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Abstract: In this manuscript, we examine the SIR model under convex incidence rate. We first
formulate the famous SIR model under the aforesaid incidence rate. Further, we develop some
sufficient analysis to examine the dynamical behavior of the model under consideration. We compute
the basic reproductive number R0. Also we study the global attractivity results via using Dulac
function theory. Further, we also provide some information about the stability of the endemic and
disease free equilibria for the considered model. In addition, we use nonstandard finite difference
scheme to perform numerical simulation of the considered model via using Matlab. We provide
different numerical plots for two different values of contact rate and taking various initial values for
compartments involved in the considered model.
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1. Introduction

Infectious diseases are spread by pathogenic microorganisms. These diseases can transmit from one
person to another or from animals or birds. But with all the advancement in medicine to control the
disease, it is still major threats for the population. Major causes of infectious disease are changing in
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human behaviors, use of antibiotic drugs and larger and denser cities. With the advancement of science
and technology, the transmission and how to control it in society are hot areas of research for the last
many decades. To control and predict for future planing, one of the powerful tool of mathematics is
known as differential equations. By differential and difference equations, we can convert a physical
or biological phenomenon to mathematical equations. The analysis and investigation of equations
formed from biological or physical phenomenon give interesting and fruitful information about the
process of how to control and predict future planing. This conversion of physical or biological process
to mathematical equations is called mathematical modeling. Mathematical models for the infectious
diseases are the major tools to study the process through which diseases spread in a population. In this
regard large numbers of mathematical models were formulated in past. We refer few as [1–3]. The idea
of mathematical model of infectious disease was provided by Mckendrick and Kermack [4] in 1927.
The aforementioned scientists described the interaction between susceptible, infected and recovered
individual in a community by a simple model known as SIR. An updated SIR model [5] is

dS
dt

= B − ηS − βS I,

dI
dt

= βS I − γI − ηI,

dR
dt

= γI − ηR,

(1.1)

where N∗ = S (t)+I(t)+R(t), is the total population, S denotes the population of susceptible, while I for
infected population and R for recovered individuals. Further, death rate and birth rate are represented
by η and B respectively. Also infectious rates, denoted by γ and β, are used for contact and removal
rate respectively. The aforementioned model is updated to various forms and the idea of SIR model
numerous models of infectious disease is formed in literature. The number of diseases increases with
the passage of time. Particularly those diseases which are fatal and transferable from one person to
another. In order to get control over such fatal diseases, various methods were adopted by scientists.
The mathematicians have an important contribution in this regard and their role cannot be denied. They
used different models called epidemiological models. In SIR model the total population is deviled into
three compartments which are, the susceptible compartment consists of those people who doe not
affected by any disease. The infected compartment consists of those peoples who are suffering from
disease while the recovered compartment consists of those people who get rid of the diseases and
become healthy and sound via proper cure and remedy.

Here, we remark that it is important to know how the disease transmits from an infected person to
a healthy one. The rate at which this transmission takes place is called contact rate. According to law
of mass action this transmission will take place when a proportional quantity of the healthy persons
comes into the contact of infected population. From investigation of various mathematical models,
one can find a basic function known as incident rate. With the help of this term, we can identify or
diagnose the nature of the diseases. Various incidence rates for the transmission of disease have been
studied in literature. For instance, Capasso and Serio [6] in 1978 defined a saturated type incidence
rate to investigate the infection between infected and susceptible individuals. They concluded that
such effect occurred either due to the overcrowding of infected people or some prevention measure
taken by the susceptible people or both. The transmission mechanism of disease in community occur
by term rate which is a mathematical function known as incidence rate. The mentioned function is
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also called the force of infection and it is important in SIR, QSIR, SEIR, models. It depends on the
susceptible and infected compartment of the population in most cases. Korobeinikov [7, 8]
investigated the world-wide properties of an SEIR model by universal non-linear incident rate. He
calculated numerous conditions using Lyapunov direct method in terms of incident rate, which proof
global asymptotically stable state under positive components such as endemic equilibrium. These
conditions of the form of f (S , I) = S g(I), are affirmed by incidence rates where S , I are susceptible
and infected population respectively, and g(I) represents a concave downward function. In the present
characterizations, some familiar incidence rates are used like g is saturating or linear (principle of
mass action). In this case g is not convex like incidence rates. A light assumption on g is practiced in
besides all these convex functions are still in rule. Incident rate have been studied by many
researchers in various articles like [9–11]. Further complex dynamic has also been studied in
epidemiological models with different incidence rate, e.g the limit cycle. Moreover, existence of
equilibrium and some other kinds of bifurcations has been calculated, like Saddle-node, Hopf,
homo-clinic, also Bagdanov-Takens bifurcation are involved [12] and references therein. One of the
best and suitable rate is called convex incidence rate which has been rarely considered in literature in
few paper [13, 14]. induced by the mentioned work, in this paper, we consider convex incidence rate
instead of aforementioned rate to investigate the SIR model (1.1) in new Scenario. Convex incidence
rate shows the psychological consequences determine sever diseases in the population, where the
infected number is going to increase. By studding the mathematical dynamic of the model and
calculating the endemic and the disease-free equilibrium points, we investigate that the count of
infected persons approaches to zero as the time develop or disease persevere. This work suggests that
convex contact rate bearing the shape

f (S , I) = MIS (1 + γI), (1.2)

which is parallel related to infectious compartment I(t), whenever it increases or decreases when I(t)
increases or decreases and M is a proportionality constant. It equates with the growth rate of the
disease due to two exposures over a small period of time. The individual contacts precede to infection
under the range MIS . On the other hand, the new infected person originates from double exposures
at the rate γMI2S . On the other side, incidence rate (1.2) is a related to the stableness properties
of the epidemic model also. We investigate the updated model under the convex incidence rate and
bring out a global analysis consisting of stability analysis, global and local attractively and numerical
simulation. For further detail about mathematical models, we refer some valuable work as [15–20].
We use nonstandard finite difference method for numerical simulation,that used in [21, 22].

2. Model formulation

Here, we construct our model. For this purpose, we divide the host populations into three
compartments as described earlier in the introduction under the given force function in (1.2) as

dS
dt

= B − ηS − MIS (1 + γI) + αR

dI
dt

= MIS (1 + γI) − (µ + η)I

dR
dt

= µI − (α + η)R.

(2.1)
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For the above System (2.1), we have the following initial data

S (0) = S 0 > 0,
I(0) = I0 ≥ 0,

R(0) = R0 ≥ 0.

Firstly, we denote the biological meaning by S (t) the susceptible component, the infected
component by I(t) and the recovered components by R(t). The considered model is defined in the first
octant of R3. Further, we assume that equilibrium exists. To calculate the set of positive equilibrium

B − ηS − MIS (1 + γI) + αR = 0
MIS (1 + γI) − (µ + η)I = 0

µI − (α + η)R = 0.
(2.2)

From (2.2), we have

B −
µ − (B + µ)
M(1 + γI)

−
MI(B + µ)
M(1 + γI)

(1 + γI) +
αB
µ + α

I = 0

B(M(1 + γI)) − µ(B + µ) − MI(B + µ)(1 + γI) + (
MαI
µ + γ

)(1 + γI) = 0

Mα
(

γ

µ + γ
− (B + µ)

)
I2 + M

(
Bγ − (β + µ) +

Bα
µ + γ

)
I + BM − µ(β + µ) = 0. (2.3)

The basic reproduction number is defined as

R0 =
MB

µ(B + µ)
. (2.4)

From model (2.3), we have the following:

(i) System (2.1) does not have positive equilibrium if R0 < 1;
(ii) System (2.1) possesses a unique nontrivial positive-equilibrium points (S ∗, I∗,R∗), if R0 > 1 and

given by

S ∗ =
B + µ

M(1 + γI)
,

R∗ =
B

µ + α
I,

I∗ =

(
B + µ − MBγ − Bγ

µ+γ

)
+
√

∆

2Maα( γ

µ+γ
− B − µ)

,

(2.5)

where

∆ =

(
B + µ − MγB −

βγ

µ + γ

)2

− 4Mα

(
γ

µ + γ
− B − µ

)
(MB − µ(B + µ)).
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3. The Dynamic behavior of the considered model

In order to study the dynamic of model (2.1), we provide the following result.

Lemma 3.1. System (2.1) has invariant sub manifold of subspace N∗(t) = B
η

which is attracting in the
first octant.

Proof. Assume that N∗(t) = S (t) + I(t) + R(t). By addition of system equations (2.1), we get

dN∗

dt
= B − η. (3.1)

Clearly, the solution of system (2.1) is N∗(t) = B/η, and the general solution if N∗(t0) ≥ 0, is

N∗(t) =
1
η

[B − (B − dN∗(t0))et0−t)].

Thus
lim
t→∞

N∗(t) =
B
η
. (3.2)

This shows that the plane defined by N∗(t) = B/η contains limit set of system (2.1). Therefore, we will
confine our self to the following reduced system. �

dI
dt

=MI(1 + γI)
(

B
µ
− R − I

)
− (B + µ)I ∆

= P(I,R),

dR
dt

=BI − (η + γ)R ∆
= Q(I,R),

(3.3)

Lemma 3.1 suggests that system (2.1) has no periodic orbits. This claim is given by he following result.

Theorem 3.2. There are no nontrivial periodic orbits for system (2.1).

Proof. Firstly, for system(2.1), we assume a Dulac function as

D(I,R) =
1

MI(1 + γI)
. (3.4)

We have
∂(DP)
∂I

+
∂(DQ)
∂R

= −1 − (B + η) −
η + α

αI(1 + γI)
< 0.

To elaborate the properties of the endemic and the disease free equilibrium points E∗ and E0

respectively, we re-scale system (2.1) by

χ =
M

η + α
I,

y =
M

α + η
R,

τ = (α + η)t.
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After this, we have

dχ
dτ

= χ(C − χ − y)(pχ + 1) − mχ,

dy
dτ

= qχ − y,
(3.5)

where

q =
B

η + α
,

C =
Bk

η(η + α),

m =
B + η

α + η
,

p =
α(d + α)2

K2 .

Note that if m − C < 0 , then the only absolute stability (χ∗, y∗) of system (3.5) will be the locally
stability E∗ of the model (2.1) and the trivial stability (0, 0) of the proposed model (3.5) will be disease
free equilibrium E0 of model (2.1), where

χ∗ =
(pC − q − 1) +

√
(1 + q − pA)2 − 4p(1 + q)(m −C)

2p(1 + C)
,

y∗ = qχ∗.

Next, we find the topological type and stability of (0, 0). For the system (3.5) at (0, 0),. The Jacobian
matrix reads

Q0 =

(
C − m 0

q −1

)
. (3.6)

If the condition C − m = 0 is satisfied, then a small neighborhood N0 exists about (0, 0) and the
mathematical behavior of model (3.5) becomes topologically equal to the following system

dχ
dτ

= χ2 + 2χy + O
(
(χ, y)2

)
dy
dτ

= qχ − y.
(3.7)

Perko [23] and Zhang et al. [24] concluded that for system (3.7) has a saddle-node (0, 0). �

Keeping in mind the above results, we can write the following theorem.

Theorem 3.3. The trivial equilibrium point of t system (2.1) possess the following properties.

(i) Hyperbolic saddle, If m < C.
(ii) Saddle node, If m = C.

(iii) Stable hyperbolic node, If m > C.
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Proof. If m − A < C, then the discussion is about the topological type and stability. The Jacobian
matrix at (χ∗, y∗) of Eq (3.7) is

M1 =

(
2(pC − q − 1)χ∗ − 3pC(1 + q)x∗2 + C − m −χ∗(pχ∗ + 1)

q −1

)
, (3.8)

This implies that
det(M1) = 3pC(1 + q)χ∗

2
− 2(pC − q − 1)χ + m −C.

To determine the sign of det(M1), we can calculate S 1 as

S 1 = 3p(1 + q)χ∗
2
− 2(pC − q − 1)χ + m −C. (3.9)

Assuming H = 1 + q and replacing in Eq (3.9), we have

S 1 = 3pHχ∗
2
− 2(pC − H)χ + m −C. (3.10)

From the quadratic equation in (3.10) has the form

3pHχ∗
2
+ 2(H − pC)χ∗ −C + m = 0, (3.11)

from which we can find out that

χ∗
2

=
(C − m) − 2(H − pC)χ∗

3pH
. (3.12)

Substituting in Eq (3.10), one has

S 1 = (pC − H)χ∗ + 2(C − m). (3.13)

From Eq (3.11), we obtain

χ∗ =
(pC − H) +

√
(H − pC)2 − 4pH(m −C)

2pH
. (3.14)

Now, substituting Eq (3.14) in Eq (3.13), the following can be extracted.

S 1 =
(pC − H)2 + ∆1

2pH
+ 2(C − m)

where ∆1 =
√

(H − pC)2 − pA(m −C)H.

Hence, S 1 > 0, if C − m > 0. This implies that determinant of (χ∗, y∗) is a node and det(M1) > 0. �

Furthermore, we can obtain the following results related to the equilibrium of (χ∗, y∗).

Theorem 3.4. For system (2.1), there is a unique local stable node (χ∗, y∗), when m −C < 0.
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Proof. To determine the equilibrium of (χ∗, y∗), we need to find tr(M1). Since

M1 =

(
2(pC − q − 1)χ∗ − 3pA(1 + q)χ∗

2
+ C − m −χ∗(1 + pχ∗)

q −1

)
, (3.15)

tr(M1) = 2(pC − q − 1)χ∗ − 3pC(1 + q)χ∗
2
+ C − m − 1.

Now,

S 2 = 2(pC − q − 1)χ∗ − 3pC(1 + q)χ∗
2
+ C − m − 1. (3.16)

Computing χ∗
2

from Eq (3.11) and putting in Eq (3.16), we get

S 2 = 2(pC − H)χ∗ − 3pCH
(
m −C + (H − pC)χ∗

pH

)
+ C − m − 1,

= 2(p − H)χ∗ − 3C[m −C + (H − pC)χ∗] + C − m − 1,
= 2pCχ∗ − 2Hχ∗ + 3pC2χ∗ − 3CHχ∗ + 3C(C − m) + C − m − 1.

Thus,

S 2 = (D1C + D2)χ∗ + (D3C + D4),

where,

D1 = p(2 + 3C) + 3(1 + q), D2 = −2(1 + q),
D3 = 3(C − m) + 1, D4 = −(m + 1).

It can be clearly seen that B1C + B2 > 0, when m −C < 0. Now let

Ψ = pHχ∗
2
+ (H − pC)χ∗ −C + m.

Hence,

(D1C + D2)2 Ψ = QS 2 + S 3,

where Q denotes the polynomial of χ∗ and

S 3 = (p(2 + 3C) + 3H)2 C2 + 4H2 − 4CH (p(2 + 3C) + H) (m −C). (3.17)

If we consider that S 2 = 0 and Ψ = 0, we can obviously observe that S 3 = 0. Besides, if m−C < 0,
then S 3 > 0. In addition, for all non-negative values of C, q , p and S 2 , 0. Nevertheless, tr(M1) , 0.
So m−C < 0 which shows that (χ∗, y∗) does not effect endemic as well as trivial equilibrium. We Take
p,C, q, and m are unity, then χ∗ =

√
2, y =

√
2, tr(M1) = −6.0883. The continuity of tr(M1) on the

following constant, for m −C < 0 tr(M1) < 0. This completes our proof. �

The next theorem concludes the results for the mathematical analysis of the original system (2.1)
can be established.
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Theorem 3.5. From R0 defined in (2.4), we have

(i) System (2.1) has a unique disease-free equilibrium E0 = ( B
η
, 0), if R0 < 1, which shows global

attraction of the system (2.1) in the first octant.
(ii) System (2.1) has a unique disease-free equilibrium E0 = ( B

η
, 0) R0 = 1, and draws all orbits under

the interior of first octant;
(iii) System (2.1) has two equilibria when R0 > 1, one is the endemic equilibrium and the other is

E∗ = (S ∗, I∗,R∗) with disease-free equilibrium at E0 = ( B
η
, 0). The endemic equilibrium E∗ has a

global attractor within the interior of first octant.

4. Global stability

Global stability means that any trajectories finally tend to the attractor of the system, regardless of
initial conditions.
Here, we used Lyapunov function to study global stability at the disease free equilibrium point by the
following theorem.

Theorem 4.1. The disease free equilibrium of the system (2.1) is globally asymptotically stable if
R0 < 1.

Proof. We prove the result by constructing a Lyapunov function .

` = c1(S 0 − S (t)) + c2I(t), (4.1)

such that the constants c1and c2 are determined later. Differentiating (4.1) with respect to t, to get

d`
dt

= −c1S .(t) + c2I .(t)

d`
dt

= −c1
[
B − ηS − MIS (1 + γI) + αR

]
+ c2

[
MIS (1 + γI) − (µ + η)I

]
We get

d`
dt

= MS (t)I(t)(1 + γI(t)) (c2 + c1) − c1B − c1αR + C1ηS (t) − c2(µ − η)I(t).

Let assume c1 = 1 and c2 = −1, we get finally

d`
dt

= −(B − ηN(t) + αR) < 0.

Hence, the model (2.1) is “stable globally asymptotically”, with R0 < 1. �

5. Numerical results and conclusions

In this section, to perform numerical simulation for the proposed model under convex contact rate,
we use the following values.

Since biological models are often described by ordinary or partial differential equations. Therefore,
for their numerical simulation various methods have been used for converting continuous models to
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discrete counterparts by applying standard difference methods like, RK4, Euler, etc. But in most cases
the aforementioned methods suffer from numerical instability. The said instability was removed in
1989 by Mickens. He introduced a more reliable numerical scheme called non standard finite difference
scheme (NSFDS). The mentioned method preserves main properties of the differential counterparts,
such as positivity, monotonicity, periodicity, stability and some other invariants including energy and
geometrical shapes. Hence, this method has been used as a powerful tool for numerical simulation of
many models of biology (see for details [25]). Hence, we use NSFDS for the numerical simulation of
the proposed model using Matlab.

The model has only one disease free equilibrium point which has been developed in previous
sections. From Figures 1–3, the asymptotic stability of equilibrium is obvious. Further, from Figure 1,
we see that taking various initial population of susceptible class, the number of susceptible individuals
decreases sharply during the first 50 days and then become stable. When the population of susceptible
individual increases, the decay gets faster and hence become first stable as compared to the least
initial value of S . From Figures 2 and 3, we see that the rate of recovered individuals are faster than
the rate of infected individuals by taking different initial values of I and R, respectively. From Figure
1, we see that nearly 80 days after, the susceptible population becomes stable and hence many
individuals have recovered at that time from the infected individuals taking the numerical values given
in Table 1. In Figures 1–3 we take γ = 0.0009. Now in Figures 4–6, we take the same initial
population and take γ = 0.00045. We can observe that the decrease in susceptible population is
sharply fastest as in Figure 4 compared to Figure 1. Similarly, the increase in infected and in
recovered population is also fastest at the lower value of γ as shown in Figures 5 and 6 as compared to
Figures 2 and 3 respectively. It means that contact rate is important and has the ability to produce
effects on the dynamics of transmission of the disease.

Table 1. The physical description of the parameters with numerical values.

Parameters physical description Numerical value
S 0 Initial susceptible population 180, 170, 160, 150
I0 Initial infected Population 50, 55, 40, 60
R0 Initial Population which is recovered from disease 20, 30, 40, 50
B Total population recruitment rate at in any time t 10.7
η Represent natural death 0.062
µ Represent Recovery rate 0.02
M Constant of Proportionality 1
α Represent lose by immunity become the susceptible 0.000761
γ Contact rate 0.0009, 0.00045
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Figure 1. Graph of Susceptible compartment S (t) of the considered model corresponding
for different initial values and at γ = 0.0009.
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Figure 2. Graph of the Infected compartment I(t) of the considered model corresponding for
different initial values and at γ = 0.0009.
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Figure 3. Graph of the Recovered compartment R(t) of the considered model corresponding
for different initial values and at γ = 0.0009.
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Figure 4. Graph of Susceptible compartment S (t) of the considered model corresponding
for different initial values and at γ = 0.00045.
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Figure 5. Graph of the Infected compartment I(t) of the considered model corresponding for
different initial values and at γ = 0.00045.
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Figure 6. Graph of the Recovered compartment R(t) of the considered model corresponding
for different initial values and at γ = 0.00045.

6. Conclusions

We have successfully established a global analysis of SIR model under convex incidence rate. We
have also provided appropriate information that involve convex incidence rate and its effect on the
dynamics of the model and transmission of disease. Further, the theoretical results have also enriched
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by suitable numerical simulation by using NSFDS, which is more powerful than usual RK4 and Euler
method. We conclude that taking convex incidence rate, from the presented analysis we conclude that
convex incidence rate shows the psychological consequences determine sever diseases in the
population, where the infected number is going to increase. In addition, the use of numerical
simulations with this kind of models can be specially used for future planning of public health
policies how to control the serious diseases like influenza, malaria, salmonella, cholera, whooping
cough, and measles in a community.
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