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1. Introduction

Reidemeister torsion is a topological invariant and was introduced by Reidemeister in 1935. Up to
PL equivalence, he classified the lens spaces S3/Γ, where Γ is a finite cyclic group of fixed point free
orthogonal transformations [20]. In [11], Franz extended the Reidemeister torsion and classified the
higher dimensional lens spaces S2n+1/Γ, where Γ is a cyclic group acting freely and isometrically on
the sphere S2n+1.

In 1964, the results of Reidemeister and Franz were extended by de Rham to spaces of constant
curvature +1 [10]. Kirby and Siebenmann proved the topological invariance of the Reidemeister
torsion for manifolds in 1969 [14]. Chapman proved for arbitrary simplicial complexes [7, 8]. Hence,
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the classification of lens spaces of Reidemeister and Franz was actually topological (i.e., up to
homeomorphism).

Using the Reidemeister torsion, Milnor disproved Hauptvermutung in 1961. He constructed two
homeomorphic but combinatorially distinct finite simplicial complexes. He identified in 1962 the
Reidemeister torsion with Alexander polynomial which plays an important role in knot theory and
links [16, 18].

In [21], Sözen explained the claim mentioned in [27, p. 187] about the relation between a symplectic
chain complex with ω−compatible bases and the Reidemeister torsion of it. Moreover, he applied the
main theorem to the chain-complex

0→ C2(Σg; Ad%)
∂2⊗id
→ C1(Σg; Ad%)

∂1⊗id
→ C0(Σg; Ad%)→ 0,

where Σg is a compact Riemann surface of genus g > 1, where ∂ is the usual boundary operator, and
where % : π1(Σg) → PSL2(R) is a discrete and faithful representation of the fundamental group π1(Σg)
of Σg [21]. Now we will give his description of Reidemesister torsion and explain why it is not unique
by a result of Milnor in [17].

Let Hp(C∗) = Zp(C∗)/Bp(C∗) denote the homologies of the chain complex (C∗, ∂∗) = (Cn
∂n
→

Cn−1 → · · · → C1
∂1
→ C0 → 0) of finite dimensional vector spaces over field C or R, where

Bp = Im{∂p+1 : Cp+1 → Cp},Zp = ker{∂p : Cp → Cp−1}, respectively.

Consider the short-exact sequences:

0 → Zp ↪→ Cp � Bp−1 → 0 (1.1)
0 → Bp ↪→ Zp � Hp → 0, (1.2)

where (1.1) is a result of 1st-Isomorphism Theorem and (1.2) follows simply from the definition of
Hp. Note that if bp is a basis for Bp, hp is a basis for Hp, and `p : Hp → Zp and sp : Bp−1 → Cp are
sections, then we obtain a basis for Cp. Namely, bp ⊕ `p(hp) ⊕ sp(bp−1).

If, for p = 0, · · · , n, cp, bp, and hp are bases for Cp, Bp and Hp, respectively, then the alternating
product

Tor(C∗, {cp}np=0, {hp}
n
p=0) =

n∏
p=0

[
bp ⊕ `p(hp) ⊕ sp(bp−1), cp

](−1)(p+1)

(1.3)

is called the Reidemeister torsion of the complex C∗ with respect to bases {cp}np=0, {hp}
n
p=0,

where
[
bp ⊕ `p(hp) ⊕ sp(bp−1), cp

]
denotes the determinant of the change-base matrix from cp to

bp ⊕ `p(hp) ⊕ sp(bp−1).

Milnor [17] proved that torsion does not depend on neither the bases bp, nor the sections sp, `p.

Moreover, if c′p, h
′
p are other bases respectively for Cp andHp, then there is the change-base-formula:

Tor(C∗, {c′p}
n
p=0, {h

′
p}

n
p=0) =

n∏
p=0

( [c′p, cp]

[h′p, hp]

)(−1)p

· Tor(C∗, {cp}np=0, {hp}
n
p=0). (1.4)
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Let M be a smooth n−manifold, K be a cell-decomposition of M with for each p = 0, · · · , n,
cp = {ep

1 , · · · , e
p
mp}, called the geometric basis for the p−cells Cp(K;Z). Hence, we have the chain-

complex associated to M

0→ Cn(K)
∂n
→ Cn−1(K)→ · · · → C1(K)

∂1
→ C0(K)→ 0, (1.5)

where ∂p denotes the boundary operator. Then Tor(C∗(K), {cp}np=0, {hp}
n
p=0) is called the Reidemeister

torsion of M, where hp is a basis forHp(K).

In [23], oriented closed connected 2m−manifolds (m ≥ 1) are considered and he proved the
following formula for computing the Reidemeister torsion of them. Namely,

Theorem 1.1. Let M be an oriented closed connected 2m−manifold (m ≥ 1). For p = 0, . . . , 2m, let hp

be a basis of Hp(M). Then the Reidemeister torsion of M satisfies the following formula:

∣∣∣T(M, {hp}
2m
0 )

∣∣∣ =

m−1∏
p=0

∣∣∣det Hp,2m−p(M)
∣∣∣(−1)p

√∣∣∣det Hm,m(M)
∣∣∣ (−1)m

,

where det Hp,2m−p(M) is the determinant of the matrix of the intersection pairing (·, ·)p,2m−p : Hp(M) ×
H2m−p(M)→ R in bases hp,h2m−p.

It is well known that Riemann surfaces and Grasmannians have many applications in a wide range
of mathematics such as topology, differential geometry, algebraic geometry, symplectic geometry, and
theoretical physics (see [2, 3, 5, 6, 12, 13, 22, 24–26] and the references therein). They also applied
Theorem 1.1 to Riemann surfaces and Grasmannians.

In this work we calculate Reidemeister torsion of compact flag manifold K/T for K = S Un+1, where
K is a compact simply connected semi-simple Lie group and T is maximal torus [28].

The content of the paper is as follows. In Section 2 we give all details of cup product formula in the
cohomology ring of flag manifolds which is called Schubert calculus [15, 19]. In the last section we
calculate the Reidemesiter torsion of flag manifold S Un+1/T for n ≥ 3.

The results of this paper were obtained during M.Sc studies of Habib Basbaydar at Abant Izzet
Baysal University and are also contained in his thesis [1].

2. Schubert calculus and cohomology of flag manifold

Now, we will give the important formula equivalent to the cup product formula in the cohomology
of G/B where G is a Kac̆-Moody group. The fundamental references for this section are [15, 19].
To do this we will give a relation between the complex nil Hecke ring and H∗(K/T,C). Also we
introduce a multiplication formula and the actions of reflections and Berstein-Gelfand-Gelfand type
BGG operators Ai on the basis elements in the nil Hecke ring.

Proposition 2.1.
ξu · ξv =

∑
u,v6w

pw
u,vξ

w,

where pw
u,v is a homogeneous polynomial of degree `(u) + `(v) − `(w).
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Proposition 2.2.

riξ
w =


ξw if riw > w,

−(w−1αi)ξriw + ξw −
∑

riw
γ

−→w′

αi(γ∨)ξw′ otherwise.

Theorem 2.3. Let u, v ∈ W. We write w−1 = ri1 · · · rin as a reduced expression.

pw
u,v =

∑
j1<···< jm

r j1 ···r jm =v−1

Ai1 ◦ · · · ◦ Âi j1
◦ · · · ◦ Âi jm

◦ · · · ◦ Ain(ξ
u)(e)

where m = `(v) and the notation Âi means that the operator Ai is replaced by the Weyl group action ri.

Let C0 = S/S + be the S -module where S + is the augmentation ideal of S . It is 1-dimensional as
C-vector space. Since Λ is a S -module, we can define C0 ⊗S Λ. It is an algebra and the action of R on
Λ gives an action of R on C0 ⊗S Λ. The elements σw = 1⊗ ξw ∈ C0 ⊗S Λ is a C-basis form of C0 ⊗S Λ.

Proposition 2.4. C0 ⊗S Λ is a graded algebra associated with the filtration of length of the element of
the Weyl group W.

Proposition 2.5. The complex linear map f : C0⊗S Λ→ GrC{W} is a graded algebra homomorphism.

Theorem 2.6. Let K be the standard real form of the group G associated to a symmetrizable Kac̆-
Moody Lie algebra g and let T denote the maximal torus of K. Then the map

θ : H∗(K/T,C)→ C0 ⊗S Λ

defined by θ(εw) = σw for any w ∈ W is a graded algebra isomorphism. Moreover, the action of w ∈ W
and Aw on H∗(K/T,C) corresponds respectively to that δw and xw ∈ R on C0 ⊗S Λ.

Corollary 2.7. The operators Ai on H∗(K/T,C) generate the nil-Hecke algebra.

Corollary 2.8. We can use Proposition 2.1 and Theorem 2.3 to determine the cup product εuεv in terms
of the Schubert basis {εw}w∈W of H∗(K/T,Z).

3. The Reidemeister torsion of compact flag manifold K/T for K = S Un+1

This section includes our calculations about Reidemeister torsion of flag manifolds using Theorem
1.1 and Proposition 2.1 because χ(S Un+1/T ) = |W | = n! is always an even number.

We know that the Weyl group W of K acts on the Lie algebra of the maximal torus T . lt is a finite
group of isometries of the Lie algebra t of the maximal torus T . lt preserves the coweight lattice T v. For
each simple root α, the Weyl group W contains an element rα of order two represented by e((π/2)(eα+e−α))

in N(T ). Since the roots α can be considered as the linear functionals on the Lie algebra t of the
maximal torus T , the action of rα on t is given by

rα(ξ) = ξ − α(ξ)hα for ξ ∈ t,

where hα is the coroot in t corresponding to simple root α.Also, we can give the action of rα on the
roots by
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rα(β) = β − α(hβ)α for α, β ∈ t∗,

where t∗ is the dual vector space of t. The element rα is the reflection in the hyperplane Hα of t whose
equation is α(ξ) = 0. These reflections rα generate the Weyl group W.

Set α1, α2, . . . , αn be roots of Weyl Group of S Un+1. Since the Cartan Matrix of Weyl Group of
S Un+1 is

Mi j =


2 i = j
−1 |i − j| = 1
0 otherwise

,

rαi(α j) =


−αi, i = j
αi + α j, |i − j| = 1
α j, otherwise.

Proposition 3.1. The Weyl group W of S Un+1 is isomorphic to Coxeter Group An given by generators
s1, s2, . . . , sn and relations

(i) s2
i = 1 i = 1, 2, . . . , n;

(ii) sisi+1si = si+1sisi+1 i = 1, 2, . . . , n − 1;

(iii) sis j = s jsi 1 ≤ i < j − 1 < n.

Proof. (i)

rαi ◦ rαi(β) = rαi(β− < αi, β > αi)
= β− < αi, β > αi− < β− < αi, β > αi, αi > αi

= β− < αi, β > αi− < β, αi > αi+ < αi, β >< αi, αi > αi

= β− < αi, β > αi− < αi, β > αi + 2 < αi, β > αi

= β.

(ii)

rαi ◦ rαi+1 ◦ rαi(β) = rαi ◦ rαi+1(β− < αi, β > αi)
= rαi(β− < αi, β > αi− < αi+1, β− < αi, β > αi > αi+1)
= rαi(β− < αi, β > αi− < αi+1, β > αi+1

+ < αi+1, < αi, β > αi > αi+1)
= rαi(β− < αi, β > αi− < αi+1, β > αi+1

+ < αi, β >< αi+1, αi > αi+1)
= rαi(β− < αi, β > αi− < αi+1, β > αi+1− < αi, β > αi+1)
= β− < αi, β > αi− < αi+1, β > αi+1− < αi, β > αi+1

− < αi, β− < αi, β > αi− < αi+1, β > αi+1

− < αi, β > αi+1 > αi

= β− < αi, β > αi− < αi+1, β > αi+1− < αi, β > αi+1
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− < αi, β > αi+ < αi, β >< αi, αi > αi

+ < αi+1, β >< αi+1, αi > αi+ < αi, β >< αi+1, αi > αi

= β− < αi, β > αi− < αi+1, β > αi+1− < αi, β > αi+1

− < αi, β > αi + 2 < αi, β > αi− < αi+1, β > αi

− < αi, β > αi

= β− < αi, β > αi− < αi+1, β > αi− < αi+1, β > αi+1

− < αi, β > αi+1

= β − (< αi, β > + < αi+1, β >)(αi + αi+1).

rαi+1 ◦ rαi ◦ rαi+1(β) = rαi+1 ◦ rαi(β− < αi+1, β > αi+1)
= rαi+1(β− < αi+1, β > αi+1− < αi, β− < αi+1, β > αi+1 > αi)
= rαi+1(β− < αi+1, β > αi+1− < αi, β > αi

+ < αi+1, β >< αi, αi+1 > αi)
= rαi+1(β− < αi+1, β > αi+1− < αi, β > αi− < αi+1, β > αi)
= β− < αi+1, β > αi+1− < αi, β > αi− < αi+1, β > αi

− < αi+1, β− < αi+1, β > αi+1− < αi, β > αi

− < αi+1, β > αi > αi+1

= β− < αi+1, β > αi+1− < αi+1, β > αi− < αi, β > αi

− < αi+1, β > αi+1+ < αi, β >< αi+1, αi > αi+1

+ < αi+1, β >< αi+1, αi > αi+1

+ < αi+1, β >< αi+1, αi+1 > αi+1

= β− < αi+1, β > αi+1− < αi, β > αi− < αi+1, β > αi

− < αi+1, β > αi+1 + 2 < αi+1, β > αi+1− < αi, β > αi+1

− < αi+1, β > αi+1

= β− < αi+1, β > αi+1− < αi, β > αi− < αi+1, β > αi

− < αi, β > αi+1

= β − (< αi+1, β > + < αi, β >)(αi+1 + αi).

Hence rαi+1 ◦ rαi ◦ rαi+1(β) = rαi+1 ◦ rαi ◦ rαi+1(β).

(iii)

rαi ◦ rα j(β) = rαi ◦ (β− < α j, β > α j)
= β− < α j, β > α j− < αi, β− < α j, β > α j > αi

= β− < α j, β > α j− < αi, β > αi+ < α j, β >< αi, α j > αi

= β− < α j, β > α j− < αi, β > αi.

rα j ◦ rαi(β) = rα j ◦ (β− < αi, β > αi)
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= β− < αi, β > αi− < α j, β− < αi, β > αi > α j

= β− < αi, β > αi− < α j, β > α j+ < αi, β >< α j, αi > α j

= β− < αi, β > αi− < α j, β > α j.

Hence rαi ◦ rα j(β) = rα j ◦ rαi(β).
�

After this point si will represent rαi .
Let us define the word

si, j =


sisi+1 · · · s j i < j

si i = j
1 i > j.

Theorem 3.2. [4, Theorem 3.1] The reduced Gröbner-Shirshov basis of the coxeter group An consists
of relation

si, jsi = si+ jsi, j 1 ≤ i < j ≤ n

together with defining relations of An.
The following lemma is equivalent of [4, Lemma 3.2]. The only difference is the order of

generators s1 > s2 > . . . sn in our setting.

Lemma 3.3. Using elimination of leading words of relations, the reduced elements of An are in the
form

sn+1, jn+1 sn, jn sn−1, jn−1 · · · si, ji · · · s1, j1 1 ≤ i ≤ ji + 1 ≤ n + 1.
Notice that jn+1 + 1 = n + 1 =⇒ jn+1 = n and sn+1,n = 1.

Algorithm 3.1. (Finding Inverse) Let w = sn, jn sn−1, jn−1 · · · s1, j1 . The inverse of w can be found using
following algorithm.

Invw = {};
Conw = Reverse(w);
For k = 1 to k = n

Find maximum sequence in Conw;
list = {sk, sk+1, sk+2, . . . , sk+ j};
Invw = list ∪ Invw;

End For.

Example 3.4. Let s4,6s3,5s2,5s1,3. The inverse of its is S 3s2s1s5s4s3s2s5s4s3s6s5s4.
Invw = s1,4

S 3s2s5s4s3s5s4s6s5

Invw = s2,5s1,4

S 3s5s4s5s6

Invw = s3,5s2,5s1,4

s5s6

Invw = s5,6s3,5s2,5s1,4.
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Lemma 3.5. Let w = (sn, jn)(sn−1, jn−1) · · · (si+1, ji+1)(si, ji) · · · (s1, j1) and
siw = (sn, jn)(sn−1, jn−1

) · · · (si+1, ji+1
)(si, ji) · · · (s1, j1), where

siw =


ji+1 = ji + 1, ji = ji+1 i f ji < ji+1

ji+1 = ji, ji = ji+1 − 1 i f ji ≥ ji+1

jk = jk i f k , i, i + 1
Here if i = n, then we assume jn+1 = n.

Corollary 3.6. Let w = (sn, jn)(sn−1, jn−1) · · · (si+1, ji+1)(si, ji) · · · (s1, j1) and
si−1(siw) = (sn, ĵn)(sn−1, ĵn−1

) · · · (si+1, ĵi+1
)(si, ĵi) · · · (s1, ĵ1), where

si−1(siw) =



ĵi+1 = ji + 1, ĵi = ji−1 + 1, ĵi−1 = ji+1 i f ji < ji+1, ji−1 < ji+1

ĵi+1 = ji + 1, ĵi = ji−1, ĵi−1 = ji+1 − 1 i f ji < ji+1, ji−1 ≥ ji+1

ĵi+1 = ji, ĵi = ji−1 + 1, ĵi−1 = ji+1 − 1 i f ji ≥ ji+1, ji−1 < ji+1 − 1
ĵi+1 = ji, ĵi = ji−1, ĵi−1 = ji+1 − 2 i f ji ≥ ji+1, ji−1 ≥ ji+1 − 1
ĵk = jk i f k , i − 1, i, i + 1.

Proof. Let w = siw = (sn, jn)(sn−1, jn−1
) · · · (si+1, ji+1

)(si, ji) · · · (s1, j1). Then

si−1(w) =


ĵi = ji−1 + 1, ĵi−1 = ji i f ji−1 < ji

ĵi = ji−1, ĵi−1 = ji − 1 i f ji−1 ≥ ji

ĵk = jk i f k , i − 1, i.

(i) ji < ji+1 ⇒ ji+1 = ji + 1, ji = ji+1 So ji−1 < ji ⇒ ji−1 < ji+1, ĵi+1 = ji+1 = ji + 1,
ĵi = ji−1 + 1 = ji−1 + 1, ĵi−1 = ji = ji+1.

(ii) ji < ji+1 ⇒ ji+1 = ji + 1, ji = ji+1 So ji−1 ≥ ji ⇒ ji−1 ≥ ji+1, ĵi+1 = ji+1 = ji + 1,
ĵi = ji−1 = ji−1, ĵi−1 = ji − 1 = ji+1 − 1.

(iii) ji ≥ ji+1 ⇒ ji+1 = ji , ji = ji+1 − 1 So ji−1 < ji ⇒ ji−1 < ji+1, ĵi+1 = ji+1 = ji + 1,
ĵi = ji−1 = ji−1, ĵi−1 = ji − 1 = ji+1 − 1.

(iv) ji ≥ ji+1 ⇒ ji+1 = ji, ji = ji+1 − 1 So ji−1 ≥ ji ⇒ ji−1 ≥ ji+1 − 1, ĵi+1 = ji+1 = ji ,
ĵi = ji−1 = ji−1, ĵi−1 = ji − 1 = ji+1 − 2.

�

Corollary 3.7. Let w = (sn, jn)(sn−1, jn−1) · · · (si+1, ji+1)(si, ji) · · · (s1, j1) and
si+1(siw) = (sn, ĵn)(sn−1, ĵn−1

) · · · (si+1, ĵi+1
)(si, ĵi) · · · (s1, ĵ1). Then

si+1(siw) =



ĵi+2 = ji + 2, ĵi+1 = ji+2, ĵi = ji+1 i f ji < ji+1, ji+1 < ji+2

ĵi+2 = ji + 1, ĵi+1 = ji+2 − 1, ĵi = ji+1 i f ji < ji+1, ji + 1 ≥ ji+2

ĵi+2 = ji + 1, ĵi+1 = ji+2, ĵi = ji+1 − 1 i f ji ≥ ji+1, ji < ji+2

ĵi+2 = ji, ĵi+1 = ji+2 − 1, ĵi = ji+1 − 1 i f ji ≥ ji+1, ji ≥ ji+2

ĵk = jk i f k , i, i + 1, i + 2.
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Proof. Let w = siw = (sn, jn)(sn−1, jn−1
) · · · (si+1, ji+1

)(si, ji) · · · (s1, j1). Then

si+1(w) =


ĵi+2 = ji+1 + 1, ĵi+1 = ji+2 i f ji+1 < ji+2

ĵi+2 = ji+1, ĵi+1 = ji+2 − 1 i f ji+1 ≥ ji+2

ĵk = jk i f k , i + 1, i + 2.

(i) ji < ji+1 ⇒ ji+1 = ji + 1, ji = ji+1 So ji+1 < ji+2 ⇒ ji + 1 < ji+2, ĵi+2 = ji+1 + 1 = ji + 2 ,
ĵi+1 = ji+2 = ji+2, ĵi = ji = ji+1.

(ii) ji < ji+1 ⇒ ji+1 = ji + 1, ji = ji+1 So ji+1 ≥ ji+2 ⇒ ji + 1 ≥ ji+2 , ĵi+2 = ji+1 = ji + 1,
ĵi+1 = ji+2 − 1 = ji+2 − 1, ĵi = ji = ji+1.

(iii) ji ≥ ji+1 ⇒ ji+1 = ji, ji = ji+1 − 1 So ji+1 < ji+2 ⇒ ji < ji+2 , ĵi+2 = ji+1 + 1 = ji + 1,
ĵi+1 = ji+2 = ji+2, ĵi = ji − 1 = ji+1 − 1.

(iv) ji ≥ ji+1 ⇒ ji+1 = ji, ji = ji+1 − 1 So ji+1 ≥ ji+2 ⇒ ji ≥ ji+2, ĵi+2 = ji+1 = ji, ĵi+1 =

ji+2 − 1 = ji+2 − 1, ĵi = ji = ji+1 − 1.

�

Using Lemma 3.3 and definitions of Ai and ri operators, we can obtain the followings.

Lemma 3.8. Let w = (sn, jn)(sn−1, jn−1) · · · (si+1, ji+1)(si, ji) · · · (s1, j1). Then

Ai(εw) =

{
εw1 i f ji ≥ ji+1

0 i f ji < ji+1,

where w1 = (sn, jn)(sn−1, jn−1
) · · · (si+1, ji+1

)(si, ji) · · · (s1, j1) with ji+1 = ji, ji = ji+1 − 1 and jk = jk

if k , i, i + 1.

Lemma 3.9. ri(εs j) =

{
εsi−1 − εsi − εsi+1 i f i = j
εs j i f i , j.

The integral cohomology of S Un+1/T is generated by Schubert classes indexed

W = {sn jn sn−1, jn−1 . . . s1 j1 : ji = 0 or i ≤ ji ≤ n}.

Let xi = εri ∈ H2(S Un+1/T,Z). We define an order between generators of the integral cohomology of
S Un+1/T . Since each element εsn jn sn−1, jn−1 ...si ji ...s1 j1 can be represented by an n-tuple ( jn−n + 1, jn−1− (n−
1) + 1, . . . , ji − i + 1, . . . , j1 − 1 + 1), we can define an order between n-tuples.

Definition 3.10. (Graded Inverse Lexicographic Order) Let α = (α1, α2, . . . , αn) and β =

(β1, β2, . . . , βn) ∈ Zn
≥0. We say α > β if |α| = α1 + α2 + . . . αn > |β| = β1 + β2 + . . . βn or |α| = |β|

and in the vector difference α − β ∈ Zn, the right-most nonzero entry is positive. We will write
εsn jn sn−1, jn−1 ...si ji ...s1 j1 > εsnkn sn−1, jk−1 ...siki ...s1 j1 if ( jn − n + 1, jn−1 − (n − 1) + 1, . . . , ji − i − 1, . . . , j1 − 1 + 1) >
(kn − n + 1, kn−1 − (n − 1) + 1, . . . , ki − i − 1, . . . , k1 − 1 + 1).

Example 3.11. εs35 s23 s14 > εs35 s24 s13 since (3, 2, 4) > (3, 3, 3) in graded inverse lexicographic order.

We will try to find a quotient ring Z[x1, x2, . . . , xn]/I which is isomorphic to H∗(S Un+1/T,Z). We
also define an order between monomials as follows.
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Definition 3.12. We say xα1
1 xα2

2 · · · x
αn
n > xβ1

1 xβ2
2 · · · x

βn
n if |α| = α1 +α2 + · · ·+αn > |β| = β1 +β2 + · · ·+βn

or |α| = |β| and in the vector difference α − β ∈ Zn the left-most non-zero entry is negative.

Example 3.13. x4
1x2

2x3
3 < x3

1x3
2x3

3, since (4, 2, 3) − (3, 3, 3) = (1,−1, 0).

Lemma 3.14. xα1
1 xα2

2 . . . xαn
n = εsnαn sn−1,αn−1 ...siαi ...s1α1 + lower terms.

Proof. To prove this, we use induction on degree of the monomials. By definition xi = εsi . Let us
compute xix j = εsiεs j . Here we may assume that i ≤ j. If j − i > 1, the inverse of sis j is sis j. Hence

Ps j si
si s j = r jAi(εsi) = r j(1) = 1

in the cup product. If j = i + 1, the inverse of si+1si is sisi+1. In this case

Psi,si+1 = Airi+1(εsi) = Ai(εsi) = ε{} = 1.

If i = j, then we have to consider the word si,i+1. Its inverse si+1si and

Psi,i+1
si si = ri+1Ai(εsi) = ri+1(1) = 1.

Now we have to show that Psk sl
si s j = 0 if εsk sl > εs j si . By definition of cup product the coefficient of εsk sl

is not zero only if si → sksl and s j → sksl. However, this is possible only if sksl = s jsi or sksl = si,i+1

when j = i + 1. Clearly εsi si+1 < εsi+1 si . Hence εsiεsi+1 = εsi+1 si + lower terms and εsiεs j = εs jεsi if
j − i > 1. In the case i = j, we have to look elements sisk and sksi. The inverse of sksi is equal to sksi

itself if k − i > 1, hence
Psk si

si s j
= Akri(εsi) = Ak(εsi−1 − εsi + εsi+1) = 0

since k − i > 1. Clearly εsi sk < εsi si+1 if k < i. Hence εsiεsi = εsi si+1 + lower terms.
Assume that xα1

1 xα2
2 . . . xαn

n = εsnαn sn−1,αn−1 ...siαi ...s1α1 + lower terms.
We have to show xα1

1 xα2
2 . . . xαi+1

i . . . xαn
n = εsnαn sn−1,αn−1 ...siαi+1...s1α1 + lower terms by Bruhat ordering.

snαn sn−1,αn−1 . . . siαi+1 . . . s1α1 → w′ only if w′ = snαn sn−1,αn−1 . . . siαi . . . s1α1 where there exists an index
j for which α j = α j + 1 and αk = αk if k , j.

By given ordering

w′ = snαn sn−1,αn−1 . . . siαi . . . s1α1 > snαn sn−1,αn−1 . . . siαi+1 . . . s1α1 .

If j > i, then, by Algorithm 3.1, in w′−1, we will not have a subsequence s j−1, s j−2 . . . si after the
elements s j. Hence in the cup product before applying A j we will not have the term εs j . It means
Pw′

si,w = 0.
If j = i, then, again by Algorithm 3.1, in w′−1 we will not have a subsequence s j−1, s j−2 . . . si after

the elements s j. Hence in the cup product before applying A j we will not have the term εs j . It means
Pw′

si,w = 1 if and only if j > i. �

Example 3.15. Let l = 3,
x1x2x3 = εs3 s2 s1 + lower terms.
x2

1x2x3 = εs3 s2 s12 + lower terms.
Then we have εs3 s23 s1 > εs3 s2 s12 > εs23 s12 > εs3 s13 > εs2 s13 . Since the inverse of s3s23s1 is s3s13 and the

inverse of s3s2s1 is s13, A3r1r2r3(εs1) = A3r1(εs1) = A3(−εs1 + εs2) = 0.
Similarly, since the inverse of s3s2s12 is s2s13, A2r1r2r3(εs1) = A2r1(εs1) = A2(−εs1 + εs2) = 1.
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Before finding the quotient ring Z[x1, . . . , xn]/I, we give some information about ring k[x1, . . . , xn]/I
where k is a field. Fix a monomial ordering on k[x1, . . . , xn]. Let f ∈ k[x1, . . . , xn]. The leading
monomial of f , denoted by LM( f ), is the highest degree monomial of f . The coefficient of LM( f ) is
called leading coefficient of f and denoted by LC( f ). The leading term of f , LT ( f ) = LC( f )LM( f ).

Let I ⊆ k[x1, . . . , xn] be an ideal. Define LT (I) = {LT ( f ) : f ∈ I}. Let < LT (I) > be an ideal
generated by LT (I).

Proposition 3.16. [9, Section 5.3, Propostions 1 and 4]

(i) Every f ∈ k[x1, . . . , xn] is congruent modulo I to a unique polynomial r which is a k-linear
combination of the monomials in the complement of < LT (I) >.

(ii) The elements of {xα : xα << LT (I) >} are linearly independent modulo I.

(iii) k[x1, . . . , xn]/I is isomorphic as a k − vector space to

S = Span{xα : xα << LT (I) >}.

Theorem 3.17. [9, Section 5.3, Theorem 6] Let I ⊆ k[x1, . . . , xn] be an ideal.

(i) The k-vector space k[x1, . . . , xn]/I is finite dimensional.

(ii) For each i, 1 ≤ i ≤ n, there is a polynomial fi ∈ I such that LM( fi) = xmi
i for some positive integer

mi.

Theorem 3.18. H∗(S Un+1/T,Z) isomorphic to Z[x1, x2, . . . , xn]/ < f1, f2, . . . , fn > where LT ( fi) =

xn−i+2
i with respect to monomial order given by Definition 3.12.

Proof. Let I be the ideal such that H∗(S Un+1/T,R) � R[α1, α2, . . . , αn]/I. Since we found one to
one correspondence between length l elements of H∗(S Un+1/T,Z) and monomials xα1

1 xα2
2 · · · x

αn
n , where

α1 + α2 + · · ·αn = l and for each i, 1 ≤ i ≤ n, αi ≤ n − i + 1, there should be a polynomial fi ∈ I such
that LT ( fi) = xn−i+2

i . �

Example 3.19. Let n = 3. Then we have
αi ≤ n − i + 1, i = 1, 2, 3;
α1 ≤ 3, α2 ≤ 2, α3 ≤ 1.
For l = 1; x1, x2, x3; and
for l = 2; x2

1, x1x2, x1x3, x2x3, x2
2. So we must have a polynomial f3 with LM( f3) = x2

3.
For l = 3; x3

1, x2
1x2, x2

1x3, x1x2x3, x1x2
2, x2

2x3, so
we must have a polynomial f2 with LM( f2) = x3

2.
For l = 4; x3

1x2, x3
1x3, x2

1x2x3, x2
1x2

2, x1x2
2x3, so

we must have a polynomial f1 with LM( f1) = x4
1.

The complex dimension of S Un+1/T is equal to (n + 1)n/2. So the highest element has length of
(n + 1)n/2.

Since the unique highest element has length of n(n+1)
2 , we now give the result about the multiplication

of elements of length k and of length n(n+1)
2 − k.
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Theorem 3.20. Let A = εsn jn sn−1, jn−1 ···s1 j1 be an element of length k and B = εsnpn sn−1,pn−1 ···s1p1 be an element
of length n(n+1)

2 − k. The corresponding polynomials in Z[x1, x2, . . . , xn]/ < f1, f2, . . . , fn > has leading
monomials
x j1−1+1

1 x j2−2+1
2 · · · x ji−i+1

i · · · x jn−n+1
1 and xp1−1+1

1 xp1−2+1
2 · · · xpn−n+1

1 , respectively. Then

A · B =

{
εsn,n sn−1,n,...,sin,...,s1n , i f ji + pi + 1 = n + i;
0, i f ji + pi + 1 , n + i.

Proof. The unique highest degree monomial in Z[x1, x2, . . . , xn]/ < f1, f2, . . . , fn > is
xn

1xn−1
2 · · · xn−i+1

i · · · xn. The multiplication of leading monomials of corresponding monomials of A
and B produce the monomial

x j1+p1
1 x j2+p2−2

2 · · · x ji+pi−2i+2
i · · · x jn+pn−2n+2

n .

If ji + pi − 2i + 2 = n − i + 1 → ji + pi + 1 = n + i for each i, i ≤ 1 ≤ n, then the multiplication gives
the xn

1xn−1
2 . . . xn. Since this monomial correspondence the element εsn,n sn−1,n···sin···s1n , A · B = εsn,n sn−1,n···s1n .

If ji + pi + 1 , n + i, then the leading monomial and the monomials of lower degree must reduce
to zero modulo < f1, f2, . . . , fn > in k[x1, x2, . . . , xn] when we apply the division algorithm. Hence
A · B = 0. �

Now we can give the whole computation of the quotient ring Z[x1, x2, x3]/ < f1, f2, f3 >.

Example 3.21. Let x1 = εs1 , x2 = εs2 , x3 = εs3 .
For l = 2, we have

x2x3 = εs3 s2 + εs2 s3

x2
2 = εs2 s3 + εs2 s1

x1x3 = εs3 s1

x1x2 = εs2 s1 + εs1 s2

x2
1 = εs1 s2 ,

and
x2x3

x2
2

x1x3

x1x2

x2
1


= M


εs3 s2

εs2 s3

εs3 s1

εs2 s1

εs1 s2


and


εs3 s2

εs2 s3

εs3 s1

εs2 s1

εs1 s2


= M−1


x2x3

x2
2

x1x3

x1x2

x2
1


, where

M =


1 1 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1


M−1 =


1 −1 0 1 −1
0 1 0 −1 1
0 0 1 0 0
0 0 0 1 −1
0 0 0 0 1


. Then we have

εs3 s2 = x2x3 − x2
2 + x1x2 − x2

1

εs2 s3 = x2
2 − x1x2 + x2

2
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εs3 s1 = x1x3

εs2 s1 = x1x2 − x2
1

εs1 s2 = x2
1.

Here we must have a relation involving x2
3 and we have it as

x2
3 = εs3 s2 = x2x3 − x2

2 + x1x2 − x2
1.

For l = 3;

x2
2x3 = εs3 s2 s3 + εs3 s2 s1 + εs2 s3 s1

x1x2x3 = εs3 s2 s1 + εs2 s3 s1 + εs3 s1 s2 + εs1 s2 s3

x1x2
2 = εs2 s3 s1 + εs2 s1 s2 + εs1 s2 s3

x2
1x3 = εs3 s1 s2 + εs1 s2 s3

x2
1x2 = εs2 s1 s2 + εs1 s2 s3

x3
1 = εs1 s2 s3

and

x2
2x3

x1x2x3

x1x2
2

x2
1x3

x2
1x2

x3
1


= M



εs3 s2 s3

εs3 s2 s1

εs2 s3 s1

εs3 s1 s2

εs2 s1 s2

εs1 s2 s3


and



εs3 s2 s3

εs3 s2 s1

εs2 s3 s1

εs3 s1 s2

εs2 s1 s2

εs1 s2 s3


= M−1



x2
2x3

x1x2x3

x1x2
2

x2
1x3

x2
1x2

x3
1


, where

M =



1 1 1 0 0 0
0 1 1 1 0 1
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1


M−1 =



1 −1 0 1 0 0
0 1 −1 −1 1 0
0 0 1 0 −1 0
0 0 0 1 0 −1
0 0 0 0 1 −1
0 0 0 0 0 1


.

Then we have

εs3 s2 s3 = x2
2x3 − x1x2x3 + x2

1x3

εs3 s2 s1 = x1x2x3 − x1x2
2 − x2

1x3 + x2
1x2

εs2 s3 s1 = x1x2
2 − x2

1x2

εs3 s1 s2 = x2
1x3 − x3

1

εs2 s1 s2 = x2
1x2 − x3

1

εs1 s2 s3 = x3
1.

Here we must have a relation involving x3
2 and we now we have it as

x3
2 = 2εs2 s3 s1 = 2(x1x2

2 − x2
1x2).
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For l = 4; we have

x1x2
2x3 = εs3 s2 s3 s1 + εs3 s2 s1 s2 + 2εs2 s3 s1 s2 + 2εs3 s1 s2 s3

x2
1x2x3 = εs3 s2 s1 s2 + εs2 s3 s1 s2 + εs3 s1 s2 s3 + εs2 s1 s2 s3

x2
1x2

2 = εs2 s3 s1 s2 + εs2 s1 s2 s3

x3
1x3 = εs3 s1 s2 s3

x3
1x2 = εs2 s1 s2 s3

and
x1x2

2x3

x2
1x2x3

x2
1x2

2
x3

1x3

x3
1x2


= M


εs3 s2 s3 s1

εs3 s2 s1 s2

εs2 s3 s1 s2

εs3 s1 s2 s3

εs2 s1 s2 s3


and


εs3 s2 s3 s1

εs3 s2 s1 s2

εs2 s3 s1 s2

εs3 s1 s2 s3

εs2 s1 s2 s3


= M−1


x1x2

2x3

x2
1x2x3

x2
1x2

2
x3

1x3

x3
1x2


, where

M =


1 1 2 2 0
0 1 1 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1


M−1 =


1 −1 −1 −1 2
0 1 −1 −1 0
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 1


.

Then

εs3 s2 s3 s1 = x1x2
2x3 − x2

1x2x3 − x2
1x2

2 − x3
1x3 + 2x3

1x2

εs3 s2 s1 s2 = x2
1x2x3 − x2

1x2
2 − x3

1x3

εs2 s3 s1 s2 = x2
1x2

2 − x3
1x2

εs3 s1 s2 s3 = x3
1x3

εs2 s1 s2 s3 = x3
1x2.

We must have a relation involving x4
1, which is x1x3

1 = εs1 .εs1 s2 s3 = 0.
For l = 5;

x2
1x2

2x3 = εs3 s2 s3 s1 s2 + εs3 s2 s1 s2 s3 + εs2 s3 s1 s2 s3

x3
1x2x3 = εs3 s2 s1 s2 s3 + εs2 s3 s1 s2 s3

x3
1x2

2 = εs2 s3 s1 s2 s3

and
x2

1x2
2x3

x3
1x2x3

x3
1x2

2

 = M


εs3 s2 s3 s1 s2

εs3 s2 s1 s2 s3

εs2 s3 s1 s2 s3

 and


εs3 s2 s3 s1 s2

εs3 s2 s1 s2 s3

εs2 s3 s1 s2 s3

 = M−1


x2

1x2
2x3

x3
1x2x3

x3
1x2

2

, where

M =


1 1 1
0 1 1
0 0 1

 M−1 =


1 −1 0
0 1 −1
0 0 1

 . So
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εs3 s2 s3 s1 s2 = x2
1x2

2x3 − x3
1x2x3

εs3 s2 s1 s2 s3 = x3
1x2x3 − x3

1x2
2

εs2 s3 s1 s2 s3 = x3
1x2

2.

Hence we don’t have any relation.

For l = 6;

x3
1x2

2x3 = εs3 s2 s3 s1 s2 s3 and εs3 s2 s3 s1 s2 s3 = x3
1x2

2x3.

Now let us multiple elements with lengths of k and 6 − k.

First M0 = 1 and | det(M0)| = 1.

Degree 1 ∗ Degree 5

Elements Leading Monomial in Polynomial Ring
εs1 x1

εs2 x2

εs3 x3

εs3 s23 s12 x2
1x2

2x3

εs3 s2 s13 x3
1x2x3

εs23 s13 x3
1x2

2

εs3 * εs3 s23 s12 x2
1x2

2x2
3 0

εs3 * εs3 s2 s13 x3
1x2x2

3 0
εs3 * εs23 s13 x3

1x2
2x3 1

εs2 * εs3 s23 s12 x2
1x3

2x3 0
εs2 * εs3 s2 s13 x3

1x2
2x3 1

εs2 * εs23 s13 x3
1x3

2 0

εs1 * εs3 s23 s12 x3
1x2

2x3 1
εs1 * εs3 s2 s13 x4

1x2x3 0
εs1 * εs23 s13 x4

1x2
2 0

Now we will calculate Reidemeister torsion of S U4/T by using above multiplication. From

multiplication of the second cohomology, we have M2 =


0 0 1
0 1 0
1 0 0

 and | det(M2)| = 1.

Degree 2 ∗ Degree 4
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Elements Leading Monomial in Polynomial Ring
εs3 s2 x2x3

εs23 x2
2

εs3 s1 x1x3

εs2 s1 x1x2

εs12 x2
1

εs3 s23 s1 x1x2
2x3

εs3 s2 s12 x2
1x2x3

εs23 s12 x2
1x2

2
εs3 s13 x3

1x3

εs2 s13 x3
1x2

εs3 s2 * εs3 s23 s1 x1x3
2x2

3 0
εs3 s2 * εs3 s2 s12 x2

1x2
2x2

3 0
εs3 s2 * εs23 s12 x2

1x3
2x3 0

εs3 s2 * εs3 s13 x3
1x2x2

3 0
εs3 s2 * εs2 s13 x3

1x2
2x3 1

εs23 * εs3 s23 s1 x1x4
2x3 0

εs23 * εs3 s2 s12 x2
1x3

2x3 0
εs23 * εs23 s12 x2

1x4
2 0

εs23 * εs3 s13 x3
1x2

2x3 1
εs23 * εs2 s13 x3

1x3
2 0

εs3 s1 * εs3 s23 s1 x2
1x2

2x2
3 0

εs3 s1 * εs3 s2 s12 x3
1x2x2

3 0
εs3 s1 * εs23 s12 x3

1x2
2x3 1

εs3 s1 * εs3 s13 x4
1x2

3 0
εs3 s1 * εs2 s13 x4

1x2x3 0

εs2 s1 * εs3 s23 s1 x2
1x3

2x3 0
εs2 s1 * εs3 s2 s12 x3

1x2
2x3 1

εs2 s1 * εs23 s12 x3
1x3

2 0
εs2 s1 * εs3 s13 x4

1x2x3 0
εs2 s1 * εs2 s13 x4

1x2
2 0

εs12 * εs3 s23 s1 x3
1x2

2x3 1
εs12 * εs3 s2 s12 x4

1x2x3 0
εs12 * εs23 s12 x4

1x2
2 0

εs12 * εs3 s13 x5
1x3 0

εs12 * εs2 s13 x5
1x2 0

To calculate Reidemeister torsion of S U4/T we need multiplication of fourth cohomology bases

elements and then we have M4 =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0


and | det(M4)| = 1.
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Degree 3 ∗ Degree 3

Elements Leading Monomial in Polynomial Ring
εs3 s23 x2

2x3

εs3 s2 s1 x2
2x3

εs23 s1 x1x2
2

εs3 s12 x2
1x3

εs2 s12 x2
1x2

εs13 x3
1

εs3 s23 x2
2x3

εs3 s2 s1 x1x2x3

εs23 s1 x1x2
2

εs3 s12 x2
1x3

εs2 s12 x2
1x2

εs13 x3
1

εs3 s23 * εs3 s23 x4
2x2

3 0
εs3 s23 * εs3 s2 s1 x1x3

2x2
3 0

εs3 s23 * εs23 s1 x1x4
2x3 0

εs3 s23 * εs3 s12 x2
1x2

2x2
3 0

εs3 s23 * εs2 s12 x2
1x3

2x3 0
εs3 s23 * εs13 x3

1x2
2x3 1

εs3 s2 s1 * εs3 s23 x1x3
2x2

3 0
εs3 s2 s1 * εs3 s2 s1 x2

1x2
2x2

3 0
εs3 s2 s1 * εs23 s1 x2

1x3
2x3 0

εs3 s2 s1 * εs3 s12 x3
1x2x2

3 0
εs3 s2 s1 * εs2 s12 x3

1x2
2x3 1

εs3 s2 s1 * εs13 x4
1x2x3 0

εs23 s1 * εs3 s23 x1x4
2x3 0

εs23 s1 * εs3 s2 s1 x2
1x3

2x3 0
εs23 s1 * εs23 s1 x2

1x4
2 0

εs23 s1 * εs3 s12 x3
1x2

2x3 1
εs23 s1 * εs2 s12 x3

1x3
2 0

εs23 s1 * εs13 x4
1x2

2 0

εs3 s12 * εs3 s23 x2
1x2

2x2
3 0

εs3 s12 * εs3 s2 s1 x3
1x2x2

3 0
εs3 s12 * εs23 s1 x3

1x2
2x3 1

εs3 s12 * εs3 s12 x4
1x2

3 0
εs3 s12 * εs2 s12 x4

1x2x3 0
εs3 s12* εs13 x5

1x3 0
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εs2 s12 * εs3 s23 x2
1x3

2x3 0
εs2 s12 * εs3 s2 s1 x3

1x2
2x3 1

εs2 s12 * εs23 s1 x3
1x3

2 0
εs2 s12 * εs3 s12 x4

1x2x3 0
εs2 s12 * εs2 s12 x4

1x2
2 0

εs2 s12 * εs13 x5
1x2 0

εs13 * εs3 s23 x3
1x2

2x3 1
εs13 * εs3 s2 s1 x4

1x2x3 0
εs13 * εs23 s1 x4

1x2
2 0

εs13 * εs3 s12 x5
1x3 0

εs13 * εs2 s12 x5
1x2 0

εs13 * εs13 x6
1 0

To calculate Reidemeister torsion of S U4/T we need multiplication of sixth cohomology bases

elements and then we have M6 =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


and | det(M6)| = 1.

In general the matrix Mk represents the intersection pairing between the homology classes of
degrees k and (n+1)n−k with real coefficient. So in general | det(M n(n+1)

2
)| = 1. Hence the Reidemeister

torsion of S U4/T is 1 by the Reidmeister torsion formula for manifolds.
By Theorems 1.1, 3.18 and 3.20, we obtain the following result.

Theorem 3.22. The Reidemeister torsion of S Un+1/T is always 1 for any positive integer n with n ≥ 3.

Remark 3.23. We should note that we found this result by Schubert calculus. But, we choose any
basis to define Reidemeister torsion. There are many bases for the Reidemeister torsion to be 1. Why
we focus on this basis to compute the Reidemeister torsion is that we can use Schubert calculus and
we have cup product formula in this algebra in terms of Schubert differential forms. Otherwise these
computations are not easy. Also by Groebner techniques we can find the normal form of all elenents
of Weyl group indexing our basis. So computations in this algebra is avaliable.
Remark 3.24. In our work, we consider flag manifold S Un+1/T for n ≥ 3. Then we consider the
Schubert cells {cp} and the corresponding homology basis a {hp} associated to {cp} . We caculated that
Tor(C∗(K), {cp}np=0, {hp}

n
p=0) = 1.

If we consider the same cell-decomposition but other homology basis {h′p} then by the change-base-
formula (1.4), then we have

Tor(C∗, {cp}np=0, {h
′
p}

n
p=0) =

n∏
p=0

(
1

[h′p, hp]

)(−1)p

· Tor(C∗, {cp}np=0, {hp}
n
p=0).

Remark 3.25. In the presented paper M = K/T is a flag manifold, where K = S Un+1 and T is the
maximal torus of K. Clearly, M is a smooth orientable even dimensional(complex) closed manifold.
So there is Poincaré (or Hodge) duality. Therefore, we can apply Theorem 1.1 for M = K/T .
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