow (ii) Suppose that N is a graded 2-absorbing I_{e}-prime submodule of M. Now, let $r_{g}, s_{h} \in$ $h(R)$ and $\left(m_{\lambda}+I_{e} N\right) \in h\left(M / I_{e} N\right)$ with $0_{M / I_{e} N} \neq\left(r_{g} s_{h} m_{\lambda}+I_{e} N\right) \in N / I_{e} N$, this yields that $r_{g} s_{h} m_{\lambda} \in N \backslash I_{e} N$. Hence, either $r_{g} m_{\lambda} \in N$ or $s_{h} m_{\lambda} \in N$ or $r_{g} s_{h} M \subseteq N$ as N is a graded 2-absorbing I_{e}-prime submodule of M. Then either $\left(r_{g} m_{\lambda}+I_{e} N\right) \in N / I_{e} N$ or $\left(s_{h} m_{\lambda}+I_{e} N\right) \in N / I_{e} N$ or $r_{g} s_{h}\left(M / I_{e} N\right) \subseteq N / I_{e} N$. Therefore, $N / I_{e} N$ is a graded weakly 2 -absorbing submodule of $M / I_{e} N$.
(i) \Rightarrow (ii) Suppose that $N / I_{e} N$ is a graded weakly 2 -absorbing submodule of $M / I_{e} N$. Let $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ such that $r_{g} s_{h} m_{\lambda} \in N \backslash I_{e} N$. This follows that $0_{M / I_{e} N} \neq\left(r_{g} s_{h} m_{\lambda}+I_{e} N\right)=r_{g} s_{h}\left(m_{\lambda}+I_{e} N\right) \in$ $N / I_{e} N$. Thus, either $r_{g} s_{h} \in\left(N / I_{e} N:_{R} M / I_{e} N\right)$ or $\left(r_{g} m_{\lambda}+I_{e} N\right) \in N / I_{e} N$ or $\left(s_{h} m_{\lambda}+I_{e} N\right) \in N / I_{e} N$ and then either $r_{g} s_{h} \in\left(N:_{R} M\right)$ or $r_{g} m_{\lambda} \in N$ or $s_{h} m_{\lambda} \in N$. Therefore, N is a graded 2-absorbing I_{e}-prime submodule of M.

Recall from [9] that a graded zero-divisor on a graded R-module M is an element $r_{g} \in h(R)$ for which there exists $m_{h} \in h(M)$ such that $m_{h} \neq 0$ but $r_{g} m_{h}=0$. The set of all graded zero-divisors on M is denoted by $G-Z d v_{R}(M)$.

The following result studies the behavior of graded 2 -absorbing I_{e}-prime submodules under localization.

Theorem 2.10. Let R be a G-graded ring, M a graded R-module, $S \subseteq h(R)$ be a multiplicatively closed subset of R and $I=\oplus_{g \in G} I_{g}$ a graded ideal of R.
(i) If N is a graded 2-absorbing I_{e}-prime submodule of M with $\left(N:_{R} M\right) \cap S=\emptyset$, then $S^{-1} N$ is a graded 2-absorbing I_{e}-prime submodule of $S^{-1} M$.
(ii) If $S^{-1} N$ is a graded 2-absorbing I_{e}-prime submodule of $S^{-1} M$ with $S \cap G-Z d v_{R}(M / N)=\emptyset$, then N is a graded 2-absorbing I_{e}-prime submodule of M.

Proof. (i) Since $\left(N:_{R} M\right) \cap S=\emptyset, S^{-1} N$ is a proper graded submodule of $S^{-1} M$. Let $\frac{r_{g}}{s_{1}}, \frac{s_{h}}{s_{2}} \in h\left(S^{-1} R\right)$ and $\frac{m_{\lambda}}{s_{3}} \in h\left(S^{-1} M\right)$ such that $\frac{r_{g}}{s_{1}} \frac{s_{2}}{s_{2}} \frac{m_{\lambda}}{s_{3}} \in S^{-1} N \backslash I_{e} S^{-1} N$. Then there exists $t \in S$ such that $r_{g} s_{h} m_{\lambda} \in N \backslash I_{e} N$
which yields that either $t r_{g} m_{\lambda} \in N$ or $t s_{h} m_{\lambda} \in N$ or $r_{g} s_{h} \in\left(N:_{R} M\right)$ as N is a graded 2-absorbing I_{e}-prime submodule of M. Hence, either $\frac{r_{g} m_{\lambda}}{s_{1} s_{3}}=\frac{t r_{g} m_{\lambda}}{t s_{1} s_{3}} \in S^{-1} N$ or $\frac{s_{h} m_{\lambda}}{s_{2} s_{3}}=\frac{t s_{h} m_{\lambda}}{t s_{2} s_{3}} \in S^{-1} N$ or $\frac{r_{g} s_{h}}{s_{1} s_{2}} \in S^{-1}\left(N:_{R}\right.$ $M)=\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)$. Therefore, $S^{-1} N$ is a graded 2-absorbing I_{e}-prime submodule of $S^{-1} M$.
(ii) Let $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ such that $r_{g} s_{h} m_{\lambda} \in N \backslash I_{e} N$. Then $\frac{r_{g}}{1} \frac{s_{h}}{1} \frac{m_{\lambda}}{1} \in S^{-1} N \backslash I_{e} S^{-1} N$. Since $S^{-1} N$ is a graded 2-absorbing I_{e}-prime submodule of $S^{-1} M$, either $\frac{r_{g}}{1} \frac{m_{\lambda}}{1} \in S^{-1} N$ or $\frac{s_{1}}{1} \frac{m_{\lambda}}{1} \in S^{-1} N$ or $\frac{r_{g}}{1} \frac{s_{h}}{1} \in\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)$. If $\frac{r_{g} m_{\lambda}}{1} \in S^{-1} N$, then there exists $t_{1} \in S$ such that $t_{1} r_{g} m_{\lambda} \in N$. This yields that $r_{g} m_{\lambda} \in N$ since $S \cap G-Z d v_{R}(M / N)=\emptyset$. Similarly, if $\frac{s_{h} m_{\lambda}}{1} \in S^{-1} N$, then there exists $t_{2} \in S$ such that $t_{2} s_{h} m_{\lambda} \in N$. This yields that $s_{h} m_{\lambda} \in N$ since $S \cap G-Z d v_{R}(M / N)=\emptyset$. Now, if $\frac{r_{g} s_{h}}{1} \in\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)=S^{-1}\left(N:_{R} M\right)$, then there exists $t_{3} \in S$ such that $t_{3} r_{g} s_{h} M \subseteq N$ and hence $r_{g} s_{h} \in\left(N:_{R} M\right)$ since $S \cap G-Z d v_{R}(M / N)=\emptyset$. Therefore, N is a graded 2-absorbing I_{e}-prime submodule of M.

Proposition 2.11. Let R be a G-graded ring, M_{1} and M_{2} be two graded R-modules, $I=\oplus_{g \in G} I_{g} a$ graded ideal of R and N_{1} and N_{2} be two graded submodules of M_{1} and M_{2}, respectively. Then:
(i) If N_{1} is a graded 2-absorbing I_{e}-prime submodule of M_{1}, then $N_{1} \times M_{2}$ is a graded 2-absorbing I_{e}-prime submodule of $M_{1} \times M_{2}$.
(ii) If N_{2} is a graded 2-absorbing I_{e}-prime submodule of M_{2}, then $M_{1} \times N_{2}$ is a graded 2-absorbing I_{e}-prime submodule of $M_{1} \times M_{2}$.

Proof. (i) Suppose that N_{1} is a graded I_{e}-prime submodule of M_{1}. Now, let $r_{g}, s_{h} \in h(R)$ and $\left(m_{11}, m_{12}\right) \in$ $h\left(M_{1} \times M_{2}\right)$ such that $r_{g} s_{h}\left(m_{\lambda 1}, m_{\lambda 2}\right)=\left(r_{g} s_{h} m_{\lambda 1}, r_{g} s_{h} m_{\lambda 2}\right) \in\left(N_{1} \times M_{2}\right) \backslash I_{e}\left(N_{1} \times M_{2}\right)=\left(N_{1} \backslash I_{e} N_{1}\right) \times$ $\left(M_{2} \backslash I_{e} M_{2}\right)$, which follows that $r_{g} s_{h} m_{\lambda 1} \in N_{1} \backslash I_{e} N_{1}$. Hence, either $r_{g} m_{\lambda 1} \in N_{1}$ or $s_{h} m_{\lambda 1} \in N_{1}$ or $r_{g} s_{h} M_{1} \subseteq$ N_{1} and then either $r_{g}\left(m_{\lambda 1}, m_{\lambda 2}\right) \in N_{1} \times M_{2}$ or $s_{h}\left(m_{\lambda 1}, m_{\lambda 2}\right) \in N_{1} \times M_{2}$ or $r_{g} s_{h}\left(M_{1} \times M_{2}\right) \subseteq N_{1} \times M_{2}$. Therefore, $N_{1} \times M_{2}$ is a graded 2-absorbing I_{e}-prime submodule of $M_{1} \times M_{2}$.
(ii) The proof is similar to that in part (i).

Acknowledgments

We would like to thanks the honorable reviewers for their valuable comments and suggestions, which are really helpful to enrich the quality of our paper. Furthermore, we are grateful to the journal authority for their proper judgements and kind consideration

Conflict of interest

The authors declare that they have no any competing interests

References

1. K. Al-Zoubi, Some properties of graded 2-prime submodules, Asian-European Journal of Mathematics, 8 (2015), 1550016.
2. K. Al-Zoubi, R. Abu-Dawwas, On graded quasi-prime submodules, Kyungpook Mathematical Journal, 55 (2015), 259-266.
3. K. Al-Zoubi, R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, Journal of mathematical sciences: advances and applications, 28 (2014), 45-60.
4. K. Al-Zoubi, R. Abu-Dawwas, S. Çeken, On graded 2-absorbing and graded weakly 2-absorbing ideals, Hacet. J. Math. Stat., 48 (2019), 724-731.
5. K. Al-Zoubi, M. Al-Azaizeh, On graded classical 2-absorbing submodules of graded modules over graded commutative rings, Rend. Istit. Mat. Univ. Trieste, 50 (2018), 37-46.
6. K. Al-Zoubi, M. Al-Azaizeh, On graded weakly 2-absorbing primary submodules, Vietnam J. Math., 47 (2019), 297-307.
7. K. Al-Zoubi, M. Al-Azaizeh, Some properties of graded 2-absorbing and graded weakly 2absorbing submodules, J. Nonlinear Sci. Appl., 12 (2019), 503-508.
8. K. Al-Zoubi, I. Al-Ayyoub, M. Al-Dolat, On graded 2-absorbing compactly packed modules, Adv. Stud. Contemp. Math. (Kyungshang), 28 (2018), 479-486.
9. K. Al-Zoubi, A. Al-Qderat, Some properties of graded comultiplication modules, Open Math., $\mathbf{1 5}$ (2017), 187-192.
10. K. Al-Zoubi, M. Jaradat, R. Abu-Dawwas, On graded classical prime and graded prime submodules, B. Iran. Math. Soc., 41 (2015), 217-225.
11. K. Al-Zoubi, F. Qarqaz, An Intersection condition for graded prime submodules in Grmultiplication modules, Math. Rep., 20 (2018), 329-336.
12. K. Al-Zoubi, B. Rabab'a, Some properties of graded prime and graded weakly prime submodules, FJMS., 102 (2017), 1613-1624.
13. S. Alghueiri, K. Al-Zoubi, On graded I_{e}-prime submodules of graded modules over graded commutative rings, Preprint.
14. S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., 33 (2006), 3-7.
15. A. Badawi, On 2-absorbing ideals of commutative rings, B. Aust. Math. Soc., 75 (2007), 417-429.
16. E. Y. Celikel, On graded 2-absorbing primary submodules, International Journal of Pure and Applied Mathematics, 109 (2016), 869-879.
17. A. Y. Darani, F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, Thai Journal of Mathematics, 9 (2012), 577-584.
18. F. Farshadifar, 2-absorbing I-prime and 2-absorbing I-second submodules, Algebraic Structures and Their Applications, 6 (2019), 47-55.
19. R. Hazrat, Graded Rings and Graded Grothendieck Groups, Cambridge University Press, 2016.
20. C. Nastasescu, F. Van Oystaeyen, Graded and filtered rings and modules, Springer-Verlag, Berlin Heidelberg, 1979.
21. C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, Mathematical Library, 1982.
22. C. Nastasescu, F. Van Oystaeyen, Methods of Graded Rings, Springer, 2004.
23. K. H. Oral, Ü. Tekir, A. G. Ağargün, On graded prime and primary submodules, Turk. J. Math., 35 (2011), 159-167.
24. S. Payrovi, S. Babaei, On 2-absorbing submodules, Algebr. Colloq., 19 (2012), 913-920.
25. M. Refai, K. Al-Zoubi, On graded primary ideals, Turk. J. Math., 28 (2004), 217-230.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
