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Abstract: In this study, we propose the combination of exponential and ln ratio type estimator to 
estimate the mean of Y (Study Variable) by incorporating two auxiliary variables in two phase 
sampling scheme. Under simple random sampling without replacement, the illustration for mean 
square error and mathematical comparisons are presented. Several approaches are available in 
literature to estimate the study variable by using information on the variable of interest. The 
performance of our proposed estimator is compared with other ratio type estimators theoretically and 
empirically. It is observed that ratio and exponential ratio estimators considered by various 
researchers and usual unbiased estimator is less efficient than our proposed estimator. An efficiency 
comparison is also given using five data sets and simulation studies for checking the merits of our 
proposed estimator and outcomes are sound and moderately illuminating in comparison to different 
estimators. 
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1. Introduction 

The use of survey sampling is useful in solving real world problems in the field of 
environmental changes, engineering, management and biological sciences. For instance, 
environmental sampling is a key tool to verify sources of pollution and adequacy of hygiene process, 
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refining the frequency and intensity of cleaning and sanitation, identifying problem areas, food safety 
validation programs, and to give an early cautioning of issues that may require remedial action. 
Sampling can be conducted to characterize background radiological levels, determine the 
concentration of radionuclides and make recommendations on environmental surveillance for 
agricultural products. Over all, it gives the confirmation that product being made will be made under 
clean conditions.  

In case of forming travelling patterns of a certain city residents it is hard to approach every 
person of the city and ask the information on their travel pattern. A sample data is gathered and based 
on that information the developers try to understand the travel behavior of residents. Likewise, when 
choosing the trademark quality of cement, of a specific blend, data resulting from the tests on a 
sample is used. Similarly, a sample of borehole information is used to find quality soil. The sample is 
representative of population in all the cases and while doing so the representative ability of the 
sample data must be ensured statistically. 

Velasco-Muñoz, et al. [1] reviewed 25 years of researches on sustainable water use in farming. A 
bibliometric examination was established to sample 2084 published articles from 1993 to 2017. 
Results showed that sustainable water used for agriculture attained exponential growth and has turned 
into a worldwide issue. Serbu, et al. [2] collected water samples from four different locations beside 
the Cibin River over a time of a year and applied Multiple-Criteria Decision Analysis strategies for the 
surveying the effect of toxins on the earth.  

Ziemer, et al. [3] discussed that how data is collected and in what way the sample of electrical 
engineering departments is evolved that is used as database. De Mello, et al. [4] proposed theoretical 
framework that contributes to strengthen representativeness of their outcomes, though some key 
problems concerning survey study are still open and deserve attention from Software Engineering 
community. De Mello, et al. [5] described the heterogeneity and members who repeatedly contributed 
to increase the strength of survey’s results. Consequently, De Mello and Travassos [5] believed that 
sharing of this experience, questionnaire and idea can be helpful for scientists interested on executing 
surveys on broader scale in Software Engineering. 

The information retrieved from auxiliary variables has resulted in wide ranging gain in 
performance over estimators which don’t take such information. When the auxiliary variable X is 
available in advance or observed easily and high correlation exists with study variable Y, the use of 
auxiliary information is effective to estimate population mean. In these situations ratio, regression 
and product estimators are good examples to use. Estimation method of regression was used by 
Watson [6] to estimate the mean area of leaves on plant. Cochran [7] proposed ratio method in case 
of strong positive correlation existence between Y and X (study and auxiliary variables). Murthy [8] 
revisited the idea given by Robson [9] that product method of estimation is appropriate if strong 
negative correlation exits between auxiliary and study variables. Srivastava [10] proposed the 
general ratio estimator using a single auxiliary variable and given that population information on this 
variable is not available. Exponential smoothing is one of the forecast methods to recognize 
substantial changes in data by incorporating the most recent information. Given that there are 
numerous different approaches to make forecasts, exponential smoothing is significantly easy to 
learn, forecasts accurately, and its application to recent observations gives this technique an edge over 
others. 

Bahl, et al. [11] proposed exponential product estimator when study variable and auxiliary 
variable are negatively correlated and exponential ratio estimator, in case of positive correlation, 
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exists between Y and X. Numerous authors including Srivastava [10], Hidiroglou [12], Samiuddin, et 
al. [13], Singh, et al. [14], Singh, et al. [15], Hanif, et al. [16], Hanif, et al. [17], Singh, et al. [18], 
Singh, et al. [19],Noor-ul-Amin, et al. [20], Tailor, et al. [21] and Shabbir, et al. [22] have also 
proposed improved ratio and product for estimating the population average of study variable. 
Al-Marshadi, et al. [23] suggested estimator for estimating population variance by using multi 
auxiliary variables. 

Generally, ratio and product estimators are less efficient than the linear regression estimator when 
it passes through the origin. It is observed, in most of the situations, that the regression line does not 
pass through the origin. Considering this fact, Vishwakarma, et al. [24] proposed the ratio product type 
estimator to improve the performance of Singh and Espejo [14] estimator using two auxiliary variables 
under two phase sampling. 

Vishwakarma, et al. [25] proposed generalized class of estimators by using the information of 
multi-auxiliary variables in two-phase sampling scheme and claimed that their generalized class of 
estimators performed well over the Dash, et al. [26] proposed class of estimators.  

Mishra, et al. [27] used log function and proposed a ln-product type estimator for estimating the 
mean value of study variable Y. Akhlaq, et al. [28] proposed an exponential estimator, which is most 
efficient than the previous estimators for estimating the process variability by using auxiliary 
information. 

To estimate the population mean, considering the N population units
 D  D

1
, D

2
, D

3
..........D

N ,
Let y

i
and x

i
,z

i   be the values of study variable Y   and auxiliary variables X ,Y  respectively. 

Population averages are Y  N 1 Y
i
 and 

i1

N

 X  N 1 X
i
  

i1

N

 where Y  is the population mean of study 

variable and  X  is population mean of auxiliary variable.  
Auxiliary information in two-phase sampling proves to be effective in estimating the population 

mean. The first phase estimates the population variable X (auxiliary) in such a manner that when 
information of the auxiliary variable is not available, it then evaluates the second phase. The first 
phase sample selection is known as the primary sample, which is comprised of n

1
n

1
 N units. We 

select a sample from ‘N’ units by applying simple random sampling without replacement (SRSWR) 
technique in the first phase. In some situations, another auxiliary variable Z   is helpful for 

obtaining the information of the first auxiliary variable X and both the variables are observed in the 
first phase sample.  

The essential information is estimated in first phase for the auxiliary variable X before moving 
into the second phase. With the assistance of the auxiliary variable X, the population mean Y  of Y 
is estimated in second phase. To serve this purpose, another sample of SRSWR is sorted out from a 
primary sample of n

2
 units n

2
 n

1   Singh, et al. [29]. The sample size 
 n1

from the population ‘N’ 

is a primary sample. The sample 
 
n
2
from 

 
n
1
is a subsample of our study. 

The classical ratio estimator of population mean Y  under double sampling scheme is given by 
Cochran [30] as:  

          
Y

r
 y

2
x

2 1
x

1 ;x
2
 0  (1.1) 

where y  n1 y
i
 and 

i1

n

 x  n1 x
i
  

i1

n

  
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Upadhyaya, et al. [31] used available information of coefficient of variation and 

coefficient of kurtosis from auxiliary variable and proposed estimator for estimating study 

variable  Y as: 

          

Y
US
 y

x

x







C
z
Z  

2 Z 
C

z z  
2 Z 













   (1.2) 

The MSE of [31] estimator up to the order o n 1
as: 

MSE YUS   Y 2 f1Cy
2  f2 2

2Cz
2  22CyCz yz   f3 Cx

2  2CyCxxy 



  (1.3) 

A modified version of Bahl and Tuteja [11] exponential ratio estimator given by Singh and 
Vishwakarma [15] as: 

           
Y

SV
 y

2
exp x

1
 x

2  x
1
 x

2 1





  (1.4) 

where y
2
is the sample mean of study variable in second phase. 

Mean square error of is given as: 

    

MSE Y
SV   Y 2C

y
2 f

2


C
x

4C
y

f
2
 f

1  C
x

C
y

 
xy






















.  (1.5) 

Exponential ratio estimator suggested by Singh, et al. [32] given as: 

          Y
S
 w

0d
y

2
 w

1d
y

rsd
 w

2d
y

rsed
  (1.6) 

where y
2
, y

rsd
 and y

rsed
 w

r
, while w

r
represents the set of all possible ratio-type estimator for 

estimating study variable Y
s
.  

w
id
 1,  t

rsd
 y

2
exp ax

1   b  ax
2   b 1




i0
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t
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 y
2
exp

ax
1   b   ax
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ax

1   b   ax
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




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
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





 

Minimum MSE of Y
S
is given as: 

           
MSE Y

S 
min

 Y 2C
y
2 f

2
 f

2
 f

1  xy
2   (1.7) 

Noor-ul-Amin and Hanif [20] suggested exponential estimator using ratio with product 
technique in double sampling as:  

     
Y

NH
 y

2
exp Z  z

2  Z  z
2 1

 x
1
 x

2  x
1
 x

2 1




. (1.8) 

The expression for min (MSE) of the Y
NH

 is 

Cz 

  


2 z  

Ysv
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MSE Y
NH   Y 2 f

2

4
4C

y
2 C

z
2  4C

y
C

z


yz   f
1

4
C

x
2  4C

y
C

x


xy
 2C

x
C

z


xz 







.  (1.9) 

Sanaullah, et al. [33] suggested modification in Noor-ul-Amin and Hanif [20] estimator using 
two auxiliary variables as: 

Y
SA
 y

2
exp  Z  z

2  Z  z
2 1

 1  x
1
 x

2  x
1
 x

2 1




. (1.10) 

Minimum mean square error of  is 

MSE Y
SA   f

2
Y 2 C

y
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z
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z

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4
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2 
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x

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̂C

x
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z

xz



































.  (1.11) 

Kadilar, et al. [34] incorporates two auxiliary variables in classical regression and proposed a 
new linear regression estimator as: 

        
Y

kc
 y  b

xy
X  x   b

zy
Z  z   (1.12) 

The mean square error of Y
kc is given as: 

      MSE Y
kc   f

1
Y 2C

y
2 1 

xy
2  

zy
2  2

xy


zy


xz    (1.13) 

where regression coefficients are bxy 
s

xy

sx
2

 and bzy 
s

zy

sz
2

respectively. 

Where  

 
 f
1
 n

1
1 N 1  ,  f2  n

2
1 N 1  , f2  f1   f3  n

2
1 n

1
1   

The coefficient of variation  is Cx  sx X 1
, Y  is C

y
 s

y
Y 1

 and Z is Cz  sz Z 1

while correlation coefficient of Y , X   is 
 

yx
 s

xy
s
x
s
y 1 ,  is Y ,Z   	


yz
 s

yz
s
y
s
z 1  and 

X ,Z  is   

 
The estimators given above are used for estimating mean of study variable in different 

conditions. The main purpose of this article is to suggest an improved exponential estimator of ratio 
type and explores its properties. A ln function and two auxiliary variables are used with in proposed 
estimator and discussed in following section. Third section is comprised of mathematical illustration 
of suggested estimator and it’s comparison with some existing estimators 

 Y ,YS ,YSV ,YNH  and  Y
SA
. In 

section four empirical study is carried out while conclusion is being discussed in last section. 

2. Materials and method 

Motivated by Cekim, et al. [35], who proposed ratio estimator using ln function for estimation of 
population variance, We propose a new estimator by combining the exponential and ln ratio terms 
using the information of two auxiliary variables Z and X in two-phase sampling for estimating 

YSA

X
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population mean . Let n
1
 and n

2
 n

1
 be the sample sizes of first and second phase respectively, 

while an unbiased estimator of  Z  be z
1
*  NZ  n

1
z

1   N  n
1  , as suggested by Bandyopadhyay 

[36] and Srivenkataramana [37]. The proposed estimator is given as: 

      

 

Y
g

1 **  y
2
exp 

1

Z  z
1


Z  z
1

























2
ln

x
1

x
2






















.   (2.1) 

where 
1
, 

2
 are optimization constants and are used to minimize the mean square error while z *

introduces as transformed variable. The “ln” function has been introduced to control the variability of 
ratio for first and second phase variables while exponential function on ratio of transformed variables 
also helps to reduce the estimator’s mean square errors. The properties of the propose estimator can 
be studied by considering

  
y  Y  e

y ,x  X  e
x and  z  Z  e

z 
 

Putting y  Y  e
y ,x  X  e

x and  z  Z  e
z   and 

 
z
1
in Eq (2.1), we get 

 	

Y
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2
exp 

1
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1
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1
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after simplification we have 

 	

Y
g

1 **  Y e
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1

1
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z

Z
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
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
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For obtaining the MSE of the suggested estimator 
 
Y
g

1 ** ,we write 
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2
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y
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
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Expanding the right side of (2.1) in term of e’s and on further simplification to the first degree of 

approximation, we have 

Y
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Y
g
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 (2.2) 

taking square on both sides and apply expectation 
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where 
 1
*  and 

 2
*  are optimum values of 

1
 and 

2
 respectively and are determined using 

differential calculus, we get 
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using optimum values of and , the minimum MSE of proposed estimator is obtained as:    

 
minMSE Ŷ

g

1 **



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2
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2.1. Comparing mathematically with some existed estimators 

In this section, we compared our proposed estimator 
 
Y
g

1 **  with some of existed estimators. The 

comparison has been made in terms of the mean square errors and we have obtained some conditions 
under which our proposed estimator has smaller minimum MSE as compared to some already existing 
estimators. These comparisons are: 

Case I 

 

MSE Ŷ
sv  MSE Ŷ

g

1 **





Ŷ
g

1 **  is more efficent than Ŷ
sv

 

 

iff

f
1

K 2

4
 

xy
1K 





 f

2

K 2

4
 

xy
1K  2

yz







0   

where  K 
C
x

4C
y

  (2.5) 

Case II 

 
MSE Ŷ

s  MSE Ŷ
g

1 **




 f

1

yz 2 0  

Case III 

1
* 2

*

Yg
1 **
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MSE Ŷ
NH  MSE Ŷ

g

1 **





iff

 

 

f
1

C
x
2

4
C

x
C
y

xy

1
2
C
z

xz







C

y
2 

xy
2  

yz
2 







 

f
2

C
z
2

4
C

y
C
z

yz
C

y

xy
2 







 0





















  (2.6) 

Case IV 

 
MSE Ŷ

SA  MSE Ŷ
g

1 **





 

 

f
1
1̂  Cx

1̂ 
4

C
x
C

y

xy
̂C

z

xz










C

y
2 

xy
2  

yz
2 














f
2
̂C

z
2 2C

y
C
z

yz
C

y
2

xy
2 



















0  (2.7) 

 
If the above given expressions are not met then estimators 

 Y ,YS ,YSV ,YNH  and  Y
SA

 are more 

efficient than the suggested estimator 
 
Y
g

1 ** . 

3. Results 

In this section some real populations available in literature have been selected for empirical study 

to obtain mean square error and relative efficiency of our proposed estimator Ŷ
g

1 **

.
 
For checking the 

performance of suggested estimator the following real data sets have been used. 
 Sugar Cane Disease “coal of sugar-cane” (This is a disease that is common in sugar-cane 

plantations in certain areas of Brazil) 
 Soil Compositions of Physical and Chemical Characteristics 
 Appliances energy prediction Data Set 
 Ozone (The data is monthly ozone averages on a very coarse 24 by 24 grid covering Central 

America, from Jan 1995 to Dec 2000) 
 Combined Cycle Power Plant Data Set (The voltage output of engines was measured at various 

combinations of blade speed and sensor extension) 

The comparison of our suggested estimator has been made with the conventional unbiased 

estimators
 
Y ,Y

S
,Y
SV
,Y
NH

 and  Y
SA

. The depiction of variables for each population is given below: 
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Table 1. Description of variables. 

Pop. Y X Z Populations Sources 

1 The number of 

pieces of the stems, 

out of 50, planted in 

each plot. 

The number of 

diseased shoots. 

The total number of 

shoots in each plot. 

The data were kindly supplied by Dr. 

C.G.B. Demetrio of Escola Superior de 

Agricultura, Universidade de Sao Paolo, 

Brazil 

2 Conductivity Magnesium in 

me/100gm 

Bulk density in gm Khattree, R., and Naik, D. N. 

(2000) Multivariate Data Reduction and 

Discrimination with SAS Software. SAS 

Institute. 

3 Random variable 

non-dimensional 

Pressure (from 

Chievres weather 

station), in mm Hg 

Humidity outside 

(from Chievres 

weather station) 

University of Mons (UMONS). 

4 Ozone  Radiation Temperature Bruntz, S. M., W. S. Cleveland, B. Kleiner, 

and J. L. Warner. (1974). The Dependence 

of Ambient Ozone on Solar Radiation, 

Wind, Temperature, and Mixing Height. 

In Symposium on Atmospheric Diffusion 

and Air Pollution, pages 125–128. 

American Meterological Society, Boston. 

5 Net hourly 

electrical energy 

output 

Ambient Pressure 

(AP) in the range 

992.89-1033.30 

milibar 

Relative Humidity 

(RH) in the range 

25.56% to 100.16% 

Faculty of Engineering, Namık Kemal 

University, Turkey 

 
The following Table 2 depicts the values of means, CV and correlations coefficient, which are 

essential to estimate the mean square error. 

Table 2. Means, CV and coefficient of correlations for populations. 

Pop. N  n
1 n

2
  X   Y  Z  C

y
 C

x
 C

z
 

xy
 

yz
 

xz
 

1 180 79 33 11.94 20.26 118.14 1.21 0.54 0.37 0.08 0.34 0.40 

2 48 21 15 8.4646 6.5885 1.3158 0.5989 0.1599 0.1653 0.5083 0.7626 0.4901 

3 19735 9000 5000 79.7 24.9 42.9 0.580 0.186 0.121 0.020 0.004 0.4873 

4 111 37 17 184.80 42.099 77.792 0.7868 0.4910 0.1219 0.3483 0.6985 0.2940 

5 9571 1000 700 1013.2 454.3 73.3 0.037 0.005 0.199 0.514 0.389 0.099 

 
The percent relative efficiency formula for calculating efficiencies is given as,

PRE ., y   MSE y 
MSE .  100   where .   Y ,Y

S
,Y

SV
,Y

NH
,Y

SA
 and  Y

g

1 **

 

Table 3 shows relative efficiencies of already developed and our proposed estimator.  
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Table 3. Relative efficiencies.  

S.# Estimators Pop1 Pop2 Pop3 Pop4 Pop5 

1 Ŷ  
100.000 100.000 100.000 100.000 100.000 

2 Ŷ
SV

 * 100.6738 * * 169.3055 

3 Ŷ
S

 100.4436 112.0270 100.025 108.3955 184.5887 

4 Ŷ
NH

 107.1621 122.0960 * 107.1865 * 

5 Ŷ
SA

 113.6877 147.9260 102.0920 143.2637 150.0283 

6 Ŷ
kc  

465.0547 301.3585 247.1565 322.2064 238.6583 

7 Ŷ
g

1 **

 502.5515 355.1199 247.3330 390.9441 279.0334 

   * Percent Relative Efficiency is less than 100. 

It is observed in Table 3 that most of the proposed estimators give more efficient results than the 
classical ratio estimator. The relative efficacies table clearly indicated that our proposed estimator 

Ŷ
g

1 **  
is more efficient than 

 
Y ,Y

S
,Y
SV
,Y
NH

 and  Y
SA
. 

3.1. Simulation results 

The simulation study has been steered by generating random populations from a bivariate normal 
distribution. For this simulation study, a random population of size 50000 was generated, for auxiliary 
variables X and Z, from standard bivariate normal distribution. Using these auxiliary variables, the 
study variable Y was generated by using i i i iY X Z e   , where ie  is  0,1N . From this population 

two phase samples were generated by using three different first phase and second phase samples as for 
simulation I 20% of 50000 and then 50% of 10000 n

1
 10000,n

2
 5000 , for simulation II 10% of 

50000 and then 40% of 5000 n
1
 5000,n

2
 2000  and for simulation III 25% of 50000 and then 30% 

of 12500 n
1
 12500,n

2
 3750   

respectively. For each of the sample various estimators were 

computed. The procedure was repeated for 50000 times and using 50000 values of each estimator, the 
MSE of each estimator was calculated and results are given in Table 4 below. From the results given in 
Table 4, we can see that the simulated mean square error of our proposed estimator is approximately 
half of the mean square of other estimators used in the study for n

1
 5000,n

2
 2000   and 

n
1
 12500,n

2
 3750 . The simulated mean square error of our proposed estimator is approximately 

40% of the mean square error of other estimators for n
1
 10000,n

2
 5000 . From this simulation 

study, we can say that our proposed estimator,  1
gY , will have smaller mean square error while 

estimation of population mean as compared with the other available estimators of population mean. 
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Table 4. Simulation populations. 

Estimators Simulation I 

n
1
 10000

n2  5000
 

Simulation II 

n
1
 5000

n2  2000
 

Simulation III 

n
1
 12500

n2  3750
 

MSE Y
g

1 **   
0.007342740 0.01482553 0.008580045 

MSE Ysv   
0.007763214 0.01609473 0.008786188 

MSE Ys 
 

0.014134104 0.03650642 0.019750622 

MSE YNH   
0.020980778 0.06862683 0.039805696 

MSE YSA  0.021681391 0.07091925 0.041749114 

In Table 4, the mean square error of our proposed estimator and already developed estimators 
have been compared. It is observed from the Table 4 that the MSE of our proposed estimator is 
minimum in all simulated populations, which proves it to be an efficient estimator since the estimator 
with least mean square error is considered to be most effective. 

4. Discussion 

In this study, an exponential ratio type estimator utilizing two auxiliary variables under 
two-phase sampling is suggested. A theoretical comparison of derived estimator is carried out by 

establishing the conditions under which proposed estimator, Ŷ
g

1 **

, will be more efficient than the 

exponential ratio type estimator of Singh and Vishwakarma [29] Ŷ
SV , Singh, et al. [32] Ŷ

S  , 

exponential difference of ratio product estimator of Noor-ul-Amin and Hanif [20] 
  
Ŷ

NH , Sanaullah, 

et al. [33] 
  
Ŷ

SA   and classical regression estimator with two auxiliary variables proposed by Kadilar 

and Cingi [34] 
  
Ŷ

kc  in two phase sampling. We considered real population information as well as 

simulated data to inspect the performance of proposed estimator under two-phase sampling scheme. 
In Table 3, the proposed estimator is compared with some of the existing estimators on the basis of 
their relative efficiencies while Table 4 indicates that the performance of the proposed exponential 
estimator is better than the Singh and Vishwakarma [29], Singh, et al. [32], Noor-ul-Amin and Hanif 
[20] and Sanaullah, et al. [33] for all the simulated populations based on their mean square errors. 
The estimator with higher relative efficiency and least mean square error is considered to be more 
efficient. It can be clearly observed from Table 3 and Table 4 that the relative efficiency of our 
proposed estimator is higher for all real populations and its mean square error is minimum in all 
simulation studies. This proves our proposed estimator to be an efficient estimator. 
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5. Conclusion 

An exponential type ratio estimator in two-phase sampling has been proposed, which obtains 
mean square error by involving two auxiliary variables. The main purpose of this study is to compare 
the efficiency of our proposed estimator with some of the existing exponential estimators. MSE 
equation of our proposed estimator has been derived theoretically and its efficiency has been checked 
through different simulations and datasets of different populations from different fields. The percent 
relative efficacies values obtained from table-3 are (502.5515), (355.1199), (247.3183), (390.9441) 
and (279.0334), which are highest for all the populations proving our proposed estimator to be most 
efficient estimator in this study. Sanaullah, et al. [33] “Ratio Estimator” appears as the second most 
efficient estimator in term of relative efficiencies for all populations except population 5. 
Subsequently, looking on the predominance nature of our proposed estimator, we suggest its use for 
its practical applications especially in the field of environment, engineering and biological sciences. 
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Appendix 

Nomenclature section 

 

Symbols  Description 

  y,x ,z  
Sample means corresponding to the population means  Y , X and  Z respectively 

N  Complete population 

n
1
,n

2
 

Samples sizes Phase one and phase two respectively 


2 z 

  Kurtosis 

C
x
,C

y
,C

z
 

Coefficient of variation of x, y and z 

   Standard deviation 


xy

,
yz

,
xz
  Correlation coefficients between of   , ,Y X      ,  and ,Y Z X Z   respectively 

Simulation Code: 
tyasir1<-c() 
sv01<-c() 
nh12<-c() 
su12<-c() 
us01_2<-c() 
singh1_1<-c() 
kadilar1_1<-c() 
 
tyasir11<-c() 
sv02<-c() 
nh121<-c() 
su121<-c() 
us01_22<-c() 
singh1_11<-c() 
kadilar1_11<-c() 
 
tyasir111<-c() 
sv03<-c() 
nh1211<-c() 
su1211<-c() 
us01_222<-c() 
singh1_111<-c() 
kadilar1_111<-c() 
 
for(m in 1:50000)                    {#loop1 
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x<-(rweibull(50000,0.4,2)) 
z<-(rweibull(50000,0.5,1)) 
ei<-(rnorm(50000,0,1)) 
Y<-x+z+ei 
n1<-0.2*50000 
n2<-0.5*n1 
m1<-0.1*50000 
m2<-0.4*m1 
p1<-0.25*50000 
p2<-0.3*p1 
i<-sample(c(1:50000),n1) 
i<-sort(i) 
x1<-x[i] 
z1<-z[i] 
j<-sample(i,n2) 
x2<-x[j] 
z2<-z[j] 
y<-Y[j] 
k<-sample(c(1:50000),m1) 
k<-sort(k) 
x11<-x[k] 
z11<-z[k] 
l<-sample(k,m2) 
x22<-x[l] 
z22<-z[l] 
y1<-Y[l] 
 
t<-sample(c(1:50000),p1) 
t<-sort(t) 
x111<-x[t] 
z111<-z[t] 
v<-sample(t,p2) 
x222<-x[v] 
z222<-z[v] 
y11<-Y[v] 
 
xbar<-mean(x) 
zbar<-mean(z) 
x1bar<-mean(x1) 
x2bar<-mean(x2) 
z1bar<-mean(z1) 
z2bar<-mean(z2) 
x11bar<-mean(x11) 
x22bar<-mean(x22) 
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z11bar<-mean(z11) 
z22bar<-mean(z22) 
 
x111bar<-mean(x111) 
x222bar<-mean(x222) 
z111bar<-mean(z111) 
z222bar<-mean(z222) 
 
z1st<-(m*z1bar-n1*z2bar)/(m-n1) 
z11st<-(m*z11bar-m1*z22bar)/(m-m1) 
z111st<-(m*z111bar-p1*z222bar)/(m-p1) 
 
ybar<-mean(y) 
y1bar<-mean(y1) 
y11bar<-mean(y11) 
Cy<-(sd(Y)/mean(Y)) 
Cx<-(sd(x)/mean(x)) 
Cz<-(sd(z)/mean(z)) 
Rxy<-cor(x,Y) 
Rzy<-cor(z,Y) 
Rxz<-cor(x,z) 
 
m1a<-Cy*Cz*Rzy 
m2a<-((Cx)^2)/2 
m3a<-Cx*Cy*Rxy 
m4a<-Cx*Cz*Rxz 
m5a<-(Cz)^2 
 
A1<-((1/n1)-(1/m)) 
A2<-((1/n2)-(1/m)) 
 
B1<-((1/m1)-(1/m)) 
B2<-((1/m2)-(1/m)) 
 
C1<-((1/p1)-(1/m)) 
C2<-((1/p2)-(1/m)) 
 
alpha1<-((2*A2*m1a)+(A1*(m2a-m3a-m4a))/(2*A2*m5a)+A1*(m2a-2*m4a)) 
alpha2<-((2*B2*m1a)+(B1*(m2a-m3a-m4a))/(2*B2*m5a)+B1*(m2a-2*m4a)) 
alpha3<-((2*C2*m1a)+(C1*(m2a-m3a-m4a))/(2*C2*m5a)+C1*(m2a-2*m4a)) 
 
theta1<-2*(1-m/n1)*(Cy/Cz)*Rzy 
theta2<-(Cy/Cx)*Rxy 
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theta11<-2*(1-m/m1)*(Cy/Cz)*Rzy 
theta22<-(Cy/Cx)*Rxy 
 
theta111<-2*(1-m/p1)*(Cy/Cz)*Rzy 
theta222<-(Cy/Cx)*Rxy 
 
sv1<-ybar*exp((x1bar-x2bar)/(x1bar+x2bar))# sigh and Vishwakarma (2007) 
nh1<-ybar*exp(((zbar-z2bar)/(zbar+z2bar))-((x1bar-x2bar)/(x1bar+x2bar))) #Noor-ul-Amin & Hanif, 
2012 

su1<-ybar*exp((alpha1*(zbar-z2bar)/(zbar+z2bar))-((1-alpha1)*(x1bar-x2bar)/(x1bar+x2bar))) 
#Sanaullah, Khan, Ali, and Singh (2012) 

si1<-ybar*(x1bar/x2bar)*(zbar+sd(z))/(z1bar+sd(z))   # singh 2001 1 
 
sv11<-y1bar*exp((x11bar-x22bar)/(x11bar+x22bar))# sigh and Vishwakarma (2007) 
nh11<-y1bar*exp(((zbar-z22bar)/(zbar+z22bar))-((x11bar-x22bar)/(x11bar+x22bar))) 
#Noor-ul-Amin & Hanif, 2012 

su11<-y1bar*exp((alpha2*(zbar-z22bar)/(zbar+z22bar))-((1-alpha2)*(x11bar-x22bar)/(x11bar+x22b
ar))) #Sanaullah, Khan, Ali, and Singh (2012) 

si11<-y1bar*(x11bar/x22bar)*(zbar+sd(z))/(z11bar+sd(z))   # singh 2001 1 
 
sv111<-y11bar*exp((x111bar-x222bar)/(x111bar+x222bar))# sigh and Vishwakarma (2007) 
nh111<-y11bar*exp(((zbar-z222bar)/(zbar+z222bar))-((x111bar-x222bar)/(x111bar+x222bar))) 
#Noor-ul-Amin & Hanif, 2012 

su111<-y11bar*exp((alpha3*(zbar-z222bar)/(zbar+z222bar))-((1-alpha3)*(x111bar-x222bar)/(x111b
ar+x222bar))) #Sanaullah and Singh (2012) 

si111<-y11bar*(x111bar/x222bar)*(zbar+sd(z))/(z111bar+sd(z))   # singh 2001 1 
 
 tyasir<-ybar*(exp(theta1*((zbar-z1st)/(zbar+z1st)))+theta2*log(x1bar/x2bar))# my estimator 
 tyasira<-y1bar*(exp(theta11*((zbar-z11st)/(zbar+z11st)))+theta22*log(x11bar/x22bar))# my 
estimator 

 tyasirb<-y11bar*(exp(theta111*((zbar-z111st)/(zbar+z111st)))+theta222*log(x111bar/x222bar))# 
my estimator 

 tyasir1<-c(tyasir1,tyasir) 
 tyasir11<-c(tyasir11,tyasira) 
 tyasir111<-c(tyasir111,tyasirb) 
 
sv01<-c(sv1,sv01) 
nh12<-c(nh1,nh12) 
su12<-c(su1,su12) 
singh1_1<-c(si1,singh1_1) 
 
sv02<-c(sv11,sv02) 
nh121<-c(nh11,nh121) 
su121<-c(su11,su121) 
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singh1_11<-c(si11,singh1_11) 
 
sv03<-c(sv111,sv03) 
nh1211<-c(nh111,nh1211) 
su1211<-c(su111,su1211) 
singh1_111<-c(si111,singh1_111) 
                                  }#loop1 
simulation1<-c(var(sv01),var(singh1_1),var(nh12),var(su12),var(tyasir1)) 
simulation2<-c(var(sv02),var(singh1_11),var(nh121),var(su121),var(tyasir11)) 
simulation3<-c(var(sv03),var(singh1_111),var(nh1211),var(su1211),var(tyasir111)) 
simulation1 
simulation2 
simulation3 
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