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1. Introduction and preliminaries

Throughout this paper all rings are commutative with identity and all modules are unitary.
Badawi in [15] introduced the concept of 2-absorbing ideals of commutative rings. The notion of

2-absorbing ideals was extended to 2-absorbing submodules in [17] and [24]. Recently, Farshadifar
in [18] introduced and studied the concept of 2-absorbing I-prime submodules.

Refai and Al-Zoubi in [25] introduced the concept of graded primary ideal. The concept of graded 2-
absorbing ideal was introduced and studied by Al-Zoubi, Abu-Dawwas and Ceken in [4]. The concept
of graded prime submodule was introduced and studied by many authors, see for example [1,2,10–12,
14, 23]. The concept of graded 2-absorbing submodule, generalizations of graded prime submodule,
was introduced by Al-Zoubi and Abu-Dawwas in [3] and studied in [7, 8]. Then many generalizations
of graded 2-absorbing submodules were studied such as graded 2-absorbing primary (see [16]), graded
weakly 2-absorbing primary (see [6]) and graded classical 2-absorbing (see [5]). Recently, Alghueiri
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and Al-Zoubi in [13] introduced the concept of graded Ie-prime submodule over a commutative ring
as a new generalization of graded prime submodule. Here, we introduce the concept of graded 2-
absorbing Ie-prime submodule as a new generalization of a graded 2-absorbing prime submodule on
the one hand and a generalization of a graded Ie-prime submodule on other hand.

First, we recall some basic properties of graded rings and modules which will be used in the sequel.
We refer to [19–22] for these basic properties and more information on graded rings and modules.

Let G be an abelian multiplicative group with identity element e. A ring R is called a graded ring
(or G-graded ring) if there exist additive subgroups Rh of R indexed by the elements h ∈ G such that
R = ⊕h∈GRh and RgRh ⊆ Rgh for all g, h ∈ G. The non-zero elements of Rh are said to be homogeneous
of degree h and all the homogeneous elements are denoted by h(R), i.e., h(R) = ∪h∈GRh. If a ∈ R,
then a can be written uniquely as

∑
h∈G ah, where ag is called a homogeneous component of a in Rh.

Moreover, Re is a subring of R and 1 ∈ Re (see [22]). Let R = ⊕h∈GRh be a G-graded ring. An ideal J
of R is said to be a graded ideal if J =

∑
h∈G(J ∩ Rh) :=

∑
h∈G Jh (see [22]).

Let R = ⊕h∈GRh be a G-graded ring. A left R-module M is said to be a graded R-module (or G-
graded R-module) if there exists a family of additive subgroups {Mh}h∈G of M such that M = ⊕h∈G Mh

and RgMh ⊆ Mgh for all g, h ∈ G. Also if an element of M belongs to ∪h∈G Mh = h(M), then it is called
a homogeneous. Note that Mh is an Re-module for every h ∈ G. Let R = ⊕h∈GRh be a G-graded ring. A
submodule N of M is said to be a graded submodule of M if N = ⊕h∈G(N∩Mh) := ⊕h∈GNh. In this case,
Nh is called the h-component of N. Moreover, M/N becomes a G-graded R-module with h-component
(M/N)h := (Mh + N)/N for h ∈ G (see [22]).

2. Results

Definition 2.1. Let R be a G-graded ring, M a graded R-module, I = ⊕g∈GIg a graded ideal of R,
N = ⊕g∈GNg a graded submodule of M and g ∈ G.

(i) We say that Ng is a g-2-absorbing Ie-prime submodule of the Re-module Mg, if Ng , Mg; and
whenever re, se ∈ Re and mg ∈ Mg with resemg ∈ Ng\IeNg, implies either rese ∈ (Ng :Re Mg) or
remg ∈ Ng or semg ∈ Ng.

(ii) We say that N is a graded 2-absorbing Ie-prime submodule of M, if N , M; and whenever
rh, sλ ∈ h(R) and mα ∈ h(M) with rhsλmα ∈ N\IeN, implies either rhsλ ∈ (N :R M) or rhmα ∈ N or
sλmα ∈ N.

Proposition 2.2. Let R be a G-graded ring, M a graded R-module, I = ⊕g∈GIg a graded ideal of R and
N = ⊕g∈GNg a graded submodule of M. If N is a graded 2-absorbing Ie-prime submodule of M, then
for any g ∈ G with Ng , Mg, Ng is a g-2-absorbing Ie-prime submodule of the Re-module Mg.

Proof. Let re, se ∈ Re and mg ∈ Mg such that resemg ∈ Ng\IeNg, so resemg ∈ N\IeN and then either
rese ∈ (N :R M) or remg ∈ N or semg ∈ N as N is a graded 2-absorbing Ie-prime submodule of M.
Since Mg ⊆ M and Ng = N∩Mg, we conclude that either rese ∈ (Ng :Re Mg) or remg ∈ Ng or semg ∈ Ng.

Therefore, Ng is a g-2-absorbing Ie-prime submodule of Mg. �

Recall from [3] that a proper graded submodule N of a graded R-module M is said to be a graded
weakly 2-absorbing submodule of M if whenever rg, sh ∈ h(R) and mλ ∈ h(M) with 0 , rgshmλ ∈ N,
then either rgmλ ∈ N or shmλ ∈ N or rgsh ∈ (N :R M).
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Remark 2.3. Let R be a G-graded ring, M a graded R-module and I = ⊕g∈GIg a graded ideal of R.
If I = (0), then the notion of graded 2-absorbing Ie-prime submodule is exactly the notion of graded
weakly 2-absorbing submodule.

Recall from [3] that a proper graded submodule N of a graded R-module M is said to be a graded
2-absorbing submodule of M if whenever rg, sh ∈ h(R) and mλ ∈ h(M) with rgshmλ ∈ N, then either
rgmλ ∈ N or shmλ ∈ N or rgsh ∈ (N :R M).

It is easy to see that every graded 2-absorbing submodule is a graded 2-absorbing Ie-prime
submodule. The following example shows that the converse is not true in general.

Example 2.4. Let G = Z2 and R = Z be a G-graded ring with R0 = Z and R1 = {0}. Let M = Z12

be a graded R-module with M0 = Z12 and M1 = {0̄}. Now, consider the graded submodule N = (0̄) of
M, then N is not a graded 2-absorbing submodule of M since 2̄ · 2̄ · 3̄ ∈ N and neither 2̄ · 3̄ ∈ N nor
2̄ · 2̄ ∈ (N :Z Z12). However, for any graded ideal I = ⊕g∈GIg of R, N is a graded 2-absorbing Ie-prime
submodule of M.

Let R be a G-graded ring, M a graded R-module and I = ⊕g∈GIg a graded ideal of R. Recall from [13]
that a proper graded submodule N of M is said to be a graded Ie-prime submodule of M if whenever
rh ∈ h(R) and mλ ∈ h(M) with rhmλ ∈ N − IeN, implies either mλ ∈ N or rh ∈ (N :R M).

It is easy to see that every graded Ie-prime submodule is a graded 2-absorbing Ie-prime submodule.
The following example shows that the converse is not true in general.

Example 2.5. Let G = Z2 and R = Z be a G-graded ring with R0 = Z and R1 = {0}. Let M = Z be
a graded R-module with M0 = Z and M1 = {0}. Now, consider the graded ideal I = 2Z of R and the
graded submodule N = 4Z of M. Then N is not a graded Ie-prime submodule of M since 2 · 2 ∈ 4Z\8Z
and neither 2 ∈ 4Z nor 2 ∈ (4Z :Z Z). However, easy computations show that N is a graded 2-absorbing
submodule of M and then a graded 2-absorbing Ie-prime.

Let R be a G-graded ring, M a graded R-module, N = ⊕g∈GNg a graded submodule of M and g ∈ G.
Recall from [3] that Ng is said to be a g-2-absorbing submodule of the Re-module Mg if Ng , Mg; and
whenever r, s ∈ Re and m ∈ Mg with rsm ∈ Ng, then either rs ∈ (Ng :Re Mg) or rm ∈ Ng or sm ∈ Ng.

Theorem 2.6. Let R be a G-graded ring, M a graded R-module, I = ⊕g∈GIg a graded ideal of R and
N = ⊕g∈GNg a graded 2-absorbing Ie-prime submodule of M. Then for any g ∈ G with Ng , Mg, either
Ng is g-2-absorbing submodule of the Re-module Mg or (Ng :Re Mg)2Ng ⊆ IeNg.

Proof. Let g ∈ G with Ng , Mg. Then Ng is a g-2-absorbing Ie-prime submodule of the Re-module Mg

by Proposition 2.2. Suppose that (Ng :Re Mg)2Ng * IeNg. Now, let re, se ∈ Re and mg ∈ Mg such that
resemg ∈ Ng. If resemg < IeNg, then either rese ∈ (Ng :Re Mg) or remg ∈ Ng or semg ∈ Ng as Ng is a
g-2-absorbing Ie-prime submodule of the Re-module Mg. So now we can assume that resemg ∈ IeNg.
First, suppose that reseNg * IeNg, so there exists ng ∈ Ng such that reseng < IeNg and it follows that
rese(mg + ng) ∈ Ng\IeNg. Then we get either rese ∈ (Ng :Re Mg) or re(mg + ng) ∈ Ng or se(mg + ng) ∈ Ng

as Ng is a g-2-absorbing Ie-prime submodule of Mg. Hence, either rese ∈ (Ng :Re Mg) or remg ∈ Ng

or semg ∈ Ng. Now, we may assume that reseNg ⊆ IeNg. If re(Ng :Re Mg)mg * IeNg, then there exists
te ∈ (Ng :Re Mg) such that retemg < IeNg. This yields that re(se+te)mg ∈ Ng\IeNg and then we have either
re(se + te) ∈ (Ng :Re Mg) or remg ∈ Ng or (se + te)mg ∈ Ng as Ng is a g-2-absorbing Ie-prime submodule
of the Re-module Mg. Thus, either rese ∈ (Ng :Re Mg) or remg ∈ Ng or semg ∈ Ng. We get the same
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result if se(Ng :Re Mg)mg * IeNg, so assume that re(Ng :Re Mg)mg ⊆ IeNg and se(Ng :Re Mg)mg ⊆ IeNg.
Now, since (Ng :Re Mg)2Ng * IeNg, there exist r′e, s

′
e ∈ (Ng :Re Mg) and n′g ∈ Ng with r′es′en

′
g < IeNg.

If res′en
′
g < IeNg, then re(se + s′e)(mg + n′g) ∈ Ng\IeNg implies that either re(se + s′e) ∈ (Ng :Re Mg) or

re(mg + n′g) ∈ Ng or (se + s′e)(mg + n′g) ∈ Ng. Hence, either rese ∈ (Ng :Re Mg) or remg ∈ Ng or semg ∈ Ng.
Now, assume that res′en

′
g ∈ IeNg. Similarly, assume that r′es′emg ∈ IeNg and r′esen′g ∈ IeNg. Then from

(re + r′e)(se + s′e)(mg + n′g) ∈ Ng\IeNg, we get (re + r′e)(se + s′e) ∈ (Ng :Re Mg) or (re + r′e)(mg + n′g) ∈ Ng

or (se + s′e)(mg + n′g) ∈ Ng and it follows that either rese ∈ (Ng :Re Mg) or remg ∈ Ng or semg ∈ Ng.
Therefore, Ng is a g-2-absorbing submodule of the Re-module Mg. �

Theorem 2.7. Let R be a G-graded ring, M a graded R-module, I = ⊕g∈GIg a graded ideal of R,
N a graded 2-absorbing Ie-prime submodule of M and K = ⊕λ∈GKλ a graded submodule of M. If
rg, sh ∈ h(R) and λ ∈ G with rgshKλ ⊆ N and 2rgshKλ * IeN, then either rgsh ∈ (N :R M) or rgKλ ⊆ N
or shKλ ⊆ N.

Proof. Suppose that rgsh < (N :R M). Now, let kλ1 ∈ Kλ. If rgshkλ1 < IeN, then either rgkλ1 ∈ N or
shkλ1 ∈ N as N is a graded 2-absorbing Ie-prime submodule of M and rgsh < (N :R M), which yields
that kλ1 ∈ (N :M rg) ∪ (N :M sh). Now, we can assume that rgshkλ1 ∈ IeN. Since 2rgshKλ * IeN, there
exists kλ2 ∈ Kλ such that 2rgshkλ2 < IeN and then rgshkλ2 ∈ N\IeN. Hence, we get either rgkλ2 ∈ N or
shkλ2 ∈ N as N is a graded 2-absorbing Ie-prime and rgsh < (N :R M). Also, rgsh(kλ1 + kλ2) ∈ N\IeN
implies either rg(kλ1 + kλ2) ∈ N or sh(kλ1 + kλ2) ∈ N. Hence, we consider three cases.

Case 1: rgkλ2 ∈ N and shkλ2 ∈ N. Then rg(kλ1 + kλ2) ∈ N or sh(kλ1 + kλ2) ∈ N implies either rgkλ1 ∈ N
or shkλ1 ∈ N.

Case 2: rgkλ2 ∈ N and shkλ2 < N. Assume that rgkλ1 < N. Then rg(kλ1 + kλ2) < N and so
sh(kλ1 + kλ2) ∈ N. Thus, rg(kλ1 + 2kλ2) < N and sh(kλ1 + 2kλ2) < N. Now, we get rgsh(kλ1 + 2kλ2) ∈ IeN
as N is a graded 2-absorbing Ie-prime submodule of M and rgsh < (N :R M), and so 2rgshkλ2 ∈ IeN, a
contradiction. Thus, rgkλ1 ∈ N.

Case 3: rgkλ2 < N and shkλ2 ∈ N. Then the proof is similar to that of Case 2. Therefore, Kλ ⊆ (N :M

rg) ∪ (N :M sh) and then either rgKλ ⊆ N or shKλ ⊆ N. �

Theorem 2.8. Let R be a G-graded ring, M a graded R-module, I = ⊕g∈GIg a graded ideal of R and N a
graded 2-absorbing Ie-prime submodule of M. Let J = ⊕h∈G Jh be a graded ideal of R and K = ⊕λ∈GKλ

a graded submodule of M. If rg ∈ h(R) and h, λ ∈ G with rgJhKλ ⊆ N and 4rgJhKλ * IeN, then either
rgJh ⊆ (N :R M) or rgKλ ⊆ N or JhKλ ⊆ N.

Proof. Suppose that rgJh * (N :R M) and rgKλ * N. Now, since rgJh * (N :R M), there exists
jh1 ∈ Jh such that rg jh1 < (N :R M). Also, since 4rgJhKλ * IeN, there exists jh2 ∈ Jh such that
4rg jh2 Kλ * IeN and then 2rg jh2 Kλ * IeN. Now, let jh ∈ Jh, if 2rg jhKλ * IeN, then by Theorem 2.7,
we get jh ∈ ((N :R M) :R rg) ∪ (N :R Kλ) as N is a graded 2-absorbing Ie-prime submodule of M.
So we can assume that 2rg jhKλ ⊆ IeN. If 4rg jh1 Kλ * IeN, then 2rg jh1 Kλ * IeN. Thus jh1 Kλ ⊆ N by
Theorem 2.7 as N is a graded 2-absorbing Ie-prime submodule of M. So, 2rg( jh+ jh1)Kλ * IeN implies
that jh + jh1 ∈ ((N :R M) :R rg) ∪ (N :R Kλ). Assume that jh + jh1 ∈ ((N :R M) :R rg)\(N :R Kλ) then
consider 2rg( jh + jh1 + jh1)Kλ = 2rg jhKλ + 4rg jh1 Kλ * IeN, which yields that jh + jh1 + jh1 ∈ ((N :R

M) :R rg) ∪ (N :R Kλ). But jh1 Kλ ⊆ N and ( jh + jh1)Kλ * N implies that ( jh + jh1 + jh1)Kλ * N, also
rg jh1 < (N :R M) and rg( jh + jh1) ∈ (N :R M) implies that rg( jh + jh1 + jh1) < (N :R M), a contradiction.
Hence, jh + jh1 ∈ (N :R Kλ). Thus jhKλ ⊆ N since jh1 Kλ ⊆ N. Similarly, if rg jh2 < (N :R M), then we
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get the result in the same manner. So now we can assume that rg jh2 ∈ (N :R M) and 4rg jh1 Kλ ⊆ IeN.
Thus, 4rg( jh1 + jh2)Kλ * IeN, then 2rg( jh1 + jh2)Kλ * IeN. It follows that ( jh1 + jh2)Kλ ⊆ N by
Theorem 2.7 as N is a graded 2-absorbing Ie-prime submodule of M and rg( jh1 + jh2) < (N :R M).
So, 2rg( jh + ( jh1 + jh2))Kλ * IeN implies that jh + ( jh1 + jh2) ∈ ((N :R M) :R rg) ∪ (N :R Kλ).
Assume that jh + ( jh1 + jh2) ∈ ((N :R M) :R rg)\(N :R Kλ) then consider 2rg( jh + 2( jh1 + jh2))Kλ =

2rg jhKλ + 4rg( jh1 + jh2)Kλ * IeN, which yields that jh + 2( jh1 + jh2) ∈ ((N :R M) :R rg) ∪ (N :R Kλ).
But ( jh1 + jh2)Kλ ⊆ N and ( jh + ( jh1 + jh2))Kλ * N implies that ( jh + 2( jh1 + jh2))Kλ * N, also
rg( jh1 + jh2) < (N :R M) and rg( jh + ( jh1 + jh2)) ∈ (N :R M) implies that rg( jh + 2( jh1 + jh2)) < (N :R M),
a contradiction. Hence, jh + ( jh1 + jh2) ∈ (N :R Kλ). Thus jhKλ ⊆ N since ( jh1 + jh2)Kλ ⊆ N. Therefore,
Jh ⊆ ((N :R M) :R rg) ∪ (N :R Kλ) and then rgJh ⊆ (N :R M) or JhKλ ⊆ N, but rgJh * (N :R M), so
JhKλ ⊆ N. �

Theorem 2.9. Let R be a G-graded ring, M a graded R-module, I = ⊕g∈GIg be a graded ideal of R and
N a proper graded submodule of M. Then the following statements are equivalent:

(i) N is a graded 2-absorbing Ie-prime submodule of M.

(ii) N/IeN is a graded weakly 2-absorbing submodule of M/IeN.

Proof. (i) ⇒ (ii) Suppose that N is a graded 2-absorbing Ie-prime submodule of M. Now, let rg, sh ∈

h(R) and (mλ+IeN) ∈ h(M/IeN) with 0M/IeN , (rgshmλ+IeN) ∈ N/IeN, this yields that rgshmλ ∈ N\IeN.
Hence, either rgmλ ∈ N or shmλ ∈ N or rgshM ⊆ N as N is a graded 2-absorbing Ie-prime submodule
of M. Then either (rgmλ + IeN) ∈ N/IeN or (shmλ + IeN) ∈ N/IeN or rgsh(M/IeN) ⊆ N/IeN. Therefore,
N/IeN is a graded weakly 2-absorbing submodule of M/IeN.

(i)⇒ (ii) Suppose that N/IeN is a graded weakly 2-absorbing submodule of M/IeN. Let rg, sh ∈ h(R)
and mλ ∈ h(M) such that rgshmλ ∈ N\IeN. This follows that 0M/IeN , (rgshmλ+ IeN) = rgsh(mλ+ IeN) ∈
N/IeN. Thus, either rgsh ∈ (N/IeN :R M/IeN) or (rgmλ + IeN) ∈ N/IeN or (shmλ + IeN) ∈ N/IeN and
then either rgsh ∈ (N :R M) or rgmλ ∈ N or shmλ ∈ N. Therefore, N is a graded 2-absorbing Ie-prime
submodule of M. �

Recall from [9] that a graded zero-divisor on a graded R-module M is an element rg ∈ h(R) for
which there exists mh ∈ h(M) such that mh , 0 but rgmh = 0. The set of all graded zero-divisors on M
is denoted by G-ZdvR(M).

The following result studies the behavior of graded 2-absorbing Ie-prime submodules under
localization.

Theorem 2.10. Let R be a G-graded ring, M a graded R-module, S ⊆ h(R) be a multiplicatively closed
subset of R and I = ⊕g∈GIg a graded ideal of R.

(i) If N is a graded 2-absorbing Ie-prime submodule of M with (N :R M) ∩ S = ∅, then S −1N is a
graded 2-absorbing Ie-prime submodule of S −1M.

(ii) If S −1N is a graded 2-absorbing Ie-prime submodule of S −1M with S ∩G-ZdvR(M/N) = ∅, then
N is a graded 2-absorbing Ie-prime submodule of M.

Proof. (i) Since (N :R M) ∩ S = ∅, S −1N is a proper graded submodule of S −1M. Let rg

s1
, sh

s2
∈ h(S −1R)

and mλ

s3
∈ h(S −1M) such that rg

s1

sh
s2

mλ

s3
∈ S −1N\IeS −1N. Then there exists t ∈ S such that trgshmλ ∈ N\IeN
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which yields that either trgmλ ∈ N or tshmλ ∈ N or rgsh ∈ (N :R M) as N is a graded 2-absorbing
Ie-prime submodule of M. Hence, either rgmλ

s1 s3
=

trgmλ

ts1 s3
∈ S −1N or shmλ

s2 s3
= tshmλ

ts2 s3
∈ S −1N or rg sh

s1 s2
∈ S −1(N :R

M) = (S −1N :S −1R S −1M). Therefore, S −1N is a graded 2-absorbing Ie-prime submodule of S −1M.
(ii) Let rg, sh ∈ h(R) and mλ ∈ h(M) such that rgshmλ ∈ N\IeN. Then rg

1
sh
1

mλ

1 ∈ S −1N\IeS −1N.
Since S −1N is a graded 2-absorbing Ie-prime submodule of S −1M, either rg

1
mλ

1 ∈ S −1N or sh
1

mλ

1 ∈ S −1N
or rg

1
sh
1 ∈ (S −1N :S −1R S −1M). If rgmλ

1 ∈ S −1N, then there exists t1 ∈ S such that t1rgmλ ∈ N. This
yields that rgmλ ∈ N since S ∩ G-ZdvR(M/N) = ∅. Similarly, if shmλ

1 ∈ S −1N, then there exists
t2 ∈ S such that t2shmλ ∈ N. This yields that shmλ ∈ N since S ∩ G-ZdvR(M/N) = ∅. Now, if
rg sh

1 ∈ (S −1N :S −1R S −1M) = S −1(N :R M), then there exists t3 ∈ S such that t3rgshM ⊆ N and
hence rgsh ∈ (N :R M) since S ∩ G-ZdvR(M/N) = ∅. Therefore, N is a graded 2-absorbing Ie-prime
submodule of M. �

Proposition 2.11. Let R be a G-graded ring, M1 and M2 be two graded R-modules, I = ⊕g∈GIg a
graded ideal of R and N1 and N2 be two graded submodules of M1 and M2, respectively. Then:

(i) If N1 is a graded 2-absorbing Ie-prime submodule of M1, then N1 × M2 is a graded 2-absorbing
Ie-prime submodule of M1 × M2.

(ii) If N2 is a graded 2-absorbing Ie-prime submodule of M2, then M1 × N2 is a graded 2-absorbing
Ie-prime submodule of M1 × M2.

Proof. (i) Suppose that N1 is a graded Ie-prime submodule of M1.Now, let rg, sh ∈ h(R) and (m
λ1 ,mλ2) ∈

h(M1 × M2) such that rgsh(m
λ1 ,mλ2) = (rgshm

λ1 , rgshmλ2) ∈ (N1 × M2)\Ie(N1 × M2) = (N1\IeN1) ×
(M2\IeM2), which follows that rgshm

λ1 ∈ N1\IeN1. Hence, either rgm
λ1 ∈ N1 or shmλ1 ∈ N1 or rgshM1 ⊆

N1 and then either rg(mλ1,mλ2) ∈ N1 × M2 or sh(mλ1,mλ2) ∈ N1 × M2 or rgsh(M1 × M2) ⊆ N1 × M2.

Therefore, N1 × M2 is a graded 2-absorbing Ie-prime submodule of M1 × M2.

(ii) The proof is similar to that in part (i). �
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