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1. Introduction

Many research papers have studied the properties of convex functions that make this concept
interesting in mathematical analysis [1-4]. In recent years, important generalizations have been made
in the context of convexity: quasi-convex [5], pseudo-convex [6], invex and preinvex [7], strongly
convex [8], approximately convex [9], MT-convex [10], (a,m)-convex [11], and strongly
(s, m)-convex [12—15]. Here, we recall the notion of convexity: A function g : [3,8:] C R — Ris
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said to be convex if the following inequality holds

glix+ (1 -ny) <tg(x)+ (1 -0g(y), x,y€l[B1,B:], t€[0,1]. (L.1)
Now, we recall our basic definition, the so-called quasi-convex function.

Definition 1.1 ( [16]). A function g : [81,5.] — R is said quasi-convex on [y, 5,] if

g(tx + (1 — n)y) < max{g(x), g}, (1.2)
for any x,y € [B1,5,] and ¢ € [0, 1].

It is important to note that, any convex function is a quasi-convex but the reverse is not true. In the
following example we explain that fact.

Example 1.1 ( [5]). The function & : [-2,2] — R, defined by

1, for s € [-2, —1],
h(s) =
2, for s € (-1,2],

is not convex on [—2, 2] but it is easy to see that the function is quasi-convex on [-2, 2].

Notice that 4 is quasi-convex if and only if all the level sets of & are intervals (convex sets of the
line).

The use of the convex function to study the integral inequalities have been deeply investigated,
especially for the well-known inequality of Hermite-Hadamard type (HH-type inequality). The
HH-type inequalities are one of the most important type inequalities and have a strong relationship to
convex functions. In 1893 Hermite and Hadamard [17] found independently that for any convex
function g : [B1,5.] — R, the inequality

1 32
g(ﬁl ;ﬁz) < f 2()dx < g(ﬁl);g(ﬁZ),

~ B2 —Bi Jg,

(1.3)

holds.

In the field of mathematical analysis, many scholars have focused on defining new convexity and
implementing of the problems based on their features. The features that make the results different from
each other include lower and higher order derivative of the function. The differential equations with
impulse perturbations lie in a special significant position in the theory of differential equations. Among
them, integral inequality methods are the important tools to investigate the qualitative characteristics
of solutions of different kinds of equations such as differential equations, difference equations, partial
differential equations, and impulsive differential equations; see [18—23] for more details.

The HH-type inequality (1.3) has been applied to various convex functions like s-geometrically
convex functions [24], GA-convex functions [25], MT-convex function [10], (a,m)-convex
functions [26] and many other types can be found in [27]. Besides, the HH-type inequality (1.3) has
been applied to a numerous type of convex functions in the sense of fractional calculus like F-convex
functions [28], A,-convex functions [29], MT-convex functions [30], (a, m)-convex functions [11],
new class of convex functions [31] and many other types can be found in the literature. Meanwhile, it
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has been applied to other models of fractional calculus like standard Riemann-Liouville fractional
operators [32, 33], conformable fractional operators [34-36], generalized fractional operators [37],
Y-RL-fractional operators [38, 39], Tempered fractional operators [40], and AB- and Prabhakar
fractional operators [41].

In view of the above indices, we extend the work done in [42] to establish some modified HH-type
inequalities for the 3-times differentiable quasi-convex functions.

2. Main results

This section deals with our main results. Throughout this paper, we mean g € L[B;,/5,] that the
function g is differential and continuous on [S, 8;].

Lemma 2.1. Suppose that g : J C R — R is a differentiable function such that 51,3, € J with 8, < [3,.
If g € L|By,B2], then we have

1 B2 _ 2
g(lg1 ;ﬁz) B- B »E glx)dx + = 24IBI) 8 (ﬁl ;ﬁz)
_Ba=B| [ (BrtBe
_TUO £g ( +(1—t),81)dt

f(t—1)3 ”’(t,B r(1—pPth 'Bz)dt]. @.1)

Proof. By applying integration by parts three times to get

7, :=f0 P "'(ﬁl ’82+(1—t),81)dt

2 (22 o [ (A2

:ﬁz—ﬁl B2 = Bi
— 2 g// (ﬂl +ﬁ2)_ 12 g/ (ﬁl +ﬁ2)
B> —Bi 2 B2 —B1)? 2
24 : ’ ﬁl +ﬁ2
+—(ﬁ2_ﬁl)2f0 g (r : +(1—t),81)dt
__ 2 g,,(ﬁ1 +,32)_ 12 g,(ﬁ1 +Bz)+ 48 g(/ﬁ +ﬁz)
B2 — B 2 B2 —B1)? 2 B2 —B1)? 2
48 ! Bi+ B
Gy fo g(t . +(1—t)ﬁl)dt. 2.2)

Making use of change of the variable x = t@ + (1 — 1B for t € [0, 1] and multiplying by by ﬂ D’ on
both sides, we obtain

B2 =51’ J, = (B2 —,31)2g,, (/31 +ﬁ2) B —ﬁlg, (/31 +ﬁ2)

96 48 2 8 2
B1+B2
L (B1+8 2
+§g( : )_,32_,81 g(x)dx. (2.3)
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Analogously, we can deduce

a3 _ a3
(B2 —B1) Jy = (ﬁz ,31) f(t 1g" t,82+(1—t)ﬁ1+’82)

96
(B =), (/31
= 8

ﬁz) LB —ﬁlg, (ﬁl +ﬁz)

48 2 8 2
1 (Bi+5 ) 1 f w2
+ = (x)dx. (2.4
2g( 2 ﬁz - Bl 1+ 2 § )
Finally, by adding (2.3) and (2.4), we get the required identity (2.1). O

Remark 2.1. Notice that f being quasi-convex is not equivalent to | f| being quasi-convex. For instance,
g(x) = x* — 1 is only quasi-convex (but not |g(x)|), whereas g(x) = 1 if x € [-1,1] and g(x) = —
otherwise, is not quasi-convex, but |g(x)| = 1 is quasi-convex.

Theorem 2.1. Suppose that g : J C [0, +c0) — R is a differentiable function such that "’ € L[S, [:],
where By, € J with 51 < B,. If |g""'| is quasi-convex function on [B1, 8], then we have

b1+ B2 1 ¥z Br=B1)? ,, (B1+ B B2 —B1)’
‘g( 2 )_ﬂz—ﬁlfﬁlg(x)d“ 24 g( 2 )S 384

K, (2.5)

where K = max{

g (£52)] s lg Bl + max { g6}

Proof. Making use of Lemma 2.1 and the quasi-convexity |g”’|, we have that

'g(ﬁl;‘ﬁz)_ﬁziﬂlﬁg(x)d +(,32;fl) ,,(ﬁl;‘ﬁz)
,,,(,31 B2

(52—,31)3[f
<=5 |J) "k
1
+f ”’(t,B +(1-1)
0
S—(ﬁz_ﬂl)3ft3max{g
0

96
(ﬁz—ﬂ1)3f(1

< (ﬁ23—84ﬂl )’ [max{|g"' (,31 72%32

g" (,31 +ﬁz)

+(1= 0B ) di

(BB |1 o

52

Bi ﬁz)

18" (B}t

(=

)| 1g” B0} + max {|g

SIS

This rearranges to the desired result. O

Example 2.1. To clarify the following expression occurs in Theorem 2.1

(2.6)

b= (B2 —ﬁ1)2g,, (ﬁl +,32)’

24 2
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we consider the function g(x) = 5 on the interval [3,,5,] = [0, 1]. Then, we have
2x (42% - 3)
yx) =g"(%) = ———=;
(x2 +2)°

(1) 46
P=248 \2)~ 2187
Figure 1 demonstrates the intersections and relationships between the functions g(x), y(x) and the
point p geometrically.

_06 Il Il Il Il Il Il Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 1. Plot illustration for the expression (2.6).

Corollary 2.1. Let the assumptions of Theorem 2.1 be valid and let

Bi+ B> fﬂz (B2 =B1) , (B +Ba
H = ( )— x)dx + ( ) .
8> BB U g(x) a8 5
Then,
(i) if|g""| is increasing, then we have
_BY T +
H (,32384,31) 7 (Bo)l + ¢ (,31 2,32)]’ 27
(ii) if |g"”’| is decreasing, then we have
—BV T +
no< BB L (B2 2], 8)
(iii) if g"”’ (@) = 0, then we have
_ R\
H o< BB gt g gl] 2.9)
384
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(iv) if g7 (B1) = " (B2) = 0, then we have

H

(B> = B1)’ Iz (:31 "‘:82) . (2.10)

B 384 2
Theorem 2.2. Suppose that g : J C [0, +00) — R is a differentiable function such that g""’ € L[B,,],
where (1,5, € J with B, < B,. If |g"’|? is quasi-convex function on [By,5,] and g > 1 with % + [l] =1,
then we have

ldﬁ;ﬁﬁ_&iﬁug%mwx+@ifmgwm;ﬂﬁSgﬁZxT;Kp @.11)
e (o ) 42 )

Proof. Let p > 1. Then from Lemma 2.1 and using the Holder inequality, we can deduce

|8 (ﬁl +ﬁ2) 1 fﬁz CCdn + (B2 _ﬁl)zg,l (51 +,82)
B

2 ) BB 24 >
(B> = 1)’ " ,31 + 52
S—Erﬂﬁrg( : u—%%m
f(l—t)3 ”’(t,B +(1-pP ﬁ2) ]

(,3 + 52

" (1 +u4%)

)é

(tb (-1

([l ([
wrmWfﬂfWﬂ(f

The quasi-convexity of [g”’|? on 81, 8,] implies that

fg,,,(ﬁl B>
0
fol

Therefore, we obtain

‘g(ﬁl *2'182) B 1/31 fﬁz g(x)dx + G _'Bl)zgu (,31 ;—ﬁz) <

5, 24
where we used the identities

Bi +ﬁ2)

al

(=

+(1 - t),Bl) dt < max{ g ,|gm(51)|q},

and

S el

g (tb +(1—1) dt < max{ |g"'(32)|q} .

(B2 —,31)3
96(3p + 1),,

1 1
1
f rPdt = f (1 —0)*dr = )
0 0 3p+1

Thus, our proof is completely done. O
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Corollary 2.2. Let the assumptions of Theorem 2.2 be valid and let

| (B1+ P 1 # B =B, (B + B2
H—‘g( 2 )_ﬂ2—ﬁ1£1 §(dx + 24 g( 2 )

Then,

i) if |g"”| is increasing, then we have
8 8

H < % [+ [e (B522)

], (2.12)

(ii) if |g"”’| is decreasing, then we have

_ AV
H < (B2 = B1) i [Ig"'(ﬁl)l'i' |g/// (,31 ;,32)]’ (2.13)
96(3p + 1)»
(iii) if g"”’ (ﬁl%ﬁz) = 0, then we have
A
Ho< 2P g ), (2.14)
96(3p + 1)r

(iv) if g7 (B1) = " (B,) = 0, then we have

poe BB (B o5
96(3p + 1)7 2

Theorem 2.3. Suppose that g : J C [0, +00) — R is a differentiable function such that g""’ € L[B,[.],
where 1,5, € J with 81 < B,. If |1g"”|1 is quasi-convex function on [B1,3,] and g > 1 with 117 + [11 =1,
then we have

B+ 1 & B —B)? ,, (Bi+B> B - B’
‘g( 2 )_ﬁz—ﬂlj[;g(x)dx-'- 24 g( 2 )S 384

(2.16)

where K, is as before.

Proof. From Lemma 2.1, properties of modulus, and power mean inequality, we have

‘g (51 +ﬁz) - 1 . fﬁz e + (B2 _ﬁl)zg” (ﬁ1 +ﬁ2)
B B

2 24 2
< (ﬁ2_ﬁl)3|:f t g///(ﬁl ﬁZ
0

96
f (=02 fg” (82 + (1 - 2

B2 = B1)’ 3 .\" ¢ \e
ST(fOtdt) (j(;t dt)
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tb+(1 _pPth BZ)

(ﬁrﬁl)3(f(1 t)dt) (f(l—t)

Then, by using the quasi-convexity of |g’”’|? on [B,,5,], we have

i

1 q
ft ¢ (P2 v r<1max{g’”(ﬁ1;ﬁ2) ,Ig"'(ﬁl)l‘f},
0
and
q
f(1—z) ”’(tb+(1—t)'8 ﬁz) dtszmax{g"’('g—lgﬁz) ,|g"’(ﬁ2)|q}.
Therefore, we obtain
,31+/32) 1 f’gz B2 = B1)’ ,,(,31+ﬁ2) (B2 = 1)’
- < K.
‘g( > )R ), Ot T STy )| S e e
Hence, our proof is completely done. O

L _<1.
@Bp+?P

Remark 2.2. If g = p%l (p > 1), the constants of Theorem 2.2 are improved, since

The following corollary improves the inequalities (2.7)—(2.10).

Corollary 2.3. Let the assumptions of Theorem 2.3 be valid and let

H=s("55)- 55 f: st P ()|

Then,

(i) If |g""'| is increasing, we obtain (2.7).

(ii) If |g"’| is decreasing, we obtain (2.8).
(iii) If " (252) = 0, we obtain (2.9),
(iv) if g7 (B1) = " (B2) = 0, we obtain (2.10).

3. Applications

3.1. Applications for special means
Consider the special means of positive real numbers 8, > 0 and 3, > 0, define by:

e Arithmetic Mean:

BBy =22
e Logarithmic mean:
__ B-p
L(B1.B) = B — G| 1811 # 1Bal, Bi.B2 # 0.
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¢ Generalized log-mean:

Bt = pypt!

1
L Bo) = " o peZ\{-1,0}, * 5.
»(B1, B2 [(p TG —,5’1)] p B # B2
Remark 3.1. Let O < « < 1 and x > 0. Then, we consider
xa+3 I/I
gx) = , (x) = x°

(a+ )(a+2)(a+3)

For each x,y > 0 and t € [0, 1], we see that (tx + (1 — t)y)* < t*x* + (1 — 1)*y?, then we see that g’ (x)

1+ﬁz) _ _AGIB)

@D Furthermore, we have

is a-convex function on (0, +o0) and g(

B2 1 a/+4 ﬁa+4
f (X)dx = ]
BB Js & @ D@ @ @ DB -5
1
L2381, Ba).

T @+ D@+ 2)(axt3) o

Above we used the definition of a-convexity [11]: A function g : [0,r] — R,r > 0 is said to be
a-convey, if the following holds:

gix+ (L —1)y) <t%g(x) + (1 —1)g(y), x,y€[0,r], ,a €[0,1].
Proposition 3.1. Let 0 < @ < 1 andB, B, € R with 1 < B2, then we have

384
(a+ D(a+2)(a+3)

-B1)? 2 3
W) - LB + LB ED@ED) ﬁz)‘

s(ﬁz—ﬂlf[maX{g('Bl '82) By} + max{g (ﬁl+ﬁ2) A

Proof. Since x“ is quasi-convex for each x > 0 and @ € (0, 1) because every non-decreasing continuous

function is also quasi-convex, so the assertion follows from inequality (2.5) with g(x) = W;XM
O
Proposition 3.2. Let 31,8, € R such that 3, < B, and [B1,32] C (0, +00), then we have
‘A*(ﬁl,/ﬁ) -+ B g, ) < BB [ g (P )4] .
Proof. The assertion follows from inequality (2.11) with g(x) = ;, x € [B1,B2]- m|

Proposition 3.3. Let 31,8, e Rwith0 <) <Brandn € N, k > 5, then for all g > 1, we have

(B2 = B1)*k!

24(k - 2)! AT

‘A"(/fl,/s» — Li(B1, Bo) +

k'(B> — B1)’
T 2k233p + 1)5(k — 3)!

(81 + B2 + 2737,
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Proof. Let g(x) = x*, x € [B1,8.], k € N with k > 5, then we have

Ko

¢ =

2

and it is easy to see that g
2.2(i) above, we have

is an increasing and quasi-convex function. Then, by applying Corollary

(B> — B1)*k!

B - B1)’
24(k — 2)! K,

96(3p + 1)7

k=3
, |,32|k_3}] .

<

A (B, B)

‘A"(/fl,ﬁz) — Li(B1, o) +

k! =
K:(k_S)![max{ 181l }+max{

Then, by applying Corollary 2.1(9) to g above, we get

where

B+ P2
2

B+ P2
2

(B2 = B1)’k!

24(k - 2)! AT BB

AX(B1,B2) — Li(B1, o) +

k'(B> - 1)’
T 26233p + 1)i(k — 3)!

[(,81 +ﬁ2)k—3 4+ k=3 15—3] ,
and this completes the proof. O

3.2. Application for particular functions

Here, we consider two particular functions.
e First, we define g : R — R, by g(x) = ¢*.

Then, we have g"”’(x) = e* and

///”00 = sup |gul(t)| — eﬁz’
€[B1.821]

llg

By applying inequality (2.7) for above ||g"”’||., We can deduce

(32—,31)2 @ 1 5 1 (ﬁZ_ﬁl)3 2 _ (ﬁz_ﬁl)s 5

Particularly for 8; = 0, it follows that

,322 B 1 323
1 += - — (- 1| < =, 3.1
'( REYY R A Y Ry G-D
and for B8, = 1, it follows that
25 e
— - 1| < —.
oq Ve—ex “ 384

AIMS Mathematics Volume 5, Issue 6, 7316-7331.



7326

1
ot

e Now, we define g : R* — R, by g(x) =

Then, since |g"’(x)| = % is quasi-convex in [$,8,] € R and

444 "’ 6
lg” llo = sup 1g7 (] = —, 0 <B1 <.
1€[B1.y] B

By applying inequality (2.8) to the function g above, we get

(ﬁz _ﬁ1)3 " _ (ﬁZ _ﬁl)3
< Wzﬂg lloo = 32—,6’1‘" (3.2)

2 _1nﬁz—lnﬁ1+(ﬂz—ﬁ1)2( 2 )3
Bi+B  pr=pi 12 \Bi+5

In view of (3.2) and Proposition 3.2, we can deduce

— 2 _ 3 4
|A_1(31,Bz)—L_l(ﬁ1,ﬂz)+—(ﬁ2 P g ) < PP [ (P ]
LB —,31)3'
3¢

For further illustration on the inequalities (3.1) and (3.2), we present some plot examples. Figures
2 and 3 illustrate the inequalities (3.1) and (3.2), respectively.

— b k(B,) /
— o= K(By) /

0.1 -

0.08 -

0.06 -

0.04

0.02

-0.02

-0.04

Figure 2. Plot illustration for inequality (3.1).
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x1073
15 4

Figure 3. Plot illustration for inequality (3.2).

Let
BV s 1
k(By) = 1+ﬁ 62—[3—2(6’8—1),
3
K(ﬁz)=%eﬁ2,
and

_ 2 Ing-ng (ﬁz—ﬁl)z( 2 )3
M) = e s T T h s T 12 \Bis)
B2 = p1)’
H(B),B,) = =L
2 328"

Furthermore, Figures 4 and 5 show K(8,) — k() and D(B1,8,) := H(B1,52) — h(B1,5,2), receptively.
From Figure 5, we can see that all values of D(8,,8,) are positive which confirms the validity of (3.2).

AIMS Mathematics Volume 5, Issue 6, 7316-7331.



7328

K(B,)k(8,)

Figure 5. Plot illustration for D(81, 5,).

4. Conclusions

In this paper we have established new Hermite—-Hadamard inequality mainly motivated by Alomari
et al in [42] for quasi-convex functions with g € C3([8;,/,]) such that g’ € L([3;,5,]) and we give
some applications to some special means and for some particular functions. We hope that the ideas
used in this paper may inspire interested readers to explore some new applications.

We believe that our results, this new understanding of Hermite-Hadamard integral inequalities for
quasi-convex functions, will be vital information for the future studies of these models of integral

AIMS Mathematics Volume 5, Issue 6, 7316-7331.
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inequality. One can obtain the similar results for other kind of convex functions

Acknowledgements

We would like to express our special thanks to the editor and referees. Also, the third author would

like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis
Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Conflict of interest

The authors declare no conflict of interest.

References

10.

1.

12.

13.

E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory
Appl., 102 (1999), 439-450.

G. Cristescu, L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic
Publishers, Dordrecht, 2002.

G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J.
Math. Anal. Appl., 335 (2007), 1294—-1308.

M. Vivas-Cortez, T. Abdeljawad, P. O. Mohammed, et al. Simpson’s integral inequalities for twice
differentiable convex functions, Math. Probl. Eng., 1936461 (2020), 15 pages.

D. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions,
Annal. Univ. Craiova, Math. Comp. Sci. Ser., 34 (2007), 82—-87.

O. Mangasarian, Pseudo-Convex functions, SIAM. J. Control, 3 (1965), 281-290.

P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J.
Interdiscip. Math., 22 (2019), 539-549.

B. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems
with restrictions, Soviet Math. Dokl., 7 (1966), 72-75.

D. Hyers, S. Ulam, Approximately convex functions, Proc. Amer. Math. Soc., 3 (1952), 821-828.

P. O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on
differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258-262.

F. Qi, P. O. Mohammed, J. C. Yao, et al. Generalized fractional integral inequalities of Hermite—
Hadamard type for (a, m)-convex functions, J. Inequal. Appl., 2019 (2019), 135.

M. Bracamonte, J. Giménez, M. Vivas, Hermite-Hadamard-Féjer Type inequalities for strongly
(s, m)-convex functions with modulus C, in the second sense, Appl. Math. Inf. Sci., 10 (2016),
2045-2053.

J. Viloria, M. Cortez, Hermite-Hadamard type inequalities for harmonically convex functions on
n-coordinates, Appl. Math. Inf. Sci., 6 (2018), 1-6.

AIMS Mathematics Volume 5, Issue 6, 7316-7331.



7330

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

. M. Vivas, J. Herndndez, N. Merentes, New Hermite-Hadamard and Jensen type inequalities for
h-convex functions on fractal sets, Rev. Colombiana Mat., 50 (2016), 145-164.

M. Vivas, Relative strongly h-convex functions and integral inequalities, Appl. Math. Inf. Sci., 4
(2016), 1055-1064.

J. Pecaric, F. Proschan, Y. Tong, Convex functions partial orderings and statistical applications,
Academic Press, Boston, 1992.

J. Hadamard, Etude sur les propriétés des fonctions entieres en particulier d’une fonction
considérée par Riemann, J. Math. Pure Appl., 58 (1893), 171-215.

D. Bainov, P. Simeonov, Integral Inequalities and Applications, Kluwer Academic, Dordrecht,
1992.

S. D. Borysenko, G. lovane, About some new integral inequalities of Wendorff type for
discontinuous functions, Nonlinear Anal., 66 (2007), 2190-2203.

P. O. Mohammed, T. Abdeljawad, Opial integral inequalities for generalized fractional operators
with nonsingular kernel, J. Inequal. Appl., 2020 (2020), 148.

M. Z. Sarikaya, C. C. Bilisik, P. O. Mohammed, Some generalizations of Opial type inequalities,
Appl. Math. Inf. Sci., 14 (2020), 809-816.

S. D. Borysenko, M. Ciarletta, G. lovane, Integro-sum inequalities and motion stability of systems
with impulse perturbations, Nonlinear Anal., 62 (2005), 417-428.

P. O. Mohammed, T. Abdeljawad, A. Kashuri, Fractional Hermite-Hadamard-Fejer inequalities
for a convex function with respect to an increasing function involving a positive weighted symmetric
function, Symmetry, 12 (2020), 1503.

T. Y. Zhang, A. P. Ji, F. Qi, On integral inequalities of Hermite-Hadamard type for s-geometrically
convex functions, Abst. Appl. Anal., 2012 (2012), 560586.

T. Y. Zhang, A. P. Ji, F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions
with applications to means, LLe Matematiche, 68 (2013), 229-239.

D. P. Shi, B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for Riemann—Liouville fractional
integrals of (o, m)-convex functions, Fract. Differ. Calc., 4 (2014), 31-43.

S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and
Applications, RGMIA Monographs; Victoria University: Footscray, Australia, 2000.

P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function
involving fractional integrals, J. Inequal. Appl., 2018 (2018), 359.

D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized
fractional integrals, Alex. Eng. J., 2020, doi:10.1016/j.aej.2020.03.039.

J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-
Hadamard-type for a convex function, Open Math., 18 (2020), 794-806.

P. O. Mohammed, T. Abdeljawad, S. Zeng, et al. Fractional Hermite-Hadamard integral
inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485.

. P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex
functions, Adv. Differ. Equ., 2020 (2020), 69.

AIMS Mathematics Volume 5, Issue 6, 7316-7331.



7331

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

@ AIMS Press

P. O. Mohammed, I. Brevik, A New version of the Hermite-Hadamard inequality for Riemann-
Liouville fractional integrals, Symmetry, 12 (2020), 610, doi:10.3390/sym12040610.

D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, et al. Some modifications in conformable
fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), 374.

T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral
inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 4352357.

P. O. Mohammed, F. K. Hamasalh, New conformable fractional integral inequalities of
Hermite—Hadamard type for convex functions, Symmetry, 2019 (11), 263.

P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice
differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740.

P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with
respect to another function with nonsingular kernel, Adv. Differ. Equ., 2020 (2020), 363.

P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of
a convex function with respect to a monotone function, Math. Meth. Appl. Sci., (2019), 1-11.
doi:10.1002/mma.5784.

P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities
via the tempered fractional integrals, Symmetry, 12 (2020), 595.

A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using
Mittag-Leffler kernels, Math. Meth. Appl. Sci., (2020), 1-18, Available from:
https://doi.org/10.1002/mma.6188.

M. Alomari, M. Darus, S. Dragomir, Inequalities of Hermite-Hadamard’s type for functions whose
derivatives absolute values are quasi-convex, RGMIA, 12 (2010), 353-359.

©2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 6, 7316-7331.


 https://doi.org/10.1002/mma.6188.
http://creativecommons.org/licenses/by/4.0

	Introduction
	Main results
	Applications
	Applications for special means
	Application for particular functions

	Conclusions

