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1. Introduction

Let q ≥ 3 be a fixed integer. For any integers k ≥ 2 and m with (m, q) = 1, we define the two-term
exponential sums G(m, k; q) as

G(m, k; q) =

q−1∑
a=0

e
(
mak + a

q

)
,

where as usual, e(y) = e2πiy and i2 = −1.
This sum play a very important role in the study of analytic number theory, many number theory

problems are closely related to it. Such is the case with the famous Waring problem. Therefore,
it is necessary to study the various properties of G(m, k; q), in order to promote the development of
research work in related fields. The work in this area mainly includes two aspects, one is the upper
bound estimate of the exponential sum, the other is the mean value of the exponential sum. In fact,
a great deal of work has been done in this field and a series of meaningful research results have been
obtained, we do not want to enumerate here, interested readers can refer to references [5–15].

For example, H. Zhang and W. P. Zhang [5] proved that for any odd prime p, one has the identity
p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + na

p

)∣∣∣∣∣∣∣
4

=

{
2p3 − p2 if 3 - p − 1,
2p3 − 7p2 if 3|p − 1,
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where n represents any integer with (n, p) = 1.
W. P. Zhang and D. Han [6] obtained the identity

p−1∑
a=1

∣∣∣∣∣∣∣
p−1∑
n=0

e
(
n3 + an

p

)∣∣∣∣∣∣∣
6

= 5p4 − 8p3 − p2,

where p denotes an odd prime with 3 - (p − 1).
X. Y. Liu and W. P. Zhang [8] proved that for any prime p with 3 - (p − 1), one has the identity

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= p(p − 1)
(
6p3 − 28p2 + 39p + 5

)
,

where
∑

χ mod p

denotes the summation over all Dirichlet characters modulo p.

In this paper, we will use the properties of Legendre’s symbol and the classical Gauss sums to prove
the following main result:

Theorem. Let p > 3 be a prime, then we have the identity

p−1∑
m=1

(
m
p

) ∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
4

=

{
p2 (δ − 3) , if p ≡ 1 mod 6;
p2 (δ + 3) , if p ≡ −1 mod 6,

where as usual,
(
∗

p

)
denotes the Legendre’s symbol modulo p, d · d ≡ 1 mod p, δ =

p−1∑
d=1

d − 1 + d
p

 is

an integer which satisfies the estimate |δ| ≤ 2
√

p.

From this theorem and H. Zhang and W. P. Zhang [5] we may immediately deduce the following
three corollaries:

Corollary 1. Let p > 3 be a prime, then we have the identity

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
m2 · a3 + a

p

)∣∣∣∣∣∣∣
4

=

{
2p3 + p2 (δ − 10) , if p ≡ 1 mod 6;
2p3 + p2 (δ + 2) , if p ≡ −1 mod 6.

Corollary 2. Let p > 3 be a prime, n be any quadratic non-residue modulo p. Then we have the
identity

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
n · m2 · a3 + a

p

)∣∣∣∣∣∣∣
4

= 2p3 − p2 (δ + 4) .

Corollary 3. Let p > 3 be a prime. Then for any integer n with (n, p) = 1, we have the asymptotic
formula

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
n · m2 · a3 + a

p

)∣∣∣∣∣∣∣
4

= 2p3 + O
(
p

5
2
)
.
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Some notes: From our theorem and A. Weil’s work [15] we can also deduce the following nontrivial
estimate: ∣∣∣∣∣∣∣∣

p−1∑
m=1

(
m
p

) ∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
4∣∣∣∣∣∣∣∣ = O

(
p

5
2
)
.

Obviously, this estimate saves p
1
2 compared to the trivial estimate p3, and may be used in some analytic

number theory problems.
In addition, the distribution of exponential sums is very irregular, so it should be meaningful to

study their power means and obtain an accurate calculation formula.
It is interesting to ask whether a formula analogous to our theorem can be obtained for the general

2h-th power means
p−1∑
m=1

(
m
p

) ∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2h

, where h ≥ 3.

This is an open problem. We hope that interested readers will join us in considering this problem.

2. Several lemmas

In this section, we will give some basic lemmas. Of course, the proofs of these lemmas need some
knowledge of elementary and analytic number theory. They can be found in references [1–4], and we
do not repeat them. At the beginning, we are going to introduce the definition of the classical Gauss
sums τ(χ) as follows: For any integer q > 1, let χ denotes any Dirichlet character modulo q, then the
classical Gauss sums τ(χ) is defined as

τ(χ) =

q∑
a=1

χ(a)e
(
a
q

)
,

where e(y) = e2πiy. Based on this definition and its properties:

q∑
a=1

χ(a)e
(
ma
q

)
= χ(m) · τ(χ),

providing (m, q) = 1 or χ is a primitive character modulo q, we have the following:
Lemma 1. If p > 3 be an odd prime, then we have the identity

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2

= −

(
−3
p

)
· p,

where
(
∗

p

)
= χ2 denotes the Legendre symbol mod p.

Proof. Note that χ3
2 = χ2 and τ2(χ2) = χ2(−1) · p, from the definition and properties of the Gauss

sums and reduced residue system modulo p we have

p−1∑
m=1

χ2(m)

 p−1∑
a=0

e
(
ma3 + a

p

)
2
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=

p−1∑
m=1

χ2(m)
p−1∑
a=0

e
(
ma3 + a

p

) 1 +

p−1∑
b=1

e
(
mb3 + b

p

)
=

p−1∑
m=1

χ2(m)
p−1∑
a=0

e
(
ma3 + a

p

)

+

p−1∑
m=1

χ2(m)
p−1∑
a=0

p−1∑
b=1

e
(
ma3 + mb3 + a + b

p

)

= τ(χ2)
p−1∑
a=1

χ2(a)e
(

a
p

)
+ τ(χ2)

p−1∑
a=0

p−1∑
b=1

χ2

(
a3 + b3

)
e
(
a + b

p

)

= τ(χ2)
p−1∑
a=1

χ2(a)e
(

a
p

)
+ τ(χ2)

p−1∑
a=0

χ2

(
a3 + 1

) p−1∑
b=1

χ2(b)e
(
b(a + 1)

p

)

= τ2 (χ2) + τ2 (χ2) ·
p−1∑
a=0

χ2

(
a3 + 1

)
χ2(a + 1)

= χ2(−1) · p + χ2(−1) · p ·
p−2∑
a=0

χ2

(
a2 − a + 1

)
= χ2(−1) · p + χ2(−1) · p ·

p−2∑
a=0

(
(2a − 1)2 + 3

p

)

= χ2(−1) · p −
(
−3
p

)
· p + χ2(−1) · p ·

p−1∑
b=0

(
b2 + 3

p

)
. (2.1)

Note that for any odd prime p, we have the identity
p−1∑
a=0

(
a2 + n

p

)
=

(
n
p

)
+

p−1∑
a=1

(
1 +

(
a
p

)) (
a + n

p

)

=

p−1∑
a=0

(
a + n

p

)
+

p−1∑
a=1

(
a(a + n)

p

)
=

p−1∑
a=1

(
1 + n · a)

p

)

=

p−1∑
a=1

(
1 + na

p

)
=

{
p − 1 if p | n,
−1 if p - n.

(2.2)

From (2.1) and (2.2) we have

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2

= −

(
−3
p

)
· p.

This proves Lemma 1.
Lemma 2. Let p > 3 be an odd prime, then we have the identity

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2  p−1∑

b=0

e
(
−mb3 − b

p

)
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=

(
−1
p

)
· p2 +

(
−6
p

)
· p2 ·

p−1∑
a=0

a3+2≡0 mod p

(
a + 2

p

)
.

Proof. From Lemma 1 and its proving methods we have

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2  p−1∑

b=0

e
(
−mb3 − b

p

)
=

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2 1 +

p−1∑
b=1

e
(
−mb3 − b

p

)
= −

(
−3
p

)
· p +

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2  p−1∑

b=1

e
(
−mb3 − b

p

)
= −χ2(−3) · p + χ2(−1) · p ·

p−1∑
a=0

p−1∑
b=0

(
a3 + b3 − 1

p

) (
a + b − 1

p

)
. (2.3)

Let c = b−1, if b pass through a complete residue system mod p, then c also passes a complete residue
system mod p, from (2.2), (2.3) and the properties of the complete residue system mod p we have

p−1∑
a=0

p−1∑
b=0

(
a3 + b3 − 1

p

) (
a + b − 1

p

)

=

p−1∑
a=0

p−1∑
c=0

(
a3 + (c + 1)3 − 1

p

) (
a + c

p

)

=

p−1∑
a=0

p−1∑
c=1

(
a3c3 + c3 + 3c2 + 3c

p

) (
ac + c

p

)
+

p−1∑
a=1

(
a4

p

)

= (p − 1) +

p−1∑
a=0

(
a + 1

p

) p−1∑
c=1

(
a3 + 1 + 3c + 3c2

p

)

= (p − 1) −
p−1∑
a=0


(
a3 + 1

)
(a + 1)

p

 +

p−1∑
a=0

(
a + 1

p

) p−1∑
c=0

(
3c2 + 3c + a3 + 1

p

)

= (p − 1) −
p−2∑
a=0

(
a2 − a + 1

p

)
+

p−1∑
a=0

(
a + 1

p

) p−1∑
c=0

(
3(2c + 1)2 + 4a3 + 1

p

)

= p − 1 +

(
3
p

)
−

p−1∑
a=0

(
(2a − 1)2 + 3

p

)
+

p−1∑
a=0

(
a + 1

p

) p−1∑
c=0

(
3c2 + 4a3 + 1

p

)

= p +

(
3
p

)
+

(
3
p

)
p

p−1∑
a=0

4a3+1≡0 mod p

(
a + 1

p

)
−

(
3
p

) p−1∑
a=0

(
a + 1

p

)
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= p +

(
3
p

)
+

(
3
p

)
· p ·

p−1∑
a=0

2·a3+1≡0 mod p

2a + 1
p


= p +

(
3
p

)
+

(
3
p

)
· p ·

p−1∑
a=0

a3+2≡0 mod p

(
a + 2

p

) (
2
p

)

= p +

(
3
p

)
+

(
6
p

)
· p ·

p−1∑
a=0

a3+2≡0 mod p

(
a + 2

p

)
. (2.4)

Combining (2.3) and (2.4) we have the identity

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2  p−1∑

b=0

e
(
−mb3 − b

p

)
=

(
−1
p

)
· p2 +

(
−6
p

)
· p2 ·

p−1∑
a=0

a3+2≡0 mod p

(
a + 2

p

)
.

This proves Lemma 2.
Lemma 3. If p > 3 is an odd prime, then we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(
a3 + b3 − c3 − 1

p

) (
a + b − c − 1

p

)

=

(
−1
p

)
· p ·

p−1∑
d=1

d − 1 + d
p

 − p − 3
(

3
p

)
· p −

(
6
p

)
· p ·

p−1∑
d=1

d3+2≡0 mod p

(
d + 2

p

)
.

Proof. Let d = a− 1, e = b− c. Then from the properties of the complete residue system modulo p we
have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(
a3 + b3 − c3 − 1

p

) (
a + b − c − 1

p

)

=

p−1∑
d=0

p−1∑
e=0

p−1∑
c=0

(
(d + 1)3 + (e + c)3 − c3 − 1

p

) (
d + e

p

)

=

p−1∑
d=0

p−1∑
e=0

p−1∑
c=0

(
d3 + 3d2 + 3d + e3 + 3e2c + 3ec2

p

) (
d + e

p

)

=

p−1∑
d=0

p−1∑
e=1

p−1∑
c=0

(
d3 + 3d2e + 3de2 + 1 + 3ec + 3e2c2

p

) (
d + 1

p

)

+p
p−1∑
d=1

(
d2 + 3d + 3

p

)
. (2.5)
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If c pass through a complete residue system mod p, then 2ce+1 also passes a complete residue system
mod p, so from (2.2) and (2.5) we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(
a3 + b3 − c3 − 1

p

) (
a + b − c − 1

p

)

=

p−1∑
d=0

p−1∑
e=1

p−1∑
c=0

(
3(2ce + 1)2 + 1 + 4d3 + 12d2e + 12de2

p

) (
d + 1

p

)

+p
p−1∑
d=0

(
(2d + 3)2 + 3

p

)
−

(
3
p

)
p

=

p−1∑
d=0

p−1∑
e=1

p−1∑
c=0

(
3c2 + 1 + 4d3 + 12d2e + 12de2

p

) (
d + 1

p

)

+p
p−1∑
d=0

(
d2 + 3

p

)
−

(
3
p

)
p

=

(
3
p

)
p

p−1∑
d=0

p−1∑
e=1

12de2+12d2e+4d3+1≡0 mod p

(
d + 1

p

)

−

(
3
p

) p−1∑
d=0

p−1∑
e=1

(
d + 1

p

)
− p −

(
3
p

)
p

=

(
3
p

)
p

p−1∑
d=1

p−1∑
e=1

3d2(2e+d)2+d4+d≡0 mod p

(
d + 1

p

)
− p −

(
3
p

)
p

=

(
3
p

)
p

p−1∑
d=1

p−1∑
e=0

3e2+d4+d≡0 mod p

(
d + 1

p

)
−

(
3
p

)
p

p−1∑
d=1

8d3+2≡0 mod p

(
d + 1

p

)
− p −

(
3
p

)
p

=

(
3
p

)
p

p−1∑
d=1

(
1 +

(
−3(d4 + d)

p

)) (
d + 1

p

)
− p −

(
3
p

)
p

−

(
3
p

)
p

p−1∑
d=1

(2d)3+2≡0 mod p

(
2d + 2

p

) (
2
p

)

= p
p−1∑
d=1

(
−d4 − d

p

) (
d + 1

p

)
− p − 2

(
3
p

)
p −

(
6
p

)
p

p−1∑
d=1

d3+2≡0 mod p

(
d + 2

p

)

=

(
−1
p

)
p

p−2∑
d=1

(
d
p

) (
d2 − d + 1

p

)
− p − 2

(
3
p

)
p −

(
6
p

)
p

p−1∑
d=1

d3+2≡0 mod p

(
d + 2

p

)
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=

(
−1
p

)
p

p−1∑
d=1

d − 1 + d
p

 − p − 3
(

3
p

)
p −

(
6
p

)
p

p−1∑
d=1

d3+2≡0 mod p

(
d + 2

p

)
.

This proves Lemma 3.

3. Proof of the theorem

Applying the basic lemmas of the previous section, we can easily complete the proof of our theorem.
Our proof idea is to decompose the proof process of the theorem into the form of lemmas, and then
apply Lemma 2 and Lemma 3 directly. In fact for any prime p > 3, note that τ2(χ2) = χ2(−1) · p and
the identity

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2  p−1∑

b=0

e
(
−mb3 − b

p

)
 p−1∑

c=1

e
(
−mc3 − c

p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=1

p−1∑
m=1

(
m
p

)
e

m
(
a3 + b3 − c3 − d3

)
+ a + b − c − d

p


= τ(χ2)

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=1

(
a3 + b3 − c3 − d3

p

)
e
(
a + b − c − d

p

)

= τ(χ2)
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(
a3 + b3 − c3 − 1

p

) p−1∑
d=1

(
d
p

)
e
(
d(a + b − c − 1)

p

)

= τ2(χ2)
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(
a3 + b3 − c3 − 1

p

) (
a + b − c − 1

p

)

=

(
−1
p

)
· p ·

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(
a3 + b3 − c3 − 1

p

) (
a + b − c − 1

p

)
, (3.1)

from (3.1), Lemma 2 and Lemma 3 we have
p−1∑
m=1

(
m
p

) ∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
4

=

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2  p−1∑

b=0

e
(
−mb3 − b

p

)
1 +

p−1∑
b=1

e
(
−mb3 − b

p

)
=

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2  p−1∑

b=0

e
(
−mb3 − b

p

)
+

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2  p−1∑

b=0

e
(
−mb3 − b

p

)
 p−1∑

b=1

e
(
−mb3 − b

p

)
=

p−1∑
m=1

(
m
p

)  p−1∑
a=0

e
(
ma3 + a

p

)
2  p−1∑

b=0

e
(
−mb3 − b

p

)
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+p
(
−1
p

) p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(
a3 + b3 − c3 − 1

p

) (
a + b − c − 1

p

)

=

(
−1
p

)
p2 +

(
−6
p

)
p2

p−1∑
a=0

a3+2≡0 mod p

(
a + 2

p

)
+ p2

p−1∑
d=1

d − 1 + d
p


−

(
−1
p

)
p2 − 3

(
−3
p

)
p2 −

(
−6
p

)
p2

p−1∑
d=1

d3+2≡0 mod p

(
d + 2

p

)

= p2 ·

p−1∑
d=1

d − 1 + d
p

 − 3
(
−3
p

)
· p2. (3.2)

Note that
(
−3
p

)
= 1, if p ≡ 1 mod 6; And

(
−3
p

)
= −1, if p ≡ −1 mod 6. From (3.2) we may

immediately deduce our theorem.

4. Conclusions

In this article, we obtained an identity for the fourth power mean of a certain two-term exponential
sum with the weight of the Legendre’s symbol modulo p. This result is the further promotion and
extension of [5,6], and it is new contribution in the related fields.
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