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Abstract: This article deals with a proposal for visualizing the speed of the different sections of the 
lines of a railway network that has been implemented in the computer algebra system Maple. The 
idea is to organize the data (the speed in the different sections of the railway network) as a weighted 
graph. The endpoints of the sections considered are the vertices of the graph and the edges are the 
sections of the railway lines of the network. The weights of the edges reflect the different speeds in 
the sections of the network. The vertices of the graph are drawn in the xy plane according to their 
geographical coordinates. The edges are represented by segments in the xy plane. Vertical rectangles 
are lifted from these segments according to the weights of the edges (as a kind of wrinkled 
histogram). Two different methods are proposed to compute the height of the rectangles: one directly 
considers the difference of speeds with respect to the maximum average speed and the other 
calculates the height so that the area of the rectangle represents the time required to traverse the 
section. This way the speeds of the different sections of the lines can be easily visualized (in 3D). 
The underlying mathematics is elementary, but the implementation is complex and makes extensive 
use of the possibilities of Maple’s plot package. 

Keywords: graph theory; railway networks; visualization; real world applications; computer algebra 
systems 
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1. Introduction  

Passengers’ decision making when traveling is more related to timings than to real distances. 
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For instance, a 2 hours flight between European capitals is nowadays considered “a short travel” (it 
is considered “normal” to attend a business lunch and return the same day). 

This idea has been transferred to railway travels, especially after the arrival of high-speed trains. 
For instance, the Madrid-Barcelona high-speed line was designed and the rolling stock was selected 
with a timing goal in mind: that it could compete with the airlines operating this route. 

We are very concerned about engineering data visualization. We have previously worked on 
visualization of radial railway networks, mixing the ideas underlying anamorphosis maps and polar 
area diagrams. We denoted our graphs isochrone circle graphs [1,2]. 

In polar area diagrams (diagrams similar to usual pie charts), sectors have equal angles and their 
radii are adjusted so that the area of the sector corresponds to the value of the variable. They were 
introduced by Florence Nightingale back in the XIXth century [3]. 

Meanwhile, in anamorphosis maps (also known as central point cartograms and distance 
cartograms) [4–6], the geographical heading from the central origin is respected but the distances 
from the latter point depend on the travel times (Figure 1). They were also introduced in the XIXth 
century [7,8] and are now relatively common, even in non-scientific sources [9,10]. Related 
anamorphosis processes have been applied in other different ways to visually show data (see, for 
instance, [11]).  

 

Figure 1. Anamorphosis map of the Spanish railway network (1942–2010). Courtesy of 
the Fundación de los Ferrocarriles Españoles (Spanish Railway Foundation). The 
English translation of “Tipo de servicio más rápido” is “Fastest type of service”. 
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In our isochrone circle graphs, the heading of a certain peripheral city from the center of the 
graph is chosen as the starting direction. The rest of the peripheral destinations are allocated 
clockwise or counterclockwise in headings and distances such that the angle of the sectors depend on 
the population served and the radii depend on the time to the destination (instead of on the distance 
to the destination). Our idea is now adopted, for instance, by the Fundación de los Ferrocarriles 
Españoles (Spanish Railway Foundation) [12] in their newest diagrams (Figure 2). 

There are proposals for alternative deformations of the map for visualizing speed in railway 
networks [13]. There are also 2D proposals for visualization of subway networks that use the 
thickness of the lines [14]. 

Another possibility is the use of accelerated time simulations to generate visual information 
[15–18]. Obviously, visualization of data can be successfully applied not only to transportation 
engineering, but also to mathematics [19,20], sciences [21], etc. 

 

Figure 2. Three superimposed isochrone circle maps (1942, 1986, 2016) of the Spanish 
railway network. Courtesy of the Fundación de los Ferrocarriles Españoles (Spanish 
Railway Foundation). 

Graphs are very powerful tools for modeling and visualization. We can distinguish [22,23]: 

 A graph, G, is an ordered pair G = (V, E), where V is a set of elements called vertices and E is a 
set of sets of the form {v1, v2}, where v1, v2  V. The elements of E are called edges. 

 A directed graph (also called digraph), G, is an ordered pair G = (V, E), where V is a set of 
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elements called vertices and E is a set of ordered pairs of the form (v1, v2), where:  v1, v2  V 
and v1 ≠ v2. The elements of E are called directed edges or arcs. 

 A weighted graph is a graph in which a weight (a number) is assigned to each edge.  

Graphs have applications in many different fields of engineering, such as the design and 
analysis of electric circuits [24], origami structures [25], space structures [26], railway interlocking 
systems [27], knowledge engineering [28], etc. 

The new idea presented in this paper is the following: 

 Firstly, a weighted graph in which the edges are sections of the railway lines of the network (and, 
therefore, the endpoints of the sections considered are the vertices of the graph) is considered. A 
weight is assigned to each edge. In this case, each weight represents a datum related to the 
average speed in that section.   

 Secondly, a 3D representation of the weighted graph, that uses vertical rectangles, is computed 
and represented, creating a kind of relief map that presents the average speed in the different 
sections in a very visual way.  

Like if we were following the summit line of a chain of mountains, we can follow the upper 
horizontal sides of the rectangles corresponding to the sections of a railway line in the 3D 
representation of the network. The highest ones correspond to the sections with the lowest average 
speed. If more than one railway line is represented, it looks like drainage divides.  

The height of the rectangles can be assigned in two ways in this proposal:  
 it can be the difference of average speeds between that section and the sections with the highest 

average speed in the network (then the rectangles of height 0, that is, the rectangles that have 
collapsed to a segment in plane z=0, correspond to the sections with the highest average speed in 
the network), 

or 

 it can be a value such that the area of the rectangle is the time required to traverse that section of 
the network (this way, the sum of the areas of the rectangles corresponding to a line is the total 
travel time, similarly to how the area under a curve is the definite integral of the corresponding 
function). 

The package is implemented in the computer algebra system Maple 20201 and it takes 
advantage of the powerful command poligonplot3d of Maple’s plots package (among other 
commands of this package) and of ListTools package. A poster on a first version of this work 
was presented at FuzzyMAD 2019 conference [29].  

The article is illustrated with graphs produced from real data obtained from Renfe Operadora2 
timings in SW Spain lines. This part of Spain includes the oldest high-speed line (1992), as well as 
other high-speed and classic lines.  

The underlying mathematics is simple, as happens in papers [1,2], but we believe it is an 
interesting 3D visualization that makes clear which regions are best and worst served by the railway 
network and which parts of a line are responsible for a low total travel time. Visually introducing 
                                                              
1  Maple is a trademark of Waterloo Maple Inc. 
2  Renfe Operadora is a public Spanish entity that provides passenger and freight railway transport services. 
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data is important, and can be the key when transmitting information to average citizens. We know of 
no similar work. Let us finally note that introducing ideas or techniques from other fields in 
transportation engineering can be very fruitful [30].  

2. Materials and method 

2.1. Formulation 

The weighted graph is initially represented in the xy plane (without considering the weights of 
the edges). The vertices are allocated according to their corresponding coordinates. Segments are 
used to represent the sections of the lines considered (the edges of the graph without weights). This 
way a simplified map of the railway network is obtained (Figure 3). 

 

Figure 3. A simplified map of the railway subnetwork considered as illustration in this 
paper (from SW Spain). Some are standard track gauge and others are Iberian track 
gauge. 

Afterwards vertical rectangles are built according to the weight of each edge (Figure 4), like in a 
histogram where the rectangles are not coplanar but form different angles with the adjacent ones 
instead. It is visually clear that the third and fourth sections disadvantage the total timing in the 
MadridAlmería train timetable represented in Figures 4 and 5 (note that only the best timetables for 
each route are considered).  
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Figure 4. A frame proposal of 3D representation of the timetable of the Talgo train 
MadridAlmería (that has three intermediate stops).  

 

Figure 5. A rectangles proposal of the representation of the timetable of the train of Figure 4.  



7486 
 

AIMS Mathematics  Volume 5, Issue 6, 7480–7499. 

2.2. Method I: Inverse of average speeds 

For each vertical rectangle, the height assigned is  

h=v-1=t/s (1)
where s is the length of the section and t the time to traverse it. The reason for this choice is that, 
this way, the area of the rectangle is: 

(t/s) s=t (2)

(that is, the area of each rectangle is the time required to traverse that section of the line). 

This is an important issue because, many times, a drawing representing, for instance, the 
production of a company, is incorporated to the plot of the function “production level”. At another 
point of the function, for instance, when the production is doubled, the same drawing is included, 
dilated by a 2:1 ratio (Figure 6). This is not fair, as the area of the second drawing is four times the 
area of the first one, visually introducing the underlying idea that the production has increased much 
more. 

    

Figure 6. Two plots representing the evolution of the production of a lollipop candies 
factory. On the left the real curve, on the right the curve “illustrated” with simplified 
drawings of two lollipop candies. The bigger drawing is the image of the smaller one in a 
homothety of ratio 2. This gives the impression that the production has quadrupled 
instead of doubled from the first year to the second year. 

2.3. Method II: Differences of average speeds 

Let v0 be the maximum speed in the sections of the network. For each vertical rectangle, the 
height assigned is  

h=v  v0=(s/t)  v0 (3)

The reason for this choice is that directly representing speeds in the vertical axis is more 
common. Moreover, it gives a direct measure of the “height” of the “speed jumps” from one section 
of the network to an adjacent one.  



7487 
 

AIMS Mathematics  Volume 5, Issue 6, 7480–7499. 

3. Results 

Let us show how to obtain the different plots (the complete code is included in the Appendix). 

3.1. Real example, inverse of average speeds (Method I) 

Let us show how Figures 3, 4 and 5 were generated. As said in the Introduction, two Maple 
standard packages and the new package have to be firstly loaded:  

> restart; 
> with(plots): 
> with(ListTools):  
> load(C:/.../rectangles.mpl); 

(where the ... represent the path to the file rectangles.mpl containing the code of the new 
package). 

Afterwards the initial data of the representation have to be introduced, for instance: 

> partition := 10:                 
> origin     := [40,45]:            
> abscissa   := 60: 
> ordinate   := 45:                    

The data chosen mean: gap between vertices of the lattice: 10 km; coordinates of the origin of 
the lattice (Madrid): (40,45); number of vertices in the abscissa axis direction: 60; number of vertices 
in the ordinate axis direction: 45 (therefore the lattice represent an area of 600 km  450 km).  

The package can handle the existence of two track gauges. In this case the train timetables have 
been stored in two variables, denoted AV3 (“standard gauge”) and IB (“Iberian gauge”), respectively. 
Each route (denoted trail) is introduced section by section, alternating the details of the vertices 
and the weighted edges between them, in the following way:  

[abscissa, ordinate, name, label yes/no] ,  
inverse of the average speed in the section 

and AV and IB are updated using Introtrail procedure. A detailed example is given afterwards. 

The best high-speed trains (AVE) in the MadridSeville route (non-stop, 2 h 21 m) and 
CórdobaMálaga (1 intermediate stop, 55 m) can be introduced as follows4 (in this case they are 
provisionally allocated in variable trail before updating the trains’ data): 
> AV := []; 
> trail := [[0, 0, 'Madrid', 1], 141/471, [0, -5, '`La Sagra`', 0], 141/471, 
[0, -12, '`Ciudad Real`', 1], 141/471, [-2, -16, 'Puertollano', 0], 
141/471, [-5, -21, 'Villanueva', 0], 141/471, [-7, -24, 'Córdoba', 1], 
141/471, [-16, -31, 'Sevilla', 1]]; 
                                                              
3  The Spanish high‐speed railway network  is  standard gauge (1,435 mm) while  the Spanish classic  railway network  is 

Iberian gauge (1,668 mm). The translation to Spanish of “high‐speed” is “alta velocidad”.   
4  Note that the inverses of the speeds are all equal for the first train: that is because this is a non‐stop service. 
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> Introtrail(trail, 'av'); 
> trail := [[-7, -24, 'Córdoba', 1], 31/111, [-7, -31, '`Puente Genil`', 
0], 31/111, [-5, -35, 'Antequera', 1], 24/58, [-3, -38, '`Málaga`', 1]]; 
> Introtrail(trail, 'av'); 

Let us remark that not all stops have been introduced in this example for the sake of clarity (for 
instance the R. Exprés below has very frequent stops). On the other hand, some stations without train 
stop have been introduced in order the plot to be more accurate to the real map (like Puente Genil in 
the CórdobaSevilla timetable above). Of course the level of detail can be chosen by the user. For 
instance, all stops can be introduced in a regional route if analyzing just that route. 

Some Iberian gauge train timetables are similarly introduced below: MD5 MadridBadajoz (5 h 
18 m, 11 intermediate stops), Talgo6 MadridAlmería (6 h 28 m, 3 intermediate stops), Alvia7 
SevillaCádiz (1 h 32 m, 3 intermediate stops), Alvia SevillaHuelva (1 h 22 m, 1 intermediate stop), 
R. Exprés8 SevillaMérida (3 h 34 m, 14 intermediate stops). 

IB := []; 
trail := [[0, 0, 'Madrid', 1], 150/234, [-1, -2, 'Humanes', 0], 150/234, 
[-16, -4, 'Monfrague', 1], 9/14, [-18, -5, 'Mirabel', 1], 50/66, [-22, 
-8, '`Cáceres`', 1], 71/72, [-20, -15, '`Mérida`', 1], 38/59, [-28, -15, 
'Badajoz', 1]]; 
Introtrail(trail, 'ib'); 
trail := [[0, 0, 'Madrid', 1], 78/147, [6, -10, '`Alcázar de San Juan`', 
1], 100/165, [4, -22, 'Linares - Baeza', 1], 210/241, [7, -30, 'Moreda', 
0], 210/241, [15, -36, '`Almería`', 1]]; 
Introtrail(trail, 'ib'); 
trail := [[-16, -31, 'Sevilla', 1], 92/153, [-15, -35, 'Utrera', 0], 
92/153, [-20, -42, '`Cádiz`', 1]]; 
Introtrail(trail, 'ib'); 
trail := [[-16, -31, 'Sevilla', 1], 82/119, [-25, -34, 'Y', 0], 82/119, 
[-28, -34, 'Huelva', 1]]; 
Introtrail(trail, 'ib'); 
trail := [[-16, -31, 'Sevilla', 1], 21/27, [-15, -28, '`Los Rosales`', 
0], 106/99, [-17, -23, 'Llerena', 0], 39/40, [-20, -20, 'Zafra', 1], 
48/65, [-20, -15, '`Mérida`', 1]]; 
Introtrail(trail, 'ib'); 

                                                              
5  MD is the acronym for “Media Distancia” (Middle Distance) services.   
6  Talgo locomotive hauled trains have lightweight, independent wheels, natural tilting coaches, offering high speed and 

quality services in conventional lines. Renfe also owns Talgo trains operated on high‐speed lines (classes 102 and 112) as 

well as dual gauge trains (classes 130 and 730, the latter hybrid). 
7  Alvia is a commercial name for high speed and quality services in routes along conventional and high speed lines (the 

rolling stock used is dual gauge). 
8  Regional  Exprés  is  the  commercial  name  for  low  speed, multiple  stops  regional  services  (sometimes  it  is  the  only 

service available in low traffic lines). 
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The timetables of both track gauges can then be joined in a list and plotted altogether (in this 
case they are allocated in variable `3Dtrains`): 

`3Dtrains` := GraphicR([op(AV), op(IB)]); 
PlotR(`3Dtrains`, [-130, 60, 5], 'surfacewireframe', 'A'); 

The plot generated can be found in Figure 7. Note that the 'surfacewireframe' option 
corresponds to a plot with the interior of the rectangles filled. The three numbers in the second option 
represent the orientation of the plot (see Maple’s help ?plot3d/options for details). 

 
Figure 7. Representation of the speeds of all trains considered in the example along their 
corresponding routes (Method I). 

It is also possible to plot only some of the trains introduced. For instance, if we only want to 
plot the rectangles corresponding to the second train of list IB, that is IB[2], and no train of the 
first list, it is enough to type: 

`3Dtrains` := GraphicR([[], IB[2]]); 
PlotR(`3Dtrains`, [-130, 60, 5], 'surfacewireframe', 'A'); 

and the plot of Figure 5 is obtained. If the rectangles are not to be filled, the option 'pointline' 
has to be typed instead of 'surfacewireframe'. This way, the plot of Figure 4 is obtained 
typing: 
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`3Dtrains` := GraphicR([[], IB[2]]); 
PlotR(`3Dtrains`, [-130, 60, 5], 'pointline', 'A'); 

Altering the orientation of the plot can produce other interesting views. For instance, the 2D 
map of the network considered (Figure 3) can be obtained from a zenithal view of the 3D plot by 
typing: 

`3Dtrains` := GraphicR([op(AV), op(IB)]); 
PlotR(`3Dtrains`, [-90, 0, 0], 'pointline', 'A'); 

Similarly, a side view of the frames using the 'pointline' option, provides another 
comparative vision of the average speed in the different sections (Figure 8), where, for instance, the 
lowest and highest speed sections are distinguishable.  

 

Figure 8. Side view of the frame 3D plot (Method I). 

3.2. Real example, increase of average speeds(Method II) 

Although plotting rectangles whose areas represent time is fair, we are more used to directly 
represent speeds (or increases of speed) in the vertical axis. If this is what we want to represent, the 
data have to be transformed, what is performed by:  

> DataDif(): 

and then, the lines of code below generate figures analogous to those above. For instance: 
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> `3Dtrains`:= GraphicR([op(AVv), op(IBv)]); 
> PlotR(`3Dtrains`, [-90, 0, 0], 'pointline', 'B'); 

produces the zenithal view of the 3D plot of the example considered following Method II (Figure 9). 
Obviously, in the zenithal view there are no differences with respect to the 2D representation 
following Method I (Figure 3).  

 

Figure 9. Zenithal view (Method II: increases of speed).  

Observe in the two previous lines of code:  

 the 'v' added to the names of variables 'AV' and 'IB' 

 the final input to PlotR ('B' instead of 'A'). 

Meanwhile, the 3D plot of the timetable of the MadridAlmería Talgo (alone) can be produced 
using Method II by typing: 

> `3Dtrains` := GraphicR([[], IBv[2]]): 
> PlotR(`3Dtrains`, [-130, 62, 8], 'pointline', 'B'); 

(see Figure 10) and the rectangles can be filled by typing  

> PlotR(`3Dtrains`, [-130, 62, 8], ‘surfacewireframe’, 'B'); 

instead (Figure 11). 
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Figure 10. Frame 3D representation of the timetable of the Talgo train MadridAlmería 
using Method II (note the difference in the “speed jumps” between adjacent rectangles 
with respect to Figure 4). 

 
Figure 11. Filled rectangles 3D representation of the timetable of the Talgo train. 
MadridAlmería using Method II (like Figure 10, with “filled” rectangles). 
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Finally, the 3D plot of the timetables of all the trains considered in the example (following 
Method II) from the same orientation (Figure 12) and from a side point of view (Figure 13) can be 
obtained by typing: 

> `3Dtrains`:= GraphicR([op(AVv), op(IBv)]): 
> PlotR(`3Dtrains`, [-130, 62, 8], ‘surfacewireframe’, 'B'); 
> PlotR(`3Dtrains`, [-90, 90, 0], 'pointline', 'B'); 

 

Figure 12. Filled rectangles representation of the speeds of all trains in the example 
along their corresponding routes (Method II). 

The differences between both methods are most clearly visible in these two last plots. In 
Figure 12 it is clear that the maximum average speed of the network is reached in the central section 
between Córdoba and Málaga (the rectangle collapses into a segment on plane z=0). The general 
differences are most clear in the side views (compare Figure 8 and Figure 13). As both methods have 
advantages, the choice is left to the user. 
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Figure 13. Side view of the frame 3D plot of all trains (Method II). 

4. Discussion 

Data visualization can be very useful in many fields, including engineering in general and 
transportation engineering in particular. We believe this can be a curious tool for railway line and 
railway network speed data representation and comparison.  

There are 3D approaches to visualization of graphs, but they usually deal with clearer 
representation of large graphs [31], clustering [32] and multilayer network visualization [33] (an 
approach also used in [34] by the authors). We know of no comparable software that uses the 3rd 
dimension to represent certain characteristics of a transportation network (the weight of the edges, 
from a graph theory point of view). 

5. Conclusion 

The main computer algebra systems are extending their possibilities through the inclusion of 
packages for different purposes. They are becoming omnipresent in scientific computation. This 
article presents a novel application of graph theory to data visualization in railway engineering 
implemented on a computer algebra system. We believe that it can be very useful for presenting 
speed data in a visual way, something especially interesting for non-experts. Although the underlying 
mathematics is elementary, the implementation is complex. 
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Appendix 

Code of the package (file rectangles.mpl) 

# Variables: 
Unitime   := 1/60:             #unit conversion (speed introduced km/min) 
CotaI     := 1/(200*Unitime):        #inverse of the max speed in the  
                                          #network (supposed > 200 km/h) 
roll      := (2*rand(1 .. 5))/100:  #random labels height (to avoid  
                                          #overlapings) 
 
# Storing the data introduction 
Introtrail := proc(lista, ancho)  
    local n, p3, i, nodos, pulgares, WhoStation;  
    global IB, AV, CotaI, stations;  
    n := 1/2*numelems(lista) + 1/2;  
    nodos := [];  
    for i from 2 to n do  
        nodos := [op(nodos), [op(lista[2*i - 3][1 .. 2]),  
                    lista[2*i - 2]],  
                    [op(lista[2*i - 1][1 .. 2]), lista[2*i - 2]]];  
    end do;  
    if ancho = 'av' then  
        AV := [op(AV), nodos];  
    else  
        IB := [op(IB), nodos];  
    end if;  
    p3 := x -> x[3];  
    CotaI := min(CotaI, min(map(p3, nodos)));  
    pulgares := SearchAll(1, map(x -> x[4], lista));  
    WhoStation := map(x -> x[1 .. 3], lista[[pulgares]]);  
    stations := stations union {op(WhoStation)};  
end proc: 
 
# Ordering data in order to apply polygonplot3d 
polygons := proc(trail)  
    local listado, i, up, down, n;  
    listado := [];  
    up := x -> [[x[1], x[2], 0], x];  
    down := x -> [x, [x[1], x[2], 0]];  
    n := numelems(trail);  
    if 0 < n then  
        for i to n - 1 do  
            listado := [op(listado), [op(up(trail[i])),  
                          op(down(trail[i + 1]))]];  
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        end do;  
    else  
        listado := {};  
    end if;  
end proc: 
 
# Labels matrix 
InMatrix := proc(M, trail, origin)  
    local x;  
    global Unitime;  
    for x in trail do  
        M[x[2] + origin[2] + 1, x[1] + origin[1] + 1] := max(M[x[2] +   
        origin[2] + 1, x[1] + origin[1] + 1], Unitime*x[3]);  
    end do;  
end proc: 
 
# Scale of the gaps (e.g. 10 km) 
Scale := x -> [partition*x[1], partition*x[2], Unitime*x[3]]: 
 
# Setting a set with two plots elements (polygons & labels) 
GraphicR := proc(trails)  
    local i, trailEsc, noceroM, L, Listapolygons, stationsh, D0, D1;  
    global stations, M, roll, graficos, ordinate, abscissa;  
    M := Matrix(ordinate + 1, abscissa + 1, fill = 0);  
    for i to numelems(trails) do  
        InMatrix(M, trails[i], origin);  
        trailEsc[i] := map(Scale, trails[i]);  
    end do;  
    stationsh := map(x -> [partition*x[1], partition*x[2], M[x[2] +  
                                origin[2] + 1, x[1] + origin[1] + 1] +  
                                max(M)*roll(), x[3]], stations);  
    graficos := {textplot3d(stationsh)};  
    Listapolygons := [];  
    for i to numelems(trails) do  
        Listapolygons := [op(Listapolygons), 
                             op(polygons(trailEsc[i]))];  
    end do;  
    graficos := graficos union {polygonplot3d(Listapolygons)};  
end proc: 
 
# Formatting the plot 
PlotR := proc(DD, orientacion, estilo, tipo)  
    local OptionsPlot, EjeZ, colores;  
    if tipo = 'A' then  
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        EjeZ := h/Km;  
        colores := z;  
    else  
        EjeZ := `&Delta;v`;  
        colores := z;  
    end if;  
    OptionsPlot := shading = colores, orientation = orientacion,  
                      view = 0 .. 1.1*max(M), style = estilo, symbol =  
                      sphere, thickness = 1; display(DD, labels = [Km*'West  
                      - East', Km*'North - South', EjeZ], OptionsPlot);  
end proc: 
 
# Data transformation (Method I -> Method II: "v^(-1)-> v[max]- v" 
 
DataDif := proc()  
    local i, velocidad;  
    global AV, IB, AVv, IBv, Unitime, CotaI;  
    Unitime := 1/Unitime;  
    velocidad := x -> [x[1], x[2], 1/CotaI - 1/x[3]];  
    AVv := AV;  
    IBv := IB;  
    for i to numelems(AV) do  
        AVv[i] := map(velocidad, AV[i]);  
    end do;  
    for i to numelems(IB) do  
        IBv[i] := map(velocidad, IB[i]);  
    end do;  
end proc: 
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