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1. Introduction

As is known to all, Nevanlinna value distribution is a powerful tool in studying the properties of
meromorphic functions in the fields of complex analysis. In 1926, R. Nevanlinna gave the definition
of characterise function T (r, f ) of meromorphic function, and established the famous first and second
main theorem, lemma on the logarithmic derivatives etc. of Nevalinna theory, (see Hayman [5], Yang
[20] and Yi and Yang [21]). Moreover, the two main theorems occupy a central place in the value
distribution theory of meromorphic functions. By using these results, R. Nevanlinna in 1926 proved
the following well-known five-values theorem and gave a problem about small function.

Theorem 1.1. (see [21]). If f and g are two non-constant meromorphic functions that share five
distinct values a1, a2, a3, a4, a5 IM in X = C, then f (z) ≡ g(z).

Question 1.1. (see [21]). Does Theorem 1.1 still hold if the five distinct values a1, a2, a3, a4, a5 are
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replaced by five distinct small functions a j ( j = 1, 2, . . . , 5)?

After this theorem and question, many mathematicians had paid considerate attention to the
uniqueness of meromorphic functions with shared values in the whole complex plane (see [21]).
There were a series of beautiful uniqueness theorems about value-shared and small functions shared
(see [10, 11, 17, 18, 22, 23]). Especially, Yi [22] gave a positive answer to Question 1.1 and extend the
five value theorem to the case of sharing five distinct small functions.

Theorem 1.2. (see [22] (The five small functions theorem)) Let f and g be two non-constant
meromorphic functions in complex plane C, and a j( j = 1, 2, 3, 4, 5) be five distinct small functions
with respect to f and g. If f and g share a j( j = 1, 2, 3, 4, 5) IM in C, then f ≡ g.

In the past several decades, it is an increasing interest to investigate the uniqueness of meromorphic
functions on a subset of complex plane C, such as: the unit disc, the angular domain and the whole
complex plane, and a lot of important theorems were obtained (see [21]). In 1999, Fang [3] discussed
the uniqueness of admissible functions sharing some sets in the unit disc. Around 2003, Zheng in
[24, 25] studied the uniqueness problem and obtained five-values theorem and four-values theorem in
some angular domain of C. In 2015, Liu and Mao [12] further extended Theorem 1.2 to an angular
domain and obtained the following theorem.

Theorem 1.3. (see [12, Theorem 1.1]). Let f and g be two nonconstant meromorphic functions in an
angular domain X(α, β) := {z : α < arg z < β} with 0 < β − α ≤ 2π such that

lim
r→+∞

Tα,β(r, f )
log r

= +∞,

and let a j( j = 1, . . . , 5) be five distinct small functions with respect to f and g in X(α, β). If f and g
share a j( j = 1, . . . , 5) IM in X(α, β), then f ≡ g.

As we all know, the whole complex plane, unit disc and angular domain can all be regarded as
a simply connected region. Of late, with the establishment of Nevanlinna theory for meromorphic
functions on annuli given by Khrystiyanyn and Kondratyuk [6, 7] or [8] in 2005 or [9] in 2004, it
is very interesting to consider the uniqueness of meromorphic function on doubly connected regions
(see [1,2,13,14]). In 2009 and 2011, Cao [1,2] investigated the uniqueness of meromorphic functions
on annuli sharing some values and some sets, and obtained an analog of Nevanlinna’s famous five-
values theorem.

Theorem 1.4. (see [1, Thereom 3.2] or [2, Corollary 3.3]). Let f and g be two transcendental or
admissible meromorphic functions on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let

a j ( j = 1, 2, 3, 4, 5) be five distinct complex numbers in C. If f and g share a j IM for j = 1, 2, 3, 4, 5,
then f (z) ≡ g(z).

In 2015, Wu and Ge [14] extended Theorem 1.4 when five values are replaced by five small
functions and obtained

Theorem 1.5. (see [14, Theorem 1.1]). Let f and g be two transcendental or admissible meromorphic
functions on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let a j( j = 1, 2, . . . , 5) be five

distinct small functions with respect to f and g on the annulus A. If f and g share a j( j = 1, 2, . . . , 5)
IM, then f (z) ≡ g(z).
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Very recently, the authors [16] investigated the uniqueness of meromorphic function in a special
multiply connested region-k-punctured complex plane, and obtained an analog of Nevanlinna’s famous
five-values theorem for meromorphic functions f and g in a k-punctured complex plane, and gave a
question as follows.

Theorem 1.6. (see [16, Theorem 3.2]). Let f and g be two admissible meromorphic functions in Ω, if
f , g share five distinct values a1, a2, a3, a4, a5 IM in Ω, then f (z) ≡ g(z).

Question 1.2. (see [16, Remark 3.3]). Does the conclusion of Theorem 1.6 still holds if a j( j = 1, . . . , 5)
are replaced by small functions a j(z)( j = 1, . . . , 5).

2. Results

Motivated by Question 1.2 and Theorems 1.2–1.6, the main purpose of this article is to investigate
the uniqueness of meromorphic functions concerning small functions, and we obtain an analog of
Nevanlinna’s famous five-values theorem for meromorphic functions in k-punctured complex plane.
To state our main results, let us recall some basic notations about function-shared in a k-punctured
plane as follows.

Let f be a non-constant meromorphic function in a k-punctured plane Ω, we denote S ( f ) a set of
meromorphic function a(z) in a k-punctured plane Ω satisfying T0(r, a) = S (r, f ), and such a
meromorphic function a(z) in a k-punctured plane Ω is called as a small function with respect to f .

Let f be a non-constant meromorphic function in a k-punctured plane Ω, a small function α(z) ∈
S ( f )∪ {∞} and a positive integer l (or +∞). We use EΩ(α, l; f ) to denote the set of zeros of f (z) − α in
Ω of multiplicity less than l (counting the multiplicities), and ẼΩ(α, l; f ) to denote the set of zeros of
f (z)−α(z) in Ω of multiplicity less than l (ignoring the multiplicities), especially, EΩ(α, l; f ) = EΩ(α, f )
and ẼΩ(α, l; f ) = ẼΩ(α, f ) as l = ∞.

For two non-constant meromorphic functions f and g in Ω and α ∈ (S ( f )∩S (g))∪{∞}, if EΩ(α, f ) =

EΩ(α, g), then we say that f and g share α CM in Ω, if ẼΩ(α, f ) = ẼΩ(α, g), then we say that f and g
share α IM in Ω.

The following inequality concerning five small functions plays a key role in proving our main
theorem.

Theorem 2.1. Let f and g be two transcendental or admissible meromorphic functions in Ω, α j(z) ∈
S ( f )∩S (g) ( j = 1, 2, . . . , 5) be five distinct small functions. If l is a positive integer ≥ 4, f and g satisfy

ẼΩ(α j, l; f ) = ẼΩ(α j, l; g), ( j = 1, 2, . . . , 5). (2.1)

Then we have S (r) := S (r, f ) = S (r, g),

(2 −
3
l
)
[
T0(r, f ) + T0(r, g)

]
≤

5∑
j=1

[Ñ0(r, α j; f | ≤ l) + Ñ0(r, α j; g| ≤ l)] + S (r), (2.2)

and

(1 −
3
2l

)
[
T0(r, f ) + T0(r, g)

]
≤

5∑
j=1

Ñ0(r, α j; f | ≤ l) + S (r), (2.3)
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where ñ0(r, α j; f | ≤ l) is the counting function of distinct poles of 1
f−α j

in Ωr with the multiplicities less
than l,

Ñ0(r, α j; f | ≤ l) =

∫ r

r0

ñ0(r, α j; f | ≤ l)
t

dt, r ≥ r0.

By applying the above result, we obtain the main theorem below, which gives a positive answer to
Question 1.2.

Theorem 2.2. Let f and g be two transcendental or admissible meromorphic functions in Ω, α j ∈

S ( f ) ∩ S (g), j = 1, 2, . . . , 5 be five distinct small functions and l a positive integer. If ẼΩ(α j, l; f ) =

ẼΩ(α j, l; g) for j = 1, 2, . . . , 5, and l ≥ 22, then f (z) ≡ g(z).

Remark 2.1. By comparing with Theorem 2.2 and Theorem 1.6, we can see that five constants have
been replaced by five small functions, and IM shared has been also relaxed to partial weighted shared
(only under the condition that the distinct zeros of f − α j and g − α j in Ω of multiplicity less than l are
same for j = 1, 2, . . . , 5). Hence, Theorem 2.2 is an extension and improvement of Theorem 1.6.

Remark 2.2. In view of Theorem 2.2, two naturel questions arise:

Question 2.1. What condition on l j, ( j = 1, 2, , . . . , 5) can guarantee that the conclusion of Theorem
2.2 still holds if ẼΩ(α j, l; f ) = ẼΩ(α j, l; g) for j = 1, 2, . . . , 5 are replaced by ẼΩ(α j, l j; f ) = ẼΩ(α j, l; g)
for j = 1, 2, . . . , 5, and l j are five positive integers?

Question 2.2. Does the conclusion of Theorem 2.2 still hold, if the k-punctured complex plane Ω is
turned to a more general domain

Ω′ = G0 \

m⋃
j=1

K j,

where G0 is a bounded simply connected domain, and {K j},K j ⊂ G0, j = 1, 2, . . . ,m, are connected
compacts not degenerating to a point and such that G j = C\K j is a domain, j = 1, 2, . . . ,m?

Moreover, similar to the argument as in the proof of Theorem 2.2, we can easily get the following
result, which is an improvement of Theorem 1.4.

Corollary 2.1. Let f and g be two transcendental or admissible meromorphic functions on the annulus
A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let a j( j = 1, 2, . . . , 5) be five distinct small functions with

respect to f and g on the annulus A. If ẼA(a j, l; f ) = ẼA(a j, l; g) for j = 1, 2, . . . , 5, and l ≥ 22, then
f (z) ≡ g(z).

When l = +∞, one can get the following conclusion.

Theorem 2.3. Let f and g be two transcendental or admissible meromorphic functions in Ω, α j ∈

S ( f ) ∩ S (g), ( j = 1, 2, . . . , 5) be five distinct small functions. If ẼΩ(α j, f ) = ẼΩ(α j, g), for ( j =

1, 2, . . . , 5), then f (z) ≡ g(z).

Remark 2.3. Theorem 2.3 can be called as 5 IM theorem for meromorphic functions in k-punctured
complex plane.
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3. Nevanlinna theory in k-punctured complex planes

Let k be a positive integer, for k distinct points c j ∈ C, j ∈ {1, 2, . . . , k}, we say that Ω = C\
⋃k

j=1{c j}

is a k-punctured complex plane. The main purpose of this article is to discuss meromorphic functions
in those k-punctured planes for which k ≥ 2.

Let d = 1
2 min{|cs − c j| : j , s} and r0 = 1

d + max{|c j| : j ∈ {1, 2, . . . , k}}, thus it follows 1
r0
< d and

D1/r0(c j)
⋂

D1/r0(cs) = ∅, f or j , s,

and
D1/r0(c j) ⊂ Dr0(0), f or j ∈ {1, 2, . . . , k},

where Dδ(c) = {z : |z − c| < δ} and Dδ(c) = {z : |z − c| ≤ δ}. Now, we define

Ωr = Dr(0) \
k⋃

j=1

D1/r(c j), f or any r ≥ r0.

Thus, it yields that Ωr ⊃ Ωr0 for r0 < r ≤ +∞. Moreover, it is easy to see that Ωr is k + 1 connected
region.

In 2007, Hanyak and Kondratyuk [4] gave some extension of the Nevanlinna value distribution
theory for meromorphic functions in a k-punctured complex plane and proved a series of theorems
which is an analog of the result on the whole plane C.

Let f be a meromorphic function in a k-punctured plane Ω, we denote n0(r, f ) to be the counting
function of its poles in Ωr, r0 ≤ r < +∞ and

N0(r, f ) =

∫ r

r0

n0(t, f )
t

dt,

and we also define

m0(r, f ) =
1

2π

∫ 2π

0
log+

∣∣∣ f (reiθ)
∣∣∣ dθ +

1
2π

m∑
j=1

∫ 2π

0
log+

∣∣∣∣∣ f (c j +
1
r

eiθ)
∣∣∣∣∣ dθ−

−
1

2π

∫ 2π

0
log+

∣∣∣ f (r0eiθ)
∣∣∣ dθ − 1

2π

m∑
j=1

∫ 2π

0
log+

∣∣∣∣∣ f (c j +
1
r0

eiθ)
∣∣∣∣∣ dθ,

where log+ x = max{log x, 0} and r0 ≤ r < +∞, then

T0(r, f ) = m0(r, f ) + N0(r, f )

is called as the Nevanlinna characteristic of f . Besides, we use S (r, f ) to denote any quantity satisfying
S (r, f ) = o(T0(r, f )) for all r outside a possible exceptional set of finite linear measure.

Theorem 3.1. (see [4, Theorem 3]). Let f , f1, f2 be meromorphic functions in a k-punctured plane Ω.
Then

(i) the function T0(r, f ) is non-negative, continuous, non-decreasing and convex with respect to log r
on [r0,+∞), T0(r0, f ) = 0;
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(ii) if f identically equals a constant, then T0(r, f ) vanishes identically;
(iii) if f is not identically equal to zero, then T0(r, f ) = T0(r, 1/ f ), r0 ≤ r < +∞;
(iv) T0(r, f1 f2) ≤ T0(r, f1) + T0(r, f2) + O(1) and T0(r, f1 + f2) ≤ T0(r, f1) + T0(r, f2) + O(1), for

r0 ≤ r < +∞;
(v) T0(r, 1

f−a ) = T0(r, f ) + O(1), for any fixed a ∈ C.

Remark 3.1. Theorem 3.1 (i)–(iv) show the elementary properties of meromorphic function f (z) in the
k-punctured plane Ω, Theorem 3.1 (v) can be said the Jensen-Nevanlinna formula for meromorphic
function f (z) in the k-punctured plane Ω, which is another expression of Jensen’s formula and exhibits
the relations between characteristic functions of f and 1

f in Ω. Theorem 3.1 (v) is also called as the
first fundamental theorem of the value distribution theory in the k-punctured plane.

Definition 3.1. Let f be a nonconstant meromorphic function in k-punctured plane Ω. The function f
is called admissible in k-punctured plane Ω provided that

lim sup
r→+∞

T0(r, f )
log r

= +∞, r0 ≤ r < +∞.

Remark 3.2. From Theorem 5 in [4], we have that a meromorphic function f in k-punctured plane is
rational if f satisfies

lim sup
r→+∞

T0(r, f )
log r

< +∞, r0 ≤ r < +∞.

By using Lemma 6 in [4], we can get the following lemma easily.

Theorem 3.2. Let f be a nonconstant meromorphic function in a k-punctured plane Ω, and p a positive
integer, then

m0(r,
f (p)

f
) = O(log T0(r, f )) + O(log+ r) := S (r, f ), r → +∞,

outside a set of finite linear measure.

Remark 3.3. Obviously, if f is admissible in a k-punctured plane Ω, then

m0(r,
f (p)

f
) = S (r, f ) = o(T0(r, f )),

outside a set of finite linear measure.

Remark 3.4. This is an important result which is often used in this paper.

4. The proof of Theorem 2.1

To prove Theorem 2.1, we require the following lemma.

Lemma 4.1. (see [15, Lemma 4.2]). Let f1(z) and f2(z) be two admissible meromorphic functions
in a k-punctured plane Ω, α j(z)(. 0, 1) ∈ S ( f1) ∩ S ( f2) j = 1, 2, . . . , 5 be five distinct meromorphic
functions in a k-punctured plane Ω, then

2T0(r, fs) <
5∑

j=1

Ñ0(r,
1

fs − α j
) + S (r, f1) + S (r, f2), s = 1, 2. (4.1)
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The proof of Theorem 2.1: In view of the assumptions of Theorem 2.1, it follows

2T0(r, f ) ≤
5∑

j=1

Ñ0(r,
1

f − α j
) + S (r, f )

≤
l

1 + l

5∑
j=1

Ñ0(r, α j; f | ≤ l) +
5

l + 1
T0(r, f ) + S (r, f )

≤
l

1 + l
N0(r,

1
f − g

) +
5

1 + l
T0(r, f ) + S (r, f )

≤
l + 5
l + 1

T0(r, f ) +
l

l + 1
T0(r, g) + S (r, f ),

that is,

T0(r, f ) ≤
l

l − 3
T0(r, g) + S (r, f ). (4.2)

Similarly, we have

T0(r, g) ≤
l

l − 3
T0(r, f ) + S (r, g). (4.3)

From (4.2) and (4.3), we can deduce immediately that S (r) = S (r, f ) = S (r, g).
By applying Lemma 4.1 for f (z) and α j(z)( j = 1, 2, . . . , 5) again, we have

2T0(r, f ) + l
5∑

j=1

Ñ0(r, α j; f | ≥ l + 1)

≤

5∑
j=1

Ñ0(r, α j; f ) + l
5∑

j=1

Ñ0(r, α j; f | ≥ l + 1) + S (r) ≤ 5T0(r, f ) + S (r),

where ñ0(r, α j; f | ≥ l + 1) is the counting function of distinct poles of 1
f−α j

in Ωr with the multiplicities
great than l + 1,

Ñ0(r, α j; f | ≥ l + 1) =

∫ r

r0

ñ0(r, α j; f | ≥ l + 1)
t

dt, r ≥ r0.

Thus, it follows
5∑

j=1

Ñ0(r, α j; f | ≥ l + 1) ≤
3
l
T0(r, f ) + S (r). (4.4)

Similarly, we have
5∑

j=1

Ñ0(r, α j; g| ≥ l + 1) ≤
3
l
T0(r, g) + S (r). (4.5)

By Lemma 4.1 and (4.4), it yields

2T0(r, f ) ≤
5∑

j=1

Ñ0(r, α j; f | ≤ l) +

5∑
j=1

Ñ0(r, α j; f | ≥ l + 1) + S (r)
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≤

5∑
j=1

Ñ0(r, α j; f | ≤ l) +
3
l
T0(r, f ) + S (r),

that is,

(2 −
3
l
)T0(r, f ) ≤

5∑
j=1

Ñ0(r, α j; f | ≤ l) + S (r).

Similarly, we have

(2 −
3
l
)T0(r, g) ≤

5∑
j=1

Ñ0(r, α j; g| ≤ l) + S (r).

Thus, from the above two inequalities, it follows

(2 −
3
l
)[T0(r, f ) + T0(r, g)] ≤

5∑
j=1

(Ñ0(r, α j; f | ≤ l) + Ñ0(r, α j; g| ≤ l)) + S (r). (4.6)

And since ẼΩ(α j, l; f ) = ẼΩ(α j, l; g), ( j = 1, 2, . . . , 5), that is, Ñ0(r, α j; f | ≤ l) + Ñ0(r, α j; g| ≤ l) for
j = 1, 2, . . . , 5, then we can prove (2.3) easily by combining (4.6).

Thus, we complete the proof of Theorem 2.1.

5. The proof of Theorem 2.2

To prove Theorem 2.2, some lemmas below will be required.

Lemma 5.1. (see [16]). Let f be a nonconstant meromorphic function in k-punctured plane Ω, and let

R( f ) =

n∑
i=0

ai f i/

m∑
j=0

b j f j

be an irreducible rational function in f with coefficients {ai} and {b j}, where an , 0 and bm , 0. Then

T (r,R( f )) = dT (r, f ) + S (r, f ),

where d = max{n,m}.

Lemma 5.2. Let f be a transcendental or admissible meromorphic functions in Ω, a(z), b(z) ∈ S ( f ) be
two distinct small functions with respect to f . Set

L( f , a, b) :=

∣∣∣∣∣∣∣∣∣
f f ′ 1
a a′ 1
b b′ 1

∣∣∣∣∣∣∣∣∣ .
Then we have L( f , a, b) . 0 and for i = 0, 1,

m0

(
r,

L( f , a, b) f i

( f − a)( f − b)

)
= S (r, f ).
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Proof. Utilizing the determinant nature, we obtain that

L( f , a, b) =

∣∣∣∣∣∣∣∣∣
f f ′ 1

f − a f ′ − a′ 0
f − b f ′ − b′ 0

∣∣∣∣∣∣∣∣∣ = ( f − a)( f ′ − b′) − ( f − b)( f ′ − a′),

which further yields
L( f , a, b)

( f − a)( f − b)
=

f ′ − b′

f − b
−

f ′ − a′

f − a
. (5.1)

Suppose that L( f , a, b) ≡ 0, that is,

f ′ − b′

f − b
≡

f ′ − a′

f − a
,

by a simply integral, we get f = 1
1−η (b − ηa), where η is a constant, which is a contradiction with

a(z), b(z) ∈ S ( f ). So, we have L( f , a, b) . 0. If i = 0, by applying Theorem 3.2 for (5.1), it follows

m0

(
r,

L( f , a, b)
( f − a)( f − b)

)
= S (r, f ).

If i = 1, we have

L( f , a, b) f
( f − a)( f − b)

=
f ( f − a)( f ′ − b′) − f ( f − b)( f ′ − a′)

( f − a)( f − b)

=
( f − b + b)( f − a)( f ′ − b′) − ( f − a + a)( f − b)( f ′ − a′)

( f − a)( f − b)

= b
f ′ − b′

f − b
− a

f ′ − a′

f − a
+ (a′ − b′). (5.2)

By combining a(z), b(z) ∈ S ( f ) and applying Theorem 3.2 for (5.2), we get

m0

(
r,

L( f , a, b) f
( f − a)( f − b)

)
= S (r, f ).

Therefore, this completes the proof of Lemma 5.2. �

Let h1(z) and h2(z) be two non-constant meromorphic functions in Ω and α(z) (or ∞) be the
common small function of h1(z) and h2(z), we use Ñ0(r, h1(z) = α(z) = h2(z))
(ÑE

0 (r, h1(z) = α(z) = h2(z))) to denote the counting function of those common zeros of h1(z) − α(z)
and h2(z) − α(z) in Ω, regardless of multiplicity (with the same multiplicity), and each zeros counted
only once. Moreover, if Ñ0(r, 1

h j(z)−α(z) ) − ÑE
0 (r, h1(z) = α(z) = h2(z)) = S (r, h j), j = 1, 2, then we can

say that h1(z) and h2(z) share α(z) CM∗; if Ñ0(r, 1
h j(z)−α(z) ) − Ñ0(r, h1(z) = α(z) = h2(z)) = S (r, h j),

j = 1, 2, then we can say that h1(z) and h2(z) share α(z) IM∗.

Lemma 5.3. Let f and g be two transcendental or admissible meromorphic functions in Ω, b j(z) ∈
S ( f ) ∩ S (g) ( j = 1, 2, 3). If f , g share b j(z)( j = 1, 2, 3) and∞ IM∗. Set

H1 :=
L( f , b1, b2)( f − g)L(g, b2, b3)

( f − b1)( f − b2)(g − b2)(g − b3)
−

L(g, b1, b2)( f − g)L( f , b2, b3)
(g − b1)(g − b2)( f − b2)( f − b3)

.

Then T0(r,H1) = S (r, f ) + S (r, g).
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Proof. By applying Lemma 5.2 forH1, we can obtain

m0(r,H1) = S (r, f ) + S (r, g). (5.3)

Now, we will estimate N0(r,H1). We know that the poles of H1 in Ω can come from the zeros of
f − b j(z), g − b j(z) in Ω for j = 1, 2, 3, the poles of f , g in Ω. BecauseH1 can be represented as

H1 ≡( f − g)
{

L( f , b1, b2)
b2 − b1

(
1

f − b2
−

1
f − b1

)
L(g, b2, b3)

b3 − b2

(
1

g − b3
−

1
g − b2

)
L(g, b1, b2)

b2 − b1

(
1

g − b2
−

1
g − b1

)
L( f , b2, b3)

b3 − b2

(
1

f − b3
−

1
f − b2

)}
≡( f − g)

{(
f ′ − b′2
f − b2

−
f ′ − b′1
f − b1

) (
g′ − b′3
g − b3

−
g′ − b′2
g − b2

)
−

(
g′ − b′2
g − b2

−
g′ − b′1
g − b1

) (
f ′ − b′3
f − b3

−
f ′ − b′2
f − b2

)}
, (5.4)

and since f , g share b j(z) IM∗ in Ω and b j(z) ∈ S ( f ) ∩ S (g), from (5.4), it is easy to see that the poles
ofH1 in Ω which come from the zeros of f − b1 and f − b3 in Ω are only S (r, f ) + S (r, g).

Further, if z1 is a pole of f in Ω with multiplicity p, a pole of g in Ω with multiplicity q, and
b j(z1)(b j(z1) − 1) , 0,∞ for j = 1, 2, 3. W.l.g., assume p ≥ q, then for z→ z1, it follows

L( f , b1, b2)( f − g)L(g, b2, b3)
( f − b1)( f − b2)(g − b2)(g − b3)

∼ (b2 − b1)(b3 − b2)(1 −
g
f

)
f ′g′

f g2 ,

L(g, b1, b2)( f − g)L( f , b2, b3)
(g − b1)(g − b2)( f − b2)( f − b3)

∼ (b2 − b1)(b3 − b2)(1 −
g
f

)
f ′g′

f g2 .

Thus,H1 is analytic at z1.
In addition, we can rewriteH1 as the following form

H1 ≡
(g − f )

( f − b1)(g − b3)

{[
(b1 − b2)

f ′ − b′2
f − b2

− (b′1 − b′2)
] [

(b3 − b2)
g′ − b′2
g − b2

− (b′3 − b′2)
]

−
f (g − 1)
g( f − 1)

[
(b1 − b2)

g′ − b′2
g − b2

− (b′1 − b′2)
] [

(b3 − b2)
f ′ − b′2
f − b2

− (b′3 − b′2)
]}
.

Thus, if z2 is a zero of f − b2 in Ω and b j(z1)(b j(z1) − 1) , 0,∞ j = 1, 2, 3, since f , g share b j(z)( j =

1, 2, 3) IM∗, from the above expression, we know thatH1 is analytic at z2.
Hence, we have N0(r,H1) = S (r, f ) + S (r, g), and by combining (5.3), it follows T0(r,H1) =

S (r, f ) + S (r, g).
Therefore, this completes the proof of Lemma 5.3. �

Lemma 5.4. Let f and g be two transcendental or admissible meromorphic functions in Ω, b j(z) ∈
S ( f ) ∩ S (g) ( j = 1, 2, 3). LetH1 be stated as in Lemma 5.2 and

H2 : =
L( f , b2, b1)( f − g)L(g, b1, b3)

( f − b2)( f − b1)(g − b1)(g − b3)
−

L(g, b2, b1)( f − g)L( f , b1, b3)
(g − b2)(g − b1)( f − b1)( f − b3)

,

H3 : =
L( f , b1, b3)( f − g)L(g, b3, b2)

( f − b1)( f − b3)(g − b3)(g − b2)
−

L(g, b1, b3)( f − g)L( f , b3, b2)
(g − b1)(g − b3)( f − b3)( f − b2)

.
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Then
(i)H1 ≡ −H2 ≡ −H3;
(ii)H1 ≡ 0⇐⇒ H̃1 ≡ 0, where

H̃1 :=
L(F, b̃1, b̃2)(F −G)L(G, b̃2, b̃3)

(F − b̃1)(F − b̃2)(G − b̃2)(G − b̃3)
−

L(G, b̃1, b̃2)(F −G)L(F, b̃2, b̃3)

(G − b̃1)(G − b̃2)(F − b̃2)(F − b̃3)
,

and
F =

1
f − b1

+ b1, G =
1

g − b1
+ b1,

b̃1 = b1, b̃2 =
1

b2 − b1
+ b1, b̃3 =

1
b3 − b1

+ b1.

Proof. (i) From (5.4), we have

H1 :=( f − g)
{

f ′ − b′2
f − b2

g′ − b′3
g − b3

−
g′ − b′2
g − b2

f ′ − b′3
f − b3

−
f ′ − b′1
f − b1

g′ − b′3
g − b3

+
g′ − b′1
g − b1

f ′ − b′3
f − b3

+
g′ − b′2
g − b2

f ′ − b′1
f − b1

−
g′ − b′1
g − b1

f ′ − b′2
f − b2

}
, (5.5)

by interchanging between b1 and b2 in (5.5), we can getH1 ≡ −H2.
Similarly, by interchanging between b2 and b3 in (5.5), we can getH1 ≡ −H3. Thus, (i) is proved.
(ii) Without loss of generality, assume that b1 = 0, b2 = 1, b3 = b, and b , (0, 1,∞). From (i), it

follows

−H1 ≡ H2 =
L( f , 1, 0)( f − g)L(g, 0, b)

( f − 1) f g(g − b)
−

L(g, 1, 0)( f − g)L( f , 0, b)
(g − 1)g f ( f − b)

.

Thus, let F = 1
f ,G = 1

g , b̃1 = 0, b̃2 = 1, b̃3 = 1
b . Similar to the definition ofH2, we have

−H̃1 ≡ H̃2 =
L(F, 1, 0)(F −G)L(G, 0, 1

b )

(F − 1)FG(G − 1
b )

−
L(G, 1, 0)(F −G)L(F, 0, 1

b )

G(G − 1)F(F − 1
b )

=
L( f −1, 1, 0)( f −1 − g−1)L(g−1, 0, b−1)

( f −1 − 1) f −1g−1(g−1 − b−1)

−
L(g−1, 1, 0)( f −1 − g−1)L( f −1, 0, b−1)

(g−1 − 1) f −1g−1(g−1 − b−1)

=

f ′

f 2
g− f
f g

∣∣∣∣∣∣ 1
g

g′

g2

1
b

b′
b2

∣∣∣∣∣∣
1− f

f
1
f

1
g

b−g
bg

−

g′

g2
g− f
f g

∣∣∣∣∣∣ 1
f

f ′

f 2

1
b

b′
b2

∣∣∣∣∣∣
1−g

g
1
g

1
f

b− f
b f

=
1
b


− f ′(g − f )

∣∣∣∣∣∣ g g′

b b′

∣∣∣∣∣∣
( f − 1) f g(g − b)

−

−g′( f − g)

∣∣∣∣∣∣ f f ′

b b′

∣∣∣∣∣∣
(g − 1)g f ( f − b)


=

1
b
H2 = −

1
b
H1,
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which impliesH1 ≡ 0⇐⇒ H̃1 ≡ 0 by b(z) . 0.
Therefore, this completes the proof of Lemma 5.4. �

5.1. The proof of Theorem 2.2

We will adopt the idea of Yi and Li [23], Yao [19]. W.l.o.g, we can consider a quasi-Möbius
transformation

β j =
α j − α4

α j − α5

α3 − α5

α3 − α4
, j = 1, 2, . . . , 5,

that is, β1 = α1(z), β2 = α2(z), β3 = 1, β4 = 0 and β5(z) = ∞. Set

H1 :=
L( f , 0, 1)( f − g)L(g, 1, β2)

f ( f − 1)(g − 1)(g − β2)
−

L(g, 0, 1)( f − g)L( f , 1, β2)
g(g − 1)( f − 1)( f − β2)

.

If H1 . 0, from Lemma 5.3, we have

m0(r,H1) = S (r),

and by Lemma 5.4, it follows

N0(r,H1) ≤
5∑

j=2

Ñ0(r, α j; f | ≥ l + 1) +

5∑
j=2

Ñ0(r, α j; g| ≥ l + 1) + S (r)

≤
4

l + 1
(T0(r, f ) + T0(r, g)) −

2
l + 1

5∑
j=1

Ñ0(r, α j; f | ≤ l) +
2

l + 1
Ñ0(r, α1; f | ≤ l) + S (r)

≤
4

l + 1
(T0(r, f ) + T0(r, g)) −

2
l + 1

(1 −
3
2l

)(T0(r, f ) + T0(r, g))

+
2

l + 1
Ñ0(r, α1; f | ≤ l) + S (r)

≤
2l + 3
l(l + 1)

(T0(r, f ) + T0(r, g)) +
2

l + 1
Ñ0(r, α1; f | ≤ l) + S (r),

and because
Ñ0(r, α1; f | ≤ l) ≤ N0(r,

1
H1

) ≤ N0(r,H1) + S (r),

thus it follows
Ñ0(r, α1; f | ≤ l) ≤

2l + 3
l(l − 1)

(T0(r, f ) + T0(r, g)) + S (r).

Noting that ẼΩ(α j, l; f ) = ẼΩ(α j, l; g), that is, Ñ0(r, α j; f | ≤ l) = Ñ0(r, α j; g| ≤ l) for j = 1, 2, . . . , 5,
then we have

Ñ0(r, α1; f | ≤ l) + Ñ0(r, α1; g| ≤ l) ≤
2(2l + 3)
l(l − 1)

(T0(r, f ) + T0(r, g)) + S (r).

Similarly, let

H2 :=
L( f , 1, 0)( f − g)L(g, 0, β1)

f ( f − 1)g(g − β1)
−

L(g, 1, 0)( f − g)L( f , 0, β1)
g(g − 1) f ( f − β1)

,
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H3 :=
L( f , 0, β2)( f − g)L(g, β2, β1)

f ( f − β2)(g − β2)(g − β1)
−

L(g, 0, β2)( f − g)L( f , β2, β1)
g(g − β2)( f − β2)( f − β1)

,

H4 :=
L( f , 1, β1)( f − g)L(g, β1, β2)

( f − 1)( f − β1)(g − β1)(g − β2)
−

L(g, 1, β1)( f − g)L( f , β1, β2)
(g − 1)(g − β1)( f − β1)( f − β2)

,

then if H j . 0 for j = 2, 3, 4, by using the same argument as in the above, we have

Ñ0(r, α j; f | ≤ l) + Ñ0(r, α j; g| ≤ l) ≤
2(2l + 3)
l(l − 1)

(T0(r, f ) + T0(r, g)) + S (r), (5.6)

for j = 2, 3, 4. Next, we will prove that

Ñ0(r, α5; f | ≤ l) + Ñ0(r, α5; g| ≤ l) ≤
2(2l + 3)
l(l − 1)

(T0(r, f ) + T0(r, g)) + S (r). (5.7)

Let
F(z) =

1
f (z)

, G(z) =
1

g(z)
, α∗1(z) =

1
α1(z)

=
1

β1(z)
,

α∗2(z) =
1

α2(z)
=

1
β2(z)

, α∗3(z) =
1

α3(z)
= 1, α∗4(z) = ∞, α∗5(z) = 0.

Thus, α∗j(z)( j = 1, 2, . . . , 5) are small functions of F(z) and G(z), and ẼΩ(α∗j, l; F) = ẼΩ(α∗j, l; G)
( j = 1, 2, . . . , 5). Further, by applying Theorem 3.1 and Lemma 5.1 for F(z),G(z), we have

T0(r, F) = T0(r, f ), T0(r,G) = T0(r, g),
S (r, F) = S (r, f ) = S (r), S (r,G) = S (r, g) = S (r).

Set

H5 :=
L(F, 1, β−1

1 )(F −G)L(G, β−1
2 , β

−1
1 )

(F − 1)(F − β−1
1 )(G − β−1

1 )(G − β−1
2 )
−

L(G, 1, β−1
1 )(F −G)L(F, β−1

2 , β
−1
1 )

(G − 1)(G − β−1
1 )(F − β−1

1 )(F − β−1
2 )
,

if H5 . 0, from Lemma 5.3, we have

m0(r,H5) = S (r),

and by Lemma 5.4, it follows

N0(r,H5) ≤
4∑

j=1

Ñ0(r, α∗j; F| ≥ l + 1) +

4∑
j=1

Ñ0(r, α∗j; G| ≥ l + 1) + S (r)

≤

4∑
j=1

Ñ0(r, α j; f | ≥ l + 1) +

4∑
j=1

Ñ0(r, α j; f | ≥ l + 1) + S (r)

≤
4

l + 1
(T0(r, f ) + T0(r, g)) −

2
l + 1

5∑
j=1

Ñ0(r, α j; f | ≤ l)

+
2

l + 1
Ñ0(r, α1; f | ≤ l) + S (r)
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≤
4

l + 1
(T0(r, f ) + T0(r, g)) −

2
l + 1

(1 −
3
2l

)(T0(r, f ) + T0(r, g))

+
2

l + 1
Ñ0(r, α5; f | ≤ l) + S (r)

≤
2l + 3
l(l + 1)

(T0(r, f ) + T0(r, g)) +
2

l + 1
Ñ0(r, α5; f | ≤ l) + S (r),

and since
Ñ0(r, α5; f | ≤ l) ≤ N0(r,

1
H5

) ≤ N0(r,H5) + S (r),

thus it follows
Ñ0(r, α5; f | ≤ l) ≤

2l + 3
l(l − 1)

(T0(r, f ) + T0(r, g)) + S (r). (5.8)

Noting that ẼΩ(α j, l; f ) = ẼΩ(α j, l; g), that is, Ñ0(r, α j; f | ≤ l) = Ñ0(r, α j; g| ≤ l) for j = 1, 2, . . . , 5,
then from (5.8) we prove (5.7).

By applying Theorem 2.1, we can see that there are at least two of the five Ñ0(r, α j; f | ≤ l) +

Ñ0(r, α j; g| ≤ l) ( j = 1, 2, . . . , 5), w.l.g. assume j = 2, 3, such that

Ñ0(r, α2; f | ≤ l) + Ñ0(r, α2; g| ≤ l) ≥
(
l − 3

4l
+ o(1)

)
(T0(r, f ) + T0(r, g)), (5.9)

and

Ñ0(r, α3; f | ≤ l) + Ñ0(r, α3; g| ≤ l) ≥
(
l − 3

4l
+ o(1)

)
(T0(r, f ) + T0(r, g)), (5.10)

for r ≥ r0, r ∈ I ⊆ [r0,+∞) and mesI = +∞. Hence, if H2 . 0, then it follows from (5.6) and (5.9) that

l − 3
4l
≤

2(2l + 3)
l(l − 1)

,

which implies a contradiction with l ≥ 22. Thus, H2 ≡ 0. Similarly, from (5.6) and (5.10) and l ≥ 22,
we have H3 ≡ 0.

On the basis of H2 ≡ 0 and H3 ≡ 0, we have

L( f , 1, 0)L(g, 0, β1)
( f − 1)(g − β1)

≡
L(g, 1, 0)L( f , 0, β1)

(g − 1)( f − β1)
, (5.11)

L( f , 1, β2)L(g, β2, β1)
f (g − β1)

≡
L(g, 0, β2)L( f , β2, β1)

f ( f − β1)
. (5.12)

The five cases will hereinafter be taken into consideration. Let

J(z) := {z ∈ Ω|β2(z) = 0, 1,∞, or β1(z) = 0, 1,∞, or β2(z) − β1(z) = 0}.

Case 1. Assume that β′2(z) . 0. If z1 is a zero of g − β1 in Ω, and not a zero of f − β1 in Ω, and
z1 < J(z), β′2(z1) , 0, then from (5.11) and (5.12) we have z1 is not a pole of f −β1. In fact, if z1 is a zero
of g − β1 and a pole of f − β1 in Ω, and we can rewrite the right sides of (5.11) as ϑ1 := − g′

g−1
f ′β1− fβ′1

f−β1
,
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then z1 is a pole of ϑ1 with multiplicity 1, but the left sides of (5.11) is ϑ2 := − f ′

f−1
g′β1−gβ′1

g−β1
, and z1 is a

pole of ϑ2 with multiplicity 2, a contradiction. Similarly, we can get a contradiction from (5.12) when
z1 is a zero of g − β1 and a pole of f − β1 in Ω. Thus, the right sides of (5.11) and (5.12) are analytic
at z1. Thus we get f ′(z1) , 0, f (z1) , 1 and L( f , 1, 0)z=z1 = 0, L( f , 0, β2)z=z1 = 0. Hence it follows
f ′(z1) , 0 and f (z1)β′2(z1) − f ′(z1)β2(z1) = 0, that is, f (z1)β′2(z1) − 0, a contradiction with β′2(z1) , 0
and f (z1) , 0. Thus, we have f (z1) − β2(z1) = 0.

Hence we get
g − β1 = 0 =⇒ f − β1 = 0, (r < E), (5.13)

where E ⊆ [r0,+∞), and mesE < +∞. Similarly, we get

f − β1 = 0 =⇒ g − β1 = 0, (r < E), (5.14)

which implies that f , g share β1 IM∗ in Ω.
(ii) Assume that β′2(z) ≡ 0, that is, β2(z) is a constant, set β2(z) ≡ γ. Thus, by Lemma 5.4, (5.12) is

equivalent to
L( f , β2, 0)L(g, 0, β1)

( f − β2)(g − β1)
≡

L(g, β2, 0)L( f , 0, β1)
(g − β2)( f − β1)

. (5.15)

Due to β2 ≡ γ, we have L( f , β2, 0) ≡ γL( f , 1, 0), L(g, β2, 0) ≡ γL(g, 1, 0). Substituting them into (5.15),
and combining (5.11), we can get

f − β2

f − 1
≡

g − β2

g − 1
,

which implies f ≡ g.
Case 2. By Lemma 5.4, (5.11) is equivalent to the following equation

L( f , 0, 1)L(g, 1, β1)
f (g − β1)

≡
L(g, 0, 1)L( f , 1, β1)

g( f − β1)
. (5.16)

(i) (β1(z) − 1)β′2(z) − (β2(z) − 1)β′1(z) . 0. If z2 is a zero of f in Ω, but not a zero of g in Ω, and
z2 < J(z), (β1(z2)− 1)β′2(z2)− (β2(z2)− 1)β′1(z2) , 0, then z2 is not a pole of g in Ω. In fact, if z2 is a zero
of f and a pole of g in Ω, and we can rewrite the right sides of (5.16) as ϑ3 := g′

g
β1 f ′−β′1 f +β′1− f ′

f−β1
, then z2

is a pole of ϑ3 with multiplicity 1, but the left sides of (5.16) is ϑ4 := f ′

f
β1g′−β′1g+β′1−g′

g−β1
, and by a simply

calculation, z2 is a pole of ϑ4 with multiplicity 2, a contradiction. Similarly, we can get a contradiction
from (5.12) when z2 is a zero of f and a pole of g in Ω. Thus, the right sides of (5.12) and (5.16) are
analytic at z2. Thus we get f (z2) − β1(z2) , 0 and L(g, 1, β1)z=z2 = 0, L(g, β2, β1)z=z2 = 0. Hence it
follows ∣∣∣∣∣∣ g(z2) − β1(z2) g′(z2) − β′1(z2)

β1(z2) − 1 β′1(z2)

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣ g(z2) − β1(z2) g′(z2) − β′1(z2)
β1(z2) − β2(z2) β′1(z2) − β′2(z2)

∣∣∣∣∣∣ = 0,

that is, ∣∣∣∣∣∣ β1(z2) − 1 β′1(z2)
β1(z2) − β2(z2) β′1(z2) − β′2(z2)

∣∣∣∣∣∣ = 0,

as g(z2) − β1(z2) , 0. It means that (β1(z2) − 1)β′2(z2) − (β2(z2) − 1)β′1(z2) = 0, a contradiction. Hence
z2 is a zero of g(z) in Ω, which implies

f = 0 =⇒ g = 0, (r < E),

AIMS Mathematics Volume 5, Issue 6, 7438–7457.



7453

where E ⊆ [r0,+∞), and mesE < +∞. Similarly, we get

g = 0 =⇒ f = 0, (r < E).

Therefore, it means that f , g share 0 IM∗ in Ω.
By Lemma 5.3 and from (5.11) and (5.12), it follows

L( f , 0, 1)L(g, 1, β2)
f (g − β2)

≡
L(g, 0, 1)L( f , 1, β2)

g( f − β2)
. (5.17)

(ii) (β1(z) − 1)β′2(z) − (β2(z) − 1)β′1(z) ≡ 0. It follows that β2 − 1 = γ(β1 − 1) and β′2 = γβ′1, where
γ(, 0) a constant. Then, we have

L(g, 1, β2) ≡

∣∣∣∣∣∣ g − 1 g′

γ(β1 − 1) γβ′1

∣∣∣∣∣∣ ≡ γL(g, 1, β1),

L( f , 1, β2) ≡

∣∣∣∣∣∣ f − 1 f ′

γ(β1 − 1) γβ′1

∣∣∣∣∣∣ ≡ γL( f , 1, β1).

Substituting the above equations into (5.17), and combining (5.16), we get

f − β2

f − β1
≡

g − β2

g − β1
,

which implies f ≡ g.
Case 3. From (5.11) and (5.15), we have

L( f , β2, 0)L(g, 0, 1)
( f − β2)(g − 1)

≡
L(g, β2, 0)L( f , 0, 1)

(g − β2)( f − 1)
. (5.18)

(i) β2(z)β′1(z)−β′2(z)β1(z) . 0. If z3 is a zero of g− 1 in Ω, but not a zero of f − 1 in Ω, and z3 < J(z),
β2(z3)β′1(z3) − β′2(z3)β1(z3) , 0, then z3 is not a pole of f − 1 in Ω. In fact, if z3 is a zero of g − 1 and a
pole of f − 1 in Ω, and we can rewrite the right sides of (5.11) as ϑ1 := − g′

g−1
f ′β1− fβ′1

f−β1
, then z3 is a pole

of ϑ1 with multiplicity 2, but the left sides of (5.11) is ϑ2 := − f ′

f−1
g′β1−gβ′1

g−β1
, and by a simply calculation,

z3 is a pole of ϑ2 with multiplicity 1, a contradiction. Similarly, we can get a contradiction from (5.18)
when z3 is a zero of g − 1 and a pole of f − 1 in Ω. Thus, the left side of (5.11) and the right side of
(5.18) are analytic at z3. Hence we get f (z3) − β1(z3) , 0, f (z3) − β2(z3) , 0, but L( f , β2, 0)z=z3 = 0 and
L( f , 0, β1)z=z3 = 0. Then ∣∣∣∣∣∣ f (z3) f ′(z3)

β2(z3) β′2(z3)

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣ f (z3) f ′(z3)
β1(z3) β′1(z3)

∣∣∣∣∣∣ = 0.

Since f , g share 0 IM∗, and g(z3) = 1, then it follows f (z3) , 0. So, we have∣∣∣∣∣∣ β2(z3) β′2(z3)
β1(z3) β′1(z3)

∣∣∣∣∣∣ = 0,

which implies β2(z)β′1(z)− β′2(z)β1(z) = 0, a contradiction. Hence, it follows that z3 is a zero of f (z)− 1
in Ω, which implies

g − 1 = 0 =⇒ f − 1 = 0, (r < E),
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where E ⊆ [r0,+∞), and mesE < +∞. Similarly, we get

f − 1 = 0 =⇒ f − 1 = 0, (r < E).

Therefore, it means that f , g share 1 IM∗ in Ω.
(ii) β2(z)β′1(z) − β′2(z)β1(z) ≡ 0. Then it follows β2 = γβ1 and β′2 = γβ′1, where γ(, 0) a constant.

Thus, we have

L(g, β2, 0) ≡

∣∣∣∣∣∣ g g′

γβ1 γβ′1

∣∣∣∣∣∣ ≡ −γL(g, 0, β1),

and

L( f , β2, 0) ≡

∣∣∣∣∣∣ f f ′

γβ1 γβ′1

∣∣∣∣∣∣ ≡ −γL( f , 0, β1).

By substituting the above two equivalents into (5.18) and combining (5.11), we have

f − β2

f − β1
≡

g − β2

g − β1
,

which implies f ≡ g.
Case 4. β′1(z) . 0. If z4 is a zero of f − β2 in Ω, but not a zero of g − β2 in Ω, and z4 < J(z),

β′1(z4) , 0, then we have that z4 is not a pole of g − β2 in Ω. In fact, if z4 is a zero of f − β2 and a
pole of g − β2 in Ω, and we can rewrite the right sides of (5.15) as ϑ5 := β2g′−β′2g

g−β2

f ′β1− fβ′1
f−β1

, then z4 is

a pole of ϑ5 with multiplicity 1, but the left sides of (5.15) is ϑ6 := β1g′−β′1g
g−β1

f ′β2− fβ′2
f−β2

, and by a simply
calculation, z4 is a pole of ϑ6 with multiplicity 2, a contradiction. Similarly, z4 is a pole of the right
side of (5.18) ϑ7 := f ′

f−1
β2g′−β′2g

g−β2
with multiplicity 1, and z4 is a pole of the left of (5.18) ϑ8 := g′

g−1
β2 f ′−β′2 f

f−β2

with multiplicity 2. Hence, this is a contradiction. Thus, the right side of (5.15) and (5.18) are analytic
at z4. Hence we get f (z4) − β1(z4) , 0, f (z4) − 1 , 0, but L(g, 0, 1)z=z4 = 0 and L(g, 0, β1)z=z4 = 0. Then
g′(z4) = 0, and g(z4)β′1(z4) − g′(z4)β1(z4) = 0, that is, g(z4)β′1(z4) = 0. Since β′1(z4) , 0, then it follows
g(z4) = 0, which is a contradiction with f , g share 0 IM∗ in Ω. Thus, it means that z4 is a zero of g− β2

in Ω, which implies
f − β2 = 0 =⇒ g − β2 = 0, (r < E),

where E ⊆ [r0,+∞), and mesE < +∞. Similarly, we get

g − β2 = 0 =⇒ f − β2 = 0, (r < E).

Therefore, it means that f , g share β2 IM∗ in Ω.
(ii) β′1(z) ≡ 0. That is β1(z) ≡ δ, where δ(, 0) a constant. So, it yields L( f , 0, β1) ≡ δL( f , 0, 1), and

L(g, 0, β1) ≡ δL(g, 0, 1). Substituting these into (5.15), and combining (5.18), we can deduce

f − β1

f − 1
≡

g − β1

g − 1
,

which implies f ≡ g.
Case 5. Let

H̃2 =
L(F, 1, 0)(F −G)L(G, 0, β−1

1 )
(F − 1)FG(G − β−1

1 )
−

L(G, 1, 0)(F −G)L(F, 0, β−1
1 )

G(G − 1)F(F − β−1
1 )

,
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H̃3 =
L(F, 0, β−1

2 )(F −G)L(G, β−1
2 , β

−1
1 )

(F − β−1
2 )F(G − β−1

2 )(G − β−1
1 )

−
L(G, 0, β−1

2 )(F −G)L(F, β−1
2 , β

−1
1 )

G(G − β−1
2 )(F − β−1

2 )(F − β−1
1 )

.

Then from Lemma 5.4, we have
H2 ≡ 0⇐⇒ H̃2 ≡ 0,

and
H3 ≡ 0⇐⇒ H̃3 ≡ 0.

Further, it follows from H̃2 ≡ 0 and H̃3 ≡ 0 that

L(F, 1, 0)L(G, 0, β−1
1 )

(F − 1)(G − β−1
1 )

≡
L(G, 1, 0)L(F, 0, β−1

1 )
(G − 1)(F − β−1

1 )
,

and
L(F, 0, β−1

2 )L(G, β−1
2 , β

−1
1 )

F(G − β−1
1 )

≡
L(G, 0, β−1

2 )L(F, β−1
2 , β

−1
1 )

G(F − β−1
1 )

.

By using the same argument as in Case 2 of Theorem 2.2, we obtain either F,G share 0 IM∗ in Ω

or F ≡ G. If F,G share 0 IM∗ in Ω, it means that f , g share ∞ IM∗ in Ω. If F ≡ G, by a simply
calculation, we have f ≡ g.

From Cases 1–5, we get that either f , g share 0, 1,∞, β1(z), β2(z) IM∗ in Ω, or f ≡ g. If f , g share
0, 1,∞, β1(z), β2(z) IM∗ in Ω, by using the same method as in [22], it follows f ≡ g. Hence, we obtain
f ≡ g.

Thus, this completes the proof of Theorem 2.2.
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