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1. Introduction

In this work, we are concerned with the following fractional boundary value problem

Dα, ϕ
0+ u(t) + λ f (t, u(t)) = 0, 0 < t < 1, (1.1)

u(0) = 0, u(1) =

m−2∑
i=1

βiu(ηi), (1.2)

where 1 < α ≤ 2, Dα, ϕ
0+ is the fractional derivative operator of order α with respect to a certain strictly

increasing function ϕ ∈ C2[0, 1] with ϕ′(x) > 0 for all x ∈ [0, 1] and f , ϕ, βi, ηi, λ satisfy:
(H1) f (t, u) : [0, 1] × R+ → R+ is continuous and increasing in u for each t ∈ [0, 1], the function

ϕ : [0, 1]→ R is a strictly increasing function such that ϕ ∈ C2[0, 1], with ϕ′(x) > 0 for all x ∈ [0, 1];

(H2) 0 ≤ βi < 1, 0 < ηi < 1 (i = 1, 2, · · ·,m − 2) satisfy 0 ≤
m−2∑
i=1

βi < 1, 0 < η1 < η2 < · · · < ηm−2 <

1, λ > 0 is a parameter.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2020471


7360

The fractional calculus first began in 1965. After a long time, this subject was relevant only in
pure mathematics, many mathematicians have studied these new fractional operators by presenting
new definitions and studying their important properties, but in the last century, this subject showed its
applications in the modeling of many phenomena in various fields of science and engineering, such as
control theory, electric circuits, viscoelasticity, mechanics, physics, neural networks [1–12].

In all those definitions there is a special kind of a kernel dependency. Therefore, in order to
analyze fractional differential equations in a generic way, a fractional derivative with respect to
another function called ϕ-Riemann-Liouville and ϕ-Caputo derivative was proposed [15] and for
particular choices of ϕ, we obtain some well known fractional derivative. For example, if we choose
ϕ(t) = t, the ϕ-Riemann-Liouville and ϕ-Caputo fractional derivative are reduced to the
Riemann-Liouville and Caputo derivative respectively in traditional sense. Alternatively, if we choose
ϕ(t) = logt, where log(·) = loge(·), the ϕ-Riemann-Liouville and ϕ-Caputo fractional derivative are
reduced to the Hadamard and Hadamard-Caputo derivative respectively [13, 14]. Therefore,
problem (1.1), (1.2) generates many types and also mixed types of fractional differential equations
with boundary conditions.

Let us mention some motivations for studying problem (1.1), (1.2). In the limit case λ = 1 and
βi = β, ηi = η, i = 1, 2, · · ·, (1.1), (1.2) reduces to

Dα, ϕ
0+ u(t) + f (t, u(t)) = 0, 0 < t < 1, (1.3)

u(0) = 0, u(1) = βu(η). (1.4)

In [22], the authors studied the existence of positive solutions for the problem (1.3), (1.4). In [23],
using the fixed point theorems of Banach and Schaefer, the authors studied the existence and
uniqueness results of the boundary value problems for a fractional differential equation involving
Caputo operator with respect to the new function ψ given by the form

CDα, ψ
a+ y(t) = f (t, y(t)), t ∈ [a, b],

y[k]
ψ (a) = yk

a, k = 0, 1, · · ·, n − 2; y[n−1]
ψ (b) = yb,

where CDα, ψ
a+ is the ψ-Caputo fractional derivative of order n − 1 < α ≤ n (n = [α] + 1).

Almeida et al. [24] studied the initial value problem of a fractional differential equation including
ϕ-Caputo fractional derivative

CDα, ϕ
a+ y(t) = f (t, y(t)), t ∈ [a, b],

y(a) = ya, y[k]
ψ (a) = yk

a, k = 1, 2, · · ·, n − 1

where CDα, ϕ
a+ is the ϕ-Caputo fractional derivative of order n − 1 < α < n.

On the other hand, most of the existing literature does not consider the properties of the solution.
Well, here’s the problem: How can we get the properties of the solutions when they are known to exist.
So far, few papers can be found in the literature both on the existence and properties of solutions for
fractional boundary value problem.

Zhai et al. [16] studied the following nonlinear fractional four-point boundary value problem with
a parameter:
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Dα
0+u(t) + λ f (t, u(t)) = 0, 0 < t < 1,

u′(0) − µ1u(ξ) = 0, u′(1) + µ2u(η) = 0,

where Dα
0+ is the Riemann-Liouville fractional derivative. Unfortunately, the fractional derivative in

this paper is just the Caputo derivative in the traditional sense.
Inspired by the work in [16] and many known results, in this paper, we develop the existence and

uniqueness of positive solutions to the fractional boundary value problems (1.1), (1.2). Using the
fixed point theorems of concave operators in partial ordering Banach spaces, we not only show the
existence of positive solution for the problem (1.1), (1.2), but also present some properties of positive
solutions to the boundary value problem dependent on the parameter. Some definitions, lemmas and
basic results about ϕ-Riemann-Liouville derivative are presented in Section 2. The main results are
given in section 3. Some illustrative examples are constructed in Section 4.

2. The preliminary lemmas

Let ϕ be a function of C2[a, b] with ϕ′(t) > 0 for all t ∈ [a, b].
Definition 2.1 [21] The ϕ-Riemann-Liouville fractional integral of order α > 0 of a function x :

[a, b]→ R is given by

Iα, ϕa+ x(t) :=
1

Γ(α)

∫ t

a
ϕ′(s)(ϕ(t) − ϕ(s))α−1x(s)ds.

Definition 2.2 [21] The ϕ-Riemann-Liouville fractional derivative of order α of a function x is
defined as

Dα, ϕ
a+ x(t) :=

( 1
ϕ′(t)

d
dt

)n

In−α, ϕ
a+ x(t) =

1
Γ(n − α)

( 1
ϕ′(t)

d
dt

)n ∫ t

a
ϕ′(s)(ϕ(t) − ϕ(s))n−α−1x(s)ds,

where n = [α] + 1.
The ϕ-Caputo fractional derivative of order α of a function x is defined as

CDα, ϕ
a+ x(t) := Dα, ϕ

a+

[
x(t) −

n−1∑
k=0

x[k]
ϕ (a)
k!

(ϕ(t) − ϕ(a))k
]
, n = [α] + 1 for α < N, n = α for α ∈ N,

where x[k]
ϕ (t) :=

( 1
ϕ′(t)

d
dt

)k

x(t).

Theorem 2.1 [15] If x ∈ Cn[a, b], then

CDα, ϕ
a+ x(t) = In−α, ϕ

a+

( 1
ϕ′(t)

d
dt

)n

x(t).

Theorem 2.2 [15] Let x : [a, b]→ R. Then
1. If x ∈ C[a, b], then CDα, ϕ

a+ Iα, ϕa+ x(t) = x(t);
2. If x ∈ Cn−1[a, b], then

Iα, ϕ C
a+ Dα, ϕ

a+ x(t) = x(t) −
n−1∑
k=0

x[k]
ϕ (a)
k!

(ϕ(t) − ϕ(a))k.
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In the following, we give some basic definitions in ordered Banach spaces and two fixed point
theorems of concave operators which will be used later, all the materials can be found in [17–20]. We
denote θ the zero element of E.

Definition 2.3 Let X be a semi-ordered real Banach space. The nonempty convex closed subset P
of X is called a cone in X if ax ∈ P for all x ∈ P and a ≥ 0 and x ∈ X and −x ∈ X imply x = θ.

Let the real Banach space E be partially ordered by a cone P of E, that is x ≤ y if and only if
y − x ∈ P. If x ≤ y and x , y, then we denote x < y or y > x.

Recall that cone P is said to be solid if the interior P̊ is nonempty and we denote x >> 0 if x ∈ P̊. P
is normal if there exists a positive constant N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, N is called the
normal constant of P.

Definition 2.4 Let D be a convex subset in E. An operator T : D→ E is a concave operator if

T (tx + (1 − t)y) ≥ tT x + (1 − t)Ty

for all x, y ∈ D and t ∈ [0, 1].
Definition 2.5 Let P be a cone in real Banach space E and e ∈ P\{θ}. Set

Ee = {x ∈ E : there exists λ > 0 such that − λe ≤ x ≤ λe}

and define
‖x‖e = in f {λ > 0 : −λe ≤ x ≤ λe}, ∀x ∈ Ee.

It is easy to see that Ee becomes a normed linear space under the norm ‖·‖e. ‖x‖e is called the e-norm
of the element x ∈ Ee.

Lemma 2.3 [17] Suppose P is a normal cone. Then the following results hold:
(i) Ee is a Banach space with e-norm, and there exists a constant m > 0 such that ‖x‖ ≤ m‖x‖e, ∀x ∈

Ee;
(ii) Pe = Ee ∩ P is a normal solid cone of Ee and

P̊e = {x ∈ Ee : there exists δ = δ(x) > 0 such that x ≥ δe}.
Lemma 2.4 [19] Suppose P is a normal solid cone and operator T : P → P is a concave operator.

Assume that Tθ >> θ. Then the following results hold:
(i) there exists 0 < λ∗ ≤ ∞ such that the equation

u = λTu (2.1)

has a unique solution u(λ) in P for 0 ≤ λ < λ∗, when λ ≥ λ∗, the operator equation (2.1) has no solution
in P;

(ii) for any u0 ∈ P, let u0(λ) = u0, un(λ) = λTun−1(λ), n = 1, 2, 3, · · ·. Then for 0 < λ < λ∗, we have
un(λ)→ u(λ) as n→ ∞;

(iii) u(·) : [0, λ∗) → P is continuous and strongly increasing (0 ≤ λ1 < λ2 < λ∗ ⇒ u(λ1) << u(λ2)).
Furthermore, u(tλ) ≤ tu(λ) for 0 ≤ λ < λ∗, 0 ≤ t ≤ 1.

(iv) λ→ λ∗ − 0 implies ‖u(λ)‖ → ∞;
(v) if there exist v0 ∈ P and λ0 > 0 such that λ0Tv0 ≤ v0, then λ∗ > λ0.

Lemma 2.5 [19] If T : P→ P is concave, then T is increasing.
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Lemma 2.6 [20] Suppose P is a normal solid cone and operator T : P̊→ P̊ is an increasing operator.
We presume there exists a constant 0 < r < 1 such that

T (tu) ≥ trTu, ∀u ∈ P̊, 0 < t < 1.

Let uλ be the unique solution in P̊ of the equation Tu = λu(λ > 0). Then
(i) uλ is strongly decreasing (0 < λ1 < λ2 ⇒ uλ1 >> uλ2);
(ii) uλ is continuous (λ→ λ0(λ0 > 0)⇒ ‖uλ − uλ0‖ → 0);
(iii) limλ→+∞ ‖uλ‖ = 0, limλ→0+ ‖uλ‖ = +∞.

3. Main results

Denote

µ = (ϕ(1) − ϕ(0))α−1 −

m−2∑
i=1

βi(ϕ(ηi) − ϕ(0))α−1.

Lemma 3.1 Assume that (H1), (H2) hold. Then the fractional boundary value problem (1.1), (1.2) is
equivalent to the following integral equation

u(t) =

∫ 1

0
G(t, s)ϕ′(s)λ f (s, u(s))ds, (3.1)

where

G(t, s) =



m−2∑
j=1
β j(ϕ(η j) − ϕ(0))α−1(ϕ(t) − ϕ(s))α−1 − (ϕ(t) − ϕ(s))α−1(ϕ(1) − ϕ(0))α−1

µΓ(α)

+(ϕ(t) − ϕ(0))α−1(ϕ(1) − ϕ(s))α−1 −
m−2∑
j=i
β j(ϕ(η j) − ϕ(s))α−1(ϕ(t) − ϕ(0))α−1

µΓ(α)
0 ≤ t ≤ 1, ηi−1 ≤ s ≤ min{ηi, t}, i = 1, 2, · · ·,m − 1;

(ϕ(t) − ϕ(0))α−1(ϕ(1) − ϕ(s))α−1 −
m−2∑
j=i
β j(ϕ(η j) − ϕ(s))α−1(ϕ(t) − ϕ(0))α−1

µΓ(α)
0 ≤ t ≤ 1, max{ηi−1, t} ≤ s ≤ ηi, i = 1, 2, · · ·,m − 1.

(3.2)

Here for the sake of convenience, we write η0 = 0, ηm−1 = 1 and
m2∑

i=m1

fi = 0 for m2 < m1.

Proof. Use y(t) to replace f (t, u) in (1.1). Let

Dα, ϕ
0+ u(t) + λy(t) = 0.

Then from Theorem 2.2, we have

u(t) = c1(ϕ(t) − ϕ(0))α−1 + c2(ϕ(t) − ϕ(0))α−2 −
1

Γ(α)

∫ t

0
ϕ′(s)(ϕ(t) − ϕ(s))α−1λy(s)ds. (3.3)
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Note that u(0) = 0 implies c2 = 0. Therefore, we obtain

u(t) = c1(ϕ(t) − ϕ(0))α−1 −
1

Γ(α)

∫ t

0
ϕ′(s)(ϕ(t) − ϕ(s))α−1λy(s)ds. (3.4)

In particular,

u(1) = c1(ϕ(1) − ϕ(0))α−1 −
1

Γ(α)

∫ 1

0
ϕ′(s)(ϕ(1) − ϕ(s))α−1λy(s)ds

and
u(ηi) = c1(ϕ(ηi) − ϕ(0))α−1 −

1
Γ(α)

∫ ηi

0
ϕ′(s)(ϕ(ηi) − ϕ(s))α−1λy(s)ds.

Note that u(1) =
∑m−2

i=1 βiu(ηi), and hence we obtain

c1 =
1

µΓ(α)

∫ 1

0
ϕ′(s)(ϕ(1) − ϕ(s))α−1λy(s)ds −

∑m−2
i=1 βi

µΓ(α)

∫ ηi

0
ϕ′(s)(ϕ(ηi) − ϕ(s))α−1λy(s)ds.

As a result, from (3.4) we have

u(t) = −
1

Γ(α)

∫ t

0
ϕ′(s)(ϕ(t) − ϕ(s))α−1λy(s)ds

+
(ϕ(t) − ϕ(0))α−1

µΓ(α)

∫ 1

0
ϕ′(s)(ϕ(1) − ϕ(s))α−1λy(s)ds

−

∑m−2
i=1 βi(ϕ(t) − ϕ(0))α−1

µΓ(α)

∫ ηi

0
ϕ′(s)(ϕ(ηi) − ϕ(s))α−1λy(s)ds

=
∫ 1

0
G(t, s)ϕ′(s)λy(s)ds.

(3.5)

This completes the proof. �

Lemma 3.2 Assume that (H1), (H2) hold. Then the Green’s function G(t, s) defined by (3.2) has the
following properties:

(i) G(t, s) is a continuous function on [0, 1] × [0, 1];
(ii) G(t, s) > 0 for all (t, s) ∈ (0, 1);
(iii)

G(t, s) ≤
(ϕ(1) − ϕ(0))α−1(ϕ(1) − ϕ(s))α−1

µΓ(α)
, ∀s ∈ (0, 1). (3.6)

Proof. (i) From the expression of G(t, s), it is easy to get that G(t, s) is continuous.
(ii) From (H1), (H2), we can get µ > 0.
For 0 ≤ t ≤ 1, ηi−1 ≤ s ≤ min{ηi, t}, i = 1, 2, · · ·,m − 1,

G(t, s) =
1

µΓ(α)

[
(ϕ(t) − ϕ(0))α−1(ϕ(1) − ϕ(s))α−1

−
m−2∑
j=i
β j(ϕ(η j) − ϕ(s))α−1(ϕ(t) − ϕ(0))α−1 − µ(ϕ(t) − ϕ(s))α−1

]
=

(ϕ(t) − ϕ(0))α−1

µΓ(α)

[
(ϕ(1) − ϕ(s))α−1 −

m−2∑
j=i

β j(ϕ(η j) − ϕ(s))α−1

−µ
(
ϕ(t) − ϕ(s)
ϕ(t) − ϕ(0)

)α−1]
.
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Consider

e(t) = (ϕ(1) − ϕ(s))α−1 −

m−2∑
j=i

β j(ϕ(η j) − ϕ(s))α−1 − µ
(
ϕ(t) − ϕ(s)
ϕ(t) − ϕ(0)

)α−1

.

Then we have

e′(t) = −µ(α − 1)
(
ϕ(t) − ϕ(s)
ϕ(t) − ϕ(0)

)α−2ϕ′(t)(ϕ(s) − ϕ(0))
(ϕ(t) − ϕ(0))2 ≤ 0,

which implies that e(t) is decreasing for 0 ≤ t ≤ 1, ηi−1 ≤ s ≤ min{ηi, t}, i = 1, 2, · · ·,m − 1.
Furthermore, we have

e(1) = (ϕ(1) − ϕ(s))α−1 −
m−2∑
j=i
β j(ϕ(η j) − ϕ(s))α−1 − µ

(
ϕ(1) − ϕ(s)
ϕ(1) − ϕ(0)

)α−1

=
m−2∑
j=1
β j(ϕ(η j) − ϕ(0))α−1 (ϕ(1) − ϕ(s))α−1

(ϕ(1) − ϕ(0))α−1 −

m−2∑
j=i

β j(ϕ(η j) − ϕ(s))α−1

=
m−2∑
j=1
β j(ϕ(η j) − ϕ(0))α−1 (ϕ(1) − ϕ(s))α−1

(ϕ(1) − ϕ(0))α−1 −

m−2∑
j=i

β j(ϕ(η j) − ϕ(0))α−1 (ϕ(η j) − ϕ(s))α−1

(ϕ(η j) − ϕ(0))α−1 .

As we know,
(ϕ(1) − ϕ(s))α−1

(ϕ(1) − ϕ(0))α−1 >
(ϕ(η j) − ϕ(s))α−1

(ϕ(η j) − ϕ(0))α−1 ,

consequently, we have e(1) > 0.
As a result, G(t, s) > 0 for 0 ≤ t ≤ 1, ηi−1 ≤ s ≤ min{ηi, t}, i = 1, 2, · · ·,m − 1.
For 0 ≤ t ≤ 1, max{ηi−1, t} ≤ s ≤ ηi, i = 1, 2, · · ·,m − 1,

G(t, s) =
1

µΓ(α)

[
(ϕ(t) − ϕ(0))α−1(ϕ(1) − ϕ(s))α−1 −

m−2∑
j=i

β j(ϕ(η j) − ϕ(s))α−1(ϕ(t) − ϕ(0))α−1
]

=
1

µΓ(α)
(ϕ(t) − ϕ(0))α−1

[
(ϕ(1) − ϕ(s))α−1 −

m−2∑
j=i

β j(ϕ(η j) − ϕ(s))α−1
]
> 0.

Therefore, G(t, s) > 0 for all t, s ∈ (0, 1).
(iii) From (H1), (H2) and the expression of G(t, s), we can easily obtain this property. �

Let E = C[0, 1] be a Banach space equipped with the norm

‖u‖E = max
t∈[0,1]

|u(t)|.

Define the cone K ⊂ E by
K = {u ∈ E : u(t) ≥ 0, 0 ≤ t ≤ 1},

then K is a normal solid cone of E. Let

g(t) =

∫ 1

0
G(t, s)ϕ′(s)ds, 0 ≤ t ≤ 1. (3.7)
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From (H1) and Lemma 3.2, we have g(t) ∈ E and g(t) ∈ K \ {θ}.
Let X = Ee = {u ∈ E : ∃τ > 0, such that − τg(t) ≤ u(t) ≤ τg(t), 0 ≤ t ≤ 1} be a Banach space

equipped with the norm ‖u‖X = inf{τ > 0 : −τg(t) ≤ u(t) ≤ τg(t), 0 ≤ t ≤ 1}.
Define K̃ = X ∩ K, then K̃ is a normal solid cone of X and

˚̃K = {u ∈ X : there exists δ > 0 such that u(t) ≥ δg(t), 0 ≤ t ≤ 1, ∀u ∈ X}.
Moreover, there exists a constant m > 0 such that ‖u‖E ≤ m‖u‖X.

Theorem 3.3 Assume that (H1), (H2) hold. Furthermore, f (t, ·) is concave and there exist constants
χ > 0, β > 0 such that

f (t, 0) ≥ χ, f (t, 1) ≤ β, 0 ≤ t ≤ 1. (3.8)

Then the following results hold:
(i) there exists 0 < λ∗ ≤ ∞ such that the fractional boundary value problem (1.1), (1.2) has a unique

positive solution uλ in K̃ for 0 < λ < λ∗, the fractional boundary value problem(1.1), (1.2) has no
positive solution in K̃ for λ ≥ λ∗;

(ii) for any u0 ∈ K̃, let

un(t) = λ

∫ 1

0
G(t, s)ϕ′(s) f (s, un−1(s))ds, n = 1, 2, 3, · · ·.

Then for 0 < λ < λ∗, we have

max
0≤t≤1
|un(t) − uλ(t)| → 0 as n→ ∞;

(iii) if 0 < λ < λ∗, max0≤t≤1 |uλ(t) − uλ0(t)| → 0 as λ → λ0 and if 0 < λ1 < λ2 < λ∗, then
uλ1(t) ≤ uλ2(t), 0 ≤ t ≤ 1 and uλ1(t) . uλ2(t);

(iv) uvλ(t) ≤ vuλ(t) for 0 < λ < λ∗, 0 ≤ v ≤ 1, 0 ≤ t ≤ 1.
(v) if limu→∞

f (t,u)
u = 0 uniformly on [0, 1], then λ∗ = ∞.

Proof. Define an operator T by

(Tu)(t) =

∫ 1

0
G(t, s)ϕ′(s) f (s, u(s))ds. (3.9)

Thus we know that u is a solution of (1.1), (1.2) if and only if u = λTu. For u ∈ K, in view of
(H1), (H2) and Lemma 3.2, we can get Tu ∈ K. Owing to the concavity of f (t, ·), for u > 1, we have

f
(
t, 1

)
= f

(
t,

1
u

u +

(
1 −

1
u

)
0
)
≥

1
u

f (t, u) +

(
1 −

1
u

)
f (t, 0),

from (3.8), we obtain
f (t, u) ≤ u f (t, 1) − (u − 1) f (t, 0) ≤ u f (t, 1) ≤ uβ.

So, for u ∈ K, we have

0 ≤
∫ 1

0
G(t, s)ϕ′(s) f (s, u(s))ds ≤

∫ 1

0
G(t, s)ϕ′(s) f (s, ‖u‖E)ds ≤ N1g(t), 0 ≤ t ≤ 1,

where N1 = max0≤t≤1 f (t, ‖u‖E) ≤ max0≤t≤1 f (t, ‖u‖E + 1) ≤ β(1 + ‖u‖E), so, we have 0 ≤ (Tu)(t) ≤
N1g(t), which implies Tu ∈ X. Thus, Tu ∈ K̃, this means that T : K̃ → K̃. In view of the concavity of
f (t, ·), we have the operator T is concave.
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From (3.9), we have (Tθ)(t) =
∫ 1

0
G(t, s)ϕ′(s) f (s, 0)ds ≥ χg(t), 0 ≤ t ≤ 1. So, Tθ ∈ ˚̃K, this means

that Tθ >> θ. Then all the conditions of Lemma 2.4 are satisfied. Thus from Lemma 2.4, there exists
0 < λ∗ ≤ ∞ such that the equation u = λTu has a unique positive solution uλ in K̃ for 0 < λ < λ∗, the
equation u = λTu has no positive solution in K̃ for λ ≥ λ∗.;

For any u0 ∈ K̃, let un = λTun−1, n = 1, 2, 3, · · ·, then we have un → uλ as n → ∞ for 0 < λ <

λ∗, uλ : (0, λ∗)→ K̃ is continuous and strongly increasing. Furthermore, utλ ≤ tuλ for 0 ≤ λ < λ∗, 0 ≤
t ≤ 1; λ → λ∗ − 0 implies ‖uλ‖X → ∞; if there exist v0 ∈ K̃ and λ0 > 0 such that λ0Tv0 ≤ v0, then
λ∗ > λ0. From this results, we can get

(i) the fractional boundary value problem (1.1), (1.2) has a unique positive solution uλ in K̃ for
0 < λ < λ∗, the fractional boundary value problem (1.1), (1.2) has no positive solution in K̃ for λ ≥ λ∗;

(ii) for any u0 ∈ K̃, let

un(t) = λ

∫ 1

0
G(t, s)ϕ′(s) f (s, un−1(s))ds, n = 1, 2, 3, · · ·.

Then for 0 < λ < λ∗, we have

max
0≤t≤1
|un(t) − uλ(t)| → 0 as n→ ∞;

(iii)max0≤t≤1 |uλ(t) − uλ0(t)| → 0 as λ → λ0, where 0 < λ0 < λ∗ and if 0 < λ1 < λ2 < λ∗, then there
exists δ > 0 such that uλ2(t) − uλ1(t) ≥ δg(t), 0 ≤ t ≤ 1, this means that uλ1(t) ≤ uλ2(t), 0 ≤ t ≤ 1 and
uλ1(t) . uλ2(t);

(iv) for 0 < λ < λ∗, uδλ(t) ≤ δuλ(t), 0 ≤ δ ≤ 1, 0 ≤ t ≤ 1.
(v) Denote η = ‖g‖E, for any given λ > 0, by limu→∞

f (t,u)
u = 0, there exists a large T > 0, such that

f (t,T ) ≤ (ηλ)−1T, 0 ≤ t ≤ 1. Let v0(t) = η−1Tg(t), from Lemma 2.5, we have

λ(Tv0)(t) = λ

∫ 1

0
G(t, s)ϕ′(s) f (s, η−1Tg(s))ds ≤ λ

∫ 1

0
G(t, s)ϕ′(s) f (s,T )ds

≤ (ηλ)−1Tλg(t) = η−1Tg(t) = v0(t),

v0(t) − λ(Tv0)(t) =

∫ 1

0
G(t, s)ϕ′(s)(η−1T − λ f (s, η−1Tg(s)))ds ≤ M2g(t), 0 ≤ t ≤ 1,

where M2 = sup0≤t≤1[η−1T + λ f (s,T )] ≤ η−1T + λβ(T + 1), this means that v0(t) − λTv0 ∈ K̃. That is
λTv0 ≤ v0.By Lemma 2.4 (v), we have λ∗ > λ, because of the arbitrariness of λ,we can get λ∗ = ∞. �

Theorem 3.4 Assume that (H1), (H2) hold. Furthermore, the following conditions hold:
(i) there exists a number 0 < r < 1 such that

f (t, ωu) ≥ ωr f (t, u), 0 ≤ t ≤ 1, u ≥ 0, 0 < ω < 1;

(ii) there exists a number ξ > 0 such that f (t, 1) ≤ ξ;
(iii) min0≤t≤1 f (t, g(t)) > 0, where g(t) is given by (3.7).

Then the following results hold:
(i) for any given λ > 0, the fractional boundary value problem (1.1), (1.2) has a unique positive solution
uλ in ˚̃K;
(ii) if 0 < λ1 < λ2, then uλ1(t) ≤ uλ2(t), 0 ≤ t ≤ 1 and uλ1(t) . uλ2(t);
(iii) max0≤t≤1 |uλ(t) − uλ0(t)| → 0 as λ→ λ0;
(iv) max0≤t≤1 |uλ(t)| → +∞ as λ→ +∞, max0≤t≤1 |uλ(t)| → 0 as λ→ 0+.
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Proof. For u > 1, from the condition (i), we have

f (t, 1) = f
(
t,

1
u

u
)
≥

(1
u

)r

f (t, u),

thus, we get
f (t, u) ≤ ur f (t, 1) ≤ ξur.

So, for u ∈ K, we have

0 ≤
∫ 1

0
G(t, s)ϕ′(s) f (s, u(s))ds ≤

∫ 1

0
G(t, s)ϕ′(s) f (s, ‖u‖E)ds ≤ M3g(t), 0 ≤ t ≤ 1,

where M3 = max0≤t≤1 f (t, ‖u‖E) ≤ max0≤t≤1 f (t, ‖u‖E + 1) ≤ ξ(1 + ‖u‖E)r,

Thus, 0 ≤ Tu(t) ≤ M3g(t), 0 ≤ t ≤ 1, this means that T : K̃ → K̃.
For u ∈ ˚̃K, there exists δ > 0 such that u(t) ≥ δg(t) ≥ 0, 0 ≤ t ≤ 1. Let ω ∈ (0, 1) such that ω < δ,

we have

(Tu)(t) =

∫ 1

0
G(t, s)ϕ′(s) f (s, u(s))ds ≥

∫ 1

0
G(t, s)ϕ′(s) f (s, δg(s))ds

≥

∫ 1

0
G(t, s)ϕ′(s) f (s, ωg(s))ds ≥ ωr

∫ 1

0
G(t, s)ϕ′(s) f (s, g(s))ds.

Set a = min0≤t≤1 f (t, g(t)), then a > 0 and (Tu)(t) ≥ aωrg(t), 0 ≤ t ≤ 1, so T : ˚̃K → ˚̃K. From f (t, ·)
is increasing, we can get that T is increasing. Moreover, for u ∈ ˚̃K and ω ∈ (0, 1), we have

T (ωu)(t) =

∫ 1

0
G(t, s)ϕ′(s) f (s, ωu(s))ds ≥

∫ 1

0
G(t, s)ϕ′(s)ωr f (s, u(s))ds = ωr(Tu)(t).

In the following, we consider the operator equation

(Tu)(t) = ρu(t). (3.10)

Then all the conditions of Lemma 2.6 are satisfied. Thus, from Lemma 2.6, for any given ρ >

0, (3.10) has a unique solution uρ in ˚̃K, uρ is strongly decreasing, uρ is continuous, this means that
‖uρ − uρ0‖ → 0 as ρ → ρ0 and furthermore, limρ→+∞ ‖uρ‖ = 0, limρ→0+ ‖uρ‖ = +∞. Set λ = 1

ρ
, λ0 =

1
ρ0
, λ1 = 1

ρ1
, λ2 = 1

ρ2
. Then (3.10) is equivalent to u(t) = λ(Tu)(t). As a result, we can get

(i) for any given λ > 0, the fractional boundary value problem (1.1), (1.2) has a unique positive solution
uλ in ˚̃K;
(ii) if 0 < λ1 < λ2, there exists δ > 0 such that uλ2(t) − uλ1(t) ≥ δg(t) which implies uλ1(t) ≤ uλ2(t) and
uλ1(t) . uλ2(t), 0 ≤ t ≤ 1;
(iii) max0≤t≤1 |uλ(t) − uλ0(t)| → 0 as λ→ λ0;
(iv) max0≤t≤1 |uλ(t)| → +∞ as λ→ +∞, max0≤t≤1 |uλ(t)| → 0 as λ→ 0+. �
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4. Example

Example 4.1 Consider the fractional boundary value problem

D
3
2 ,

t
2

0+ u(t) + λ(t2 + 1 + u
1
3 ) = 0, 0 < t < 1, (4.1)

u(0) = 0, u(1) =
1
2

u
(1
2

)
. (4.2)

We note that α = 3
2 , β = 1

2 , η = 1
2 , ϕ(t) = t

2 , f (t, u) = t2 + 1 + u
1
3 . Thus, we have f (t, u) : [0, 1]×R+ →

R+ is continuous and increasing in u, f (t, u) is concave. We can check that conditions (H1), (H2) are
satisfied. Choose α = 1, β = 3 and f (t, u) satisfy

f (t, 0) = t2 + 1 ≥ 1, f (t, 1) = t2 + 2 ≤ 3, 0 ≤ t ≤ 1,

lim
u→∞

f (t, u)
u

= lim
u→∞

t2 + 1 + u
1
3

u
= 0.

Then all the assumptions of Theorem 3.3 are satisfied. Thus from Theorem 3.3, we have λ∗ = ∞,

and the following conclusions hold:
(i) for λ > 0, the fractional boundary value problem (4.1), (4.2) has a unique positive solution uλ

in K̃;
(ii) for any u0 ∈ K̃, let

un(t) = λ

∫ 1

0
G(t, s)ϕ′(s) f (s, un−1(s))ds, n = 1, 2, 3, · · ·.

Then for λ > 0, we have
max
0≤t≤1
|un(t) − uλ(t)| → 0 as n→ ∞;

(iii) max0≤t≤1 |uλ(t)−uλ0(t)| → 0 as λ→ λ0 and if 0 < λ1 < λ2 < +∞, then uλ1(t) ≤ uλ2(t), 0 ≤ t ≤ 1
and uλ1(t) . uλ2(t);

(iv) uvλ(t) ≤ vuλ(t) for 0 < λ < +∞, 0 ≤ v ≤ 1, 0 ≤ t ≤ 1.

5. Conclusions

In this paper, we discussed a class of fractional derivative with respect to another function called ϕ-
Riemann-Liouville fractional derivative. The new derivative herein generalizes the classical definitions
of derivatives by choosing particular forms of ϕ(t). The main advantage of our paper is we not only
develop the existence and uniqueness of positive solutions to the fractional boundary value problem,
but also give some properties of positive solutions to the problem.
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