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1. Introduction

The numerical methods for many scientific and engineering problems ultimately lead to the
numerical methods for the 2 × 2 block structure linear systems, see for example, finite element or
finite difference methods discretization of some partial differential equations [5, 8, 9, 20], numerical
methods for solving weighted least squares problems [23], augmented immersed interface method for
Stokes and Darcy or Navier-stokes and Darcy coupling equations [15] and so on. In this paper, we
consider the 2 × 2 block structure linear system arising from mixed finite element discretization
Navier-Stokes equation [8], which is called the saddle point problem and has the form

Ax =

[
A B
−B∗ 0

] [
x
y

]
=

[
f
−g

]
= b, (1.1)

where A ∈ Cn×n is a non-Hermitian positive definite matrix, B ∈ Cn×m is a matrix with rank(B) = r,
here and in the sequence, rank(·) denotes the rank of a given matrix, f ∈ Cn and g ∈ Cm are given
vectors, x ∈ Cn and y ∈ Cm are unknown vectors, with m ≤ n. Note that when r = m, (1.1) is the
nonsingular saddle point problem [2] and has a unique solution, and when r < m, (1.1) is the singular
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saddle point problem, in this case, we suppose that the singular saddle point problem (1.1) is consistent,
i.e., b ∈ range(A), the range ofA.

Because the block matrices A and B are usually large and sparse, (1.1) is suitable to be solved by
the iterative methods. Efficient numerical methods for solving nonsingular and singular saddle point
problems have been studied in the literatures, see [13, 25] and the references therein. Due to the
advantage of the computational efficiency, Uzawa method [1] for solving (1.1) received wide attention
and obtained considerable achievements in recent years. The iteration scheme of Uzawa method can
be described as {

xk+1 = A−1( f − Byk),
yk+1 = yk + τ(B∗xk+1 − g),

where τ is a positive parameter. The main computation costs of Uzawa method lies in the solution of
the linear system Ax = f − By at each step, one prefer to approximate its solution by iteration method
since the matrix A is always large and sparse.

Using different iteration methods to approximate xk+1 lead to variant forms of the Uzawa method,
see [10, 13, 16, 21, 24, 26] for examples. In particular, splitting A as

A = H + S , (1.2)

where H = 1
2 (A + A∗) and S = 1

2 (A−A∗), and approximating xk+1 by the efficient HSS method [4], then
the Uzawa-HSS method [21, 22] is proposed, the iteration scheme of the Uzawa-HSS method [21, 22]
is defined as follows {

xk+1 = xk + 2α(αI + S )−1(αI + H)−1( f − Axk − Byk),
yk+1 = yk + τQ−1(B∗xk+1 − g),

where α and τ are two positive constants, and Q ∈ Cm×m is a given Hermitian positive definite matrix.
Approximating xk+1 by the SHSS method [17], we have the Uzawa-SHSS method [16]{

xk+1 = xk + (αI + H)−1( f − Axk − Byk),
yk+1 = yk + τQ−1(B∗xk+1 − g).

Splitting matrix A into its positive definite and skew-Hermitian parts as Ap + As, and approximating
xk+1 by the PSS method [3], then the iteration scheme of the Uzawa-PSS method [10] can be defined
as {

xk+1 = xk + 2α(αI + As)−1(αI + Ap)−1( f − Axk − Byk),
yk+1 = yk + τQ−1(B∗xk+1 − g),

where Ap = DH + 2LH, As = L∗H − LH + S , DH and LH being the diagonal part and strictly lower
triangular part of H. The iteration scheme of the MLHSS method [14] is{

xk+1 = xk + (P + H)−1( f − Axk − Byk),
yk+1 = yk + Q−1(B∗xk+1 − g),

where P ∈ Cn×n and Q ∈ Cm×m are Hermitian positive definite matrices.
Recently, Wang et al. [19] proposed the single-step iteration (SSI) method for solving the non-

Hermitian positive definite linear systems. In this paper, we will use the SSI method to approximate
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xk+1 in the first step of the Uzawa method and propose a new Uzawa-type method, named Uzawa-SSI
method, to solve the non-Hermitian saddle point problem (1.1).

The rest of this paper is organized as follows. In Section 2, the Uzawa-SSI method for solving the
non-Hermitian saddle point problems (1.1) is proposed. The convergence for nonsingular saddle point
problem and semi-convergence for singular case of the Uzawa-SSI method are discussed in Section 3.
Numerical examples are given in Section 4 to show the effectiveness of the proposed method for solving
non-Hermitian saddle point problems (1.1). Finally, in Section 5, we make a brief conclusion of this
paper.

2. The Uzawa-SSI method

Let P ∈ Cn×n be a given Hermitian positive definite matrix, based on the splitting (1.2), the SSI
method for solving the non-Hermitian positive linear system Az = c is defined as [19]

(P + H)xk+1 = (P − S )xk + c. (2.1)

Theoretical as well as numerical results in [19] stated that the SSI method is a more efficient method
for solving the non-Hermitian positive definite linear systems. With different choices of the matrix P,
the SSI method covers several other methods, for example, if P = αI, then the SSI method reduces
to the single-step HSS (SHSS) iteration method. The matrix P can also be taken as P = αH, P = Λ

(where Λ = diag(d1, d2, · · · , dn), di > 0, i = 1, 2, · · · , n) or other different Hermitian matrices. Note
that (1, 1) block A in saddle point matrix A is non-Hermitian positive definite, if we adopt the SSI
iteration scheme (2.1) to approximate xk+1, we can derive the following Uzawa-SSI method for solving
non-Hermitian saddle point problems (1.1).

Method 2.1 (The Uzawa-SSI Method) Given initial vectors x0 ∈ C
n, y0 ∈ C

m, and positive
relaxation parameter τ. For k = 0, 1, 2, · · · , until the iteration sequence converges, compute{

xk+1 = xk + (P + H)−1( f − Axk − Byk),
yk+1 = yk + τQ−1(B∗xk+1 − g),

(2.2)

where P ∈ Cn×n and Q ∈ Cm×m are Hermitian positive definite matrices, τ > 0 is a constant.
The iteration scheme of Uzawa-SSI method (2.2) can be rewritten in matrix-vector form as

xk+1 = Γxk + M−1b, (2.3)

where

Γ =

[
P + H 0
−B∗ 1

τ
Q

]−1 [
P − S −B

0 1
τ
Q

]

is the iteration matrix of the Uzawa-SSI method, and

M =

[
P + H 0
−B∗ 1

τ
Q

]
.

The Uzawa-SSI method possesses similar iteration schemes as the Uzawa-HSS method [21, 22], the
Uzawa-SHSS method [16] and MLHSS method [14]. In fact, the Uzawa-SSI method can be regarded
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as a parameterized MLHSS method with the parameter 1
τ

in the (2,2) block of the splitting matrix. The
Uzawa-SSI method reduces to the MLHSS method when τ = 1, we can choose appropriate parameter
τ to make the Uzawa-SSI method have better numerical results. The propsed method (2.2) use iteration
(2.1) to approximate xk+1, the solution of the shift skew-Hermitian subsystem is avoided compare with
the Uzawa-HSS method. Moreover, if we let P = αI, then the Uzawa-SSI method reduces to the
Uzawa-SHSS method, we may choose some Hermitian positive definite matrix P instead of αI to
improve the computation efficiency of the Uzawa-SSI method.

3. Convergence and semi-convergence analysis

In this section, we will study the convergence and semi-convergence properties of the Uzawa-SSI
method when it is used to solving the nonsingular and singular non-Hermitian saddle point problems
(1.1), respectively. For this purpose, the following notations, definition and results are needed. σ(E)
and ρ(E) denote the spectral set and the spectral radius of a square matrix E, respectively. The
smallest nonnegative integer i such that rank(Ei) = rank(Ei+1) is called the index of E, and is denoted
by index(E). The range and the null spaces of E are denoted by R(E) and N(E), respectively.

Lemma 3.1. [6] Both roots of the complex quadratic equation λ2 − φλ+ψ = 0 have modulus less than
one if and only if

|φ − φψ| + |ψ|2 < 1,

where φ is the conjugate complex number of φ.

Definition 3.1. [7] The iteration method (2.3) is semi-convergent if for any initial guess [x∗0, y∗0]∗,
the iteration sequence [x∗k, y∗k]∗ produced by (2.3) converges to a solution [x∗?, y∗?]∗ of linear systems
Ax = b. Moreover, it holds[

x?
y?

]
= (I − Γ)Dc + (I − E)

[
x0

y0

]
, with E = (I − Γ)(I − Γ)D,

where I is the identity matrix and (I − Γ)D denotes the Drazin inverse of I − Γ.

Following lemma describes the sufficient and necessary semi-convergence conditions of the
iteration scheme (2.3).

Lemma 3.2. [7] The iteration scheme (2.3) is semi-convergent if and only if the following two
conditions hold true:
1. index(I − Γ) = 1, or equivalently, rank (I − Γ)2 = rank (I − Γ),
2. ϑ(Γ) < 1, where ϑ(Γ) = max{|λ|, λ ∈ σ(Γ), λ , 1} < 1 is called the pseudo-spectral radius of the
iteration matrix Γ.

Let λ be an eigenvalue of the Uzawa-SSI iteration matrix Γ and (u∗, v∗)∗ ∈ Cn+m be the corresponding
eigenvector, in terms of the expression of Γ, we have[

P − S −B
0 1

τ
Q

] [
u
v

]
= λ

[
P + H 0
−B∗ 1

τ
Q

] [
u
v

]
,

or equivalently, {
λ(P + H)u = (P − S )u − Bv,
λτB∗u = (λ − 1)Qv.

(3.1)
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3.1. Convergence

For nonsingular saddle point problem (1.1), the Uzawa-SSI method (2.3) is convergent if and only
if the spectral radius of the iteration matrix Γ is less than 1, i.e., ρ(Γ) < 1.

For the convergence of Uzawa-SSI, we have the following results.

Lemma 3.3. Let A be non-Hermitian positive definite and B be of full column rank. If λ is an eigenvalue
of iteration matrix Γ, and [u∗, v∗]∗ is the corresponding eigenvector with u ∈ Cn and v ∈ Cm, then λ , 1
and u , 0.

Proof. We prove the conclusions by contradiction. If λ = 1, then it follows from (3.1) that{
Au + Bv = 0,
− B∗u = 0.

It is know that the saddle point matrix [
A B
−B∗ 0

]
is nonsingular when A is non-Hermitian positive definite and B has full column rank, hence we have
u = 0 and v = 0, which contradicts the assumption that [u∗, v∗]∗ is an eigenvector of the iteration
matrix Γ, so λ , 1.

If u = 0, then the first equality in (3.1) reduces to Bv = 0. Because B is a matrix of full column
rank, we can obtain v = 0, which is a contradiction. �

Theorem 3.1. Let A ∈ Cn×n be non-Hermitian positive definite and B ∈ Cn×m be of full column rank,
P ∈ Cn×n and Q ∈ Cm×m are Hermitian positive definite. Then the Uzawa-SSI method (2.3) is convergent
if and only if the parameter τ satisfy

t2
2 − t2

1

2t1
< 1 and 0 < τ <

2t1(t2
1 + 2t1 − t2

2)
t3(t2

1 + t2
2)

, (3.2)

where t1 = u∗Hu
u∗Pu , it2 = u∗S u

u∗Pu , t3 =
u∗BQ−1B∗u

u∗Pu , here i is the imaginary unit.

Proof. It follows from Lemma 3.3 that λ , 1. Using the nonsingularity of A and solving v from the
second equality of (3.1), we have

v =
λτ

λ − 1
Q−1B∗u.

Substituting it into the first equality of (3.1) yields

(P − S )u −
λτ

λ − 1
BQ−1B∗u = λ(P + H)u. (3.3)

From Lemma 3.3, we known that u , 0. Multiplying u∗/(u∗Pu) to the both sides of (3.3) from left
gives

u∗(P − S )u
u∗Pu

+
λτ

1 − λ
u∗BQ−1B∗u

u∗Pu
= λ

u∗(P + H)u
u∗Pu

.

AIMS Mathematics Volume 5, Issue 6, 7301–7315.



7306

Denote t1 = u∗Hu
u∗Pu , it2 = u∗S u

u∗Pu , t3 =
u∗BQ−1B∗u

u∗Pu . After simple computation, we get λ2 − φλ + ψ = 0, with

φ =
2 + t1 − it2 − τt3

1 + t1
, ψ =

1 − it2

1 + t1
.

After some careful calculations, we have

|φ − φψ| + |ψ|2 =
1 + t2

2 +

√
[(2 + t1 − τt3)t1 − t2

2]2 + (τt2t3)2

(1 + t1)2 .

Therefore, according to Lemma 3.1, |φ − φψ| + |ψ|2 < 1 if and only if 1 + t2
2 − (1 + t1)2 < 0,[

1 + t2
2 − (1 + t1)2

]2
>
[
(2 + t1 − τt3)t1 − t2

2

]2
+ (τt2t3)2.

(3.4)

Solving (3.4) gives
t2
2 − t2

1

2t1
< 1 and τ <

2t1(t2
1 + 2t1 − t2

2)
t3(t2

1 + t2
2)

.

From the above discussion, we obtain (3.2). �

Corollary 3.1. Assume the condition in Theorem 3.1 are satisfied. Then the Uzawa-SSI method for
solving saddle-point problem (1.1) is convergent if the following conditions hold:

σ2
max − λ

2
min

2λmin
< 1 and 0 < τ <

2λmin(λ2
min + 2λmin − σ

2
max)

λmax(Q−1B∗P−1B)(λ2
min + σ2

max)
, (3.5)

where λmin is the smallest eigenvalue of matrix H̃ and σmax is the largest singular-value of matrix S̃
with H̃ = P−

1
2 HP−

1
2 and S̃ = P−

1
2 S P−

1
2 .

In particular, when A is Hermitian positive definite, the above conditions become

0 < τ <
2λmin + 2

λmax(Q−1B∗P−1B)
. (3.6)

Proof. Note that the upper bound of τ in (3.2) can be written as the product of ζ1(t1, t2, t3) and
ζ2(t1, t2, t3) with

ζ1(t1, t2, t3) =
2t2

1

t3(t2
1 + t2

2)
and ζ2(t1, t2, t3) =

t2
1 + 2t1 − t2

2

t1
.

It is easy to see that both ζ1(t1, t2, t3) and ζ2(t1, t2, t3) are monotonic increasing with respect to the
variable t1, and both ζ1(t1, t2, t3) and ζ2(t1, t2, t3) are monotonic decreasing with respect to t2

2.
Let z = p

1
2 u, we have

t3 ≤ max
Z∈Cn

z∗P−
1
2 BQ−1B∗P−

1
2 z

z∗z
= λmax[(P−

1
2 BQ−

1
2 )(Q−

1
2 B∗P−

1
2 )]

= λmax[(Q−
1
2 B∗P−

1
2 )(P−

1
2 BQ−

1
2 )]
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= λmax(Q−1B∗P−1B).

Thus, a lower bound of the product of ζ1(t1, t2, t3) and ζ2(t1, t2, t3) is

2t1(t2
1 + 2t1 − t2

2)
t3(t2

1 + t2
2)

≥
2λ2

min(λ2
min + 2λmin − σ

2
max)

λmax(Q−1B∗P−1B)λmin(λ2
min + σ2

max)

=
2λmin(λ2

min + 2λmin − σ
2
max)

λmax(Q−1B∗P−1B)(λ2
min + σ2

max)
.

By making use of Theorem 3.1, inequalities (3.5) and (3.6), it can be seen that the Uzawa-SSI iteration
method is convergent if τ satisfy (3.5). Specifically, if A is Hermitian positive definite, the condition
(3.6) can be directly from (3.5) as H = A and S = 0 in this case. �

3.2. Semi-convergence

In this subsection, we will analyze the semi-convergence of the Uzawa-SSI method for solving
singular saddle point problem (1.1) when rank(B) = r < m. Actually, we only need to verify that the
iteration scheme (2.3) satisfies the two conditions in Lemma 3.2.

In the first place, considering the condition index(I − Γ) = 1, we have the following result.

Theorem 3.2. Let A ∈ Cn×n be non-Hermitian positive definite and B ∈ Cn×m be rank deficient. Suppose
that P and Q are Hermitian positive definite, and Γ is the iteration matrix of Uzawa-SSI method,
parameter τ > 0. Then, rank(In+m − Γ)2 = rank(In+m − Γ).

Proof. Note that Γ = In+m − M−1A, hence, rank(In+m − Γ)2 = rank(In+m − Γ) hold if

null((M−1A)2) = null(M−1A).

Obviously, null((M−1A)2) ⊇ null(M−1A) holds, so we only need to prove

null((M−1A)2) ⊆ null(M−1A).

Let x = [x∗1, x
∗
2]∗ ∈ Cn+m, with x1 ∈ C

n and x2 ∈ C
m, satisfy (M−1A)2x = 0, and denote y = M−1Ax,

then we only need to demonstrate y = 0. Let y = [y∗1, y
∗
2]∗. After simple calculation, we have

y =

[
y1

y2

]
=

[
(P + H)−1Ax1 + (P + H)−1Bx2

τQ−1B∗(P + H)−1Ax1 − τQ−1B∗x1 + τQ−1B∗(P + H)−1Bx2

]
.

(3.7)

Since, M−1Ay = (M−1A)2x = 0 and M is invertible, (M−1A)2x = 0 is equality toAy = 0, i.e.,{
Ay1 + By2 = 0,
− B∗y1 = 0.

(3.8)

Since A is positive definite, from the first equation of (3.8) we can easily get y1 = −A−1By2. Then,
substituting this relationship into the second equality of (3.8), we obtain B∗A−1By2 = 0. Owing to the
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positive definiteness of the matrix A−1, it has By2 = 0. Taking By2 = 0 into y1 = −A−1By2, we get
y1 = 0. Therefore, the first equality of (3.7) becomes Bx2 = −Ax1, using the second equality of (3.7),
we have

y2 = τQ−1B∗(P + H)−1Ax1 − τQ−1B∗x1 − τQ−1B∗(P + H)−1Ax1

= −τQ−1B∗x1.

Furthermore, using By2 = 0 and τ > 0, we have x∗1BQ−1B∗x1 = 0, that is B∗x1 = 0, therefore y2 = 0.
Hence y = [y∗1, y

∗
2]∗ = 0. �

In the following, we verify the iteration scheme (2.3) satisfy ϑ(Γ) < 1 of Lemma 3.2. Let B =

U[Br, 0]V∗ be the singular value decomposition of the matrix B, where

Br =

[
Σr

0

]
∈ Cn×r, Σr = diag(σ1, σ2, · · · , σr),

where U ∈ Cn×n and V ∈ Cm×m are two unitary matrices and σi (i = 1, 2, · · · , r) is a singular value of
B.

We partition the matrix V as V = [V1,V2] with V1 ∈ C
m×r,V2 ∈ C

m×(m−r) and define

Ω =

[
U 0
0 V

]
.

It is obvious that Ω is a (n + m) × (n + m) unitary matrix and the iteration matrix Γ is unitary similar to
the matrix Γ̂ = Ω∗ΓΩ. Hence, the matrix Γ has the same spectrum with the matrix Γ̂. Thus, we only
need to analyze the pseudo-spectral radius of the matrix Γ̂ now.

Denoting P̂ = U∗PU, Ĥ = U∗HU, Ŝ = U∗S U, some careful calculations yields

Γ̂ =

[
Γ̂1 0
L̂ In−r

]
, (3.9)

where

Γ̂1 =

[
(P̂ + Ĥ)−1(P̂ − Ŝ ) −(P̂ + Ĥ)−1Br

τV∗1 Q−1V1B∗r(P̂ + Ĥ)−1(P̂ − Ŝ ) Ir − τV∗1 Q−1V1B∗r(P̂ + Ĥ)−1Br

]
and

L̂ =
[
τV∗2 Q−1V1B∗r(P̂ + Ĥ)−1(P̂ − Ŝ ), − τV∗2 Q−1V1B∗r(P̂ + Ĥ)−1Br

]
.

Then, from Eq (3.9), ϑ(̂Γ) < 1 hold if and only if ρ(Γ̂1) < 1. Note that V∗1 Q−1V1 is Hermitian positive
definite, comparing with the iteration matrix of Uzawa-SSI, Γ̂1 can be viewed actually as the iteration
matrix of (2.3) used for solving nonsingular saddle point problem[

Â Br

−B∗r 0

] [
x̂
ŷ

]
=

[
f̂
−ĝ

]
,

with the preconditioning matrix V∗1 QV1.
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Let λ̂ be the eigenvalue of Γ̂1 and [̂u∗, v̂∗]∗ ∈ Cn+r be the eigenvector of Γ̂1 corresponding to the
eigenvalue λ̂. Denote

t̂1 =
û∗ Ĥ û

û∗ P̂ û
, it̂2 =

û∗ Ŝ û

û∗ P̂ û
, t̂3 =

û∗BrV∗1 Q−1V1B∗r û

û∗ P̂ û
, (3.10)

where i is the imaginary unit. Then from Theorem 3.1, we can derive the following result.

Theorem 3.3. Let A be non-Hermitian positive definite, B be of rank deficient, P and Q are Hermitian
positive definite. Then the pseudo-spectral radius of matrix Γ is less than 1, i.e., ϑ(Γ) < 1 if and only if
parameters τ satisfy

t̂2
2
− t̂1

2

2t̂1
< 1 and 0 < τ <

2t̂1(t̂1
2
− t̂2

2
+ 2t̂1)

t̂3(t̂1
2

+ t̂2
2)

,

where t̂1, t̂2 and t̂3 are defined in (3.10).

Corollary 3.2. Assume the conditions in Theorem 3.3 are satisfied. Then, the Uzawa-SSI method for
singular saddle-point problem(1.1) is semi-convergent if the parameter τ satisfy:

σ2
max − λ

2
min

2λmin
< 1 and 0 < τ <

2λmin(λ2
min + 2λmin − σ

2
max)

λmax(Q−1B∗P−1B)(λ2
min + σ2

max)
,

where λmin is the smallest eigenvalue of matrix H̃ and σmax is the largest singular-value of matrix S̃
with H̃ = P−

1
2 HP−

1
2 and S̃ = P−

1
2 S P−

1
2 . In particular, if A is Hermitian positive definite, the above

conditions are

0 < τ <
2λmin + 2

λmax(Q−1B∗P−1B)
.

4. Numerical results

In this section, we will verify the efficiency of the Uzawa-SSI method when it is used to solve
nonsingular and singular saddle point problem (1.1). The Uzawa-HSS [21, 22], the Uzawa-SHSS [16],
the Uzawa-PSS [10] and modified local HSS(MLHSS)[14] methods are compared with the Uzawa-SSI
method from the aspects of the number of iteration steps (denoted by ‘IT’) and the elapsed CPU times
in seconds (denoted by ‘CPU’).

In the implementation, for the matrices P and Q of the tested methods, we choose P = αI in the
MLHSS method, P = H in the Uzawa-SSI method, Q = diag(B∗D−1B) in the all tested methods, where
D = diag(A). We have proved that the convergence conditions in Corollaries 3.1 and 3.2 are satisfied
for the matrices P = H and Q = diag(B∗D−1B) in the following examples. In addition, all the involved
sub-linear system are solved by Cholesky or LU factorization in combination with AMD reordering.
The parameters τ for the Uzawa-SSI method, α for the MLHSS method, (α, τ) for the Uzawa-HSS
method, Uzawa-SHSS method, and Uzawa-PSS method, are chosen to be the ones resulting in the
least iteration step. All the tested iteration methods are started from zero vector and terminated when
the current iteration solution xk satisfies

RES =
||b −Axk||

||b||
< 10−6
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or the iteration steps exceed kmax = 1500 (results in this case are denoted by ‘- ’). In addition, all runs
are performed in MATLAB 2016a on a personal computer with Intel(R) Celeron(R) 3205U @
1.50GHz (8G RAM) Windows 8 system. Using experimentally found optimal parameters in the
interval (0, 6000]. In actual computations, we choose right-hand-side vector[ f ∗, g∗] ∈ R3q2

for
nonsingular case and [ f ∗, g∗]∗ ∈ R3q2+2 for singular case such that the exact solution of (1.1) is x∗ with
all elements 1.

Example 4.1. [10]. Consider the linearized steady Navier-Stokes equation, i.e., the steady Oseen
equation of the following form


−ν4u + (w · ∇)u + ∇p = f, in Ω.

divu = g, in Ω.

u = g, on ∂Ω.

Where ν > 0 is the kinematic viscosity (inversely proportional to the Reynolds number), 4 is the
Laplacian operation, ∇ is the gradient and div is the divergence, the “wind” w is the velocity field
obtained from the previous Picard iteration step.

The test problem is a “leaky” two-dimensional lid-driven cavity problem on the unit square domain.
We use the IFISS software package developed by Elman et al. [12] with Q2−Q1 mixed finite element
on uniform grids to generate linear system corresponding to 16× 16, 32× 32 and 64× 64 meshes. The
resulting linear system for the discrete solution has the form

Ax =

[
A B
−B∗ 0

] [
x
y

]
=

[
f
−g

]
= b, (4.1)

where A ∈ Cn×n is the discretization of the diffusion and convection terms, B ∈ Cn×m is the discrete
gradient and B is the negative discrete divergence. In (4.1), A is nonsymmetric positive definite matrix
and B is rank deficient, so the A is singular. The test nonsingular problem is constructed by dropping
the last row of the matrix B [11]. For each case, we test viscosity value ν = 0.1.

In Table 1, we list the numerical results of the Uzawa-SSI method, the Uzawa-HSS method, the
Uzawa-SHSS method, the Uzawa-PSS method and MLHSS method for nonsingular saddle point
problems with ν = 0.1. From Table 1, we can observe that for ν = 0.1, compared with other four
methods, the Uzawa-SSI method is the most efficient one, when reaching the stop criterion, it needs
the least iteration steps and CPU times.
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Table 1. Numerical results for nonsingular case of Example 4.1.

Method Parameters IT CPU RES
q = 16 Uzawa-SSI 0.4 42 0.0469 6.1802e-07

Uzawa–HSS (0.51, 0.1) 153 0.0938 8.2989e-07
Uzawa-SHSS (0.042, 0.31) 45 0.0625 9.9330e-07
Uzawa–PSS (1.672, 1.08) 323 0.1563 9.7113e-07

MLHSS 0.56 219 0.1094 9.7869e-07
q = 32 Uzawa-SSI 0.37 40 0.0781 7.9691e-07

Uzawa–HSS (0.32,0.06) 325 0.9219 8.3458e-07
Uzawa-SHSS (0.036, 0.31) 84 0.2188 9.7044e-07
Uzawa–PSS (1.83, 1.06) 992 2.2344 9.4148e-07

MLHSS 0.58 701 1.5781 8.0074e-07
q = 64 Uzawa-SSI 0.31 41 0.6719 9.3715e-07

Uzawa–HSS (0.42, 0.08) 1190 23.5 9.3018e-07
Uzawa-SHSS (0.022, 0.25) 162 2.8438 9.0700e-07
Uzawa–PSS – – – –

MLHSS – – – –

In Table 2. We list the numerical results of the Uzawa-SSI method, the Uzawa-HSS method, the
Uzawa-SHSS method, the Uzawa-PSS method and MLHSS method for singular saddle point problems
with ν = 0.1. We can observe that Uzawa-SSI method is most efficient one, which use least iteration
steps and CPU times than the Uzawa-HSS, the Uzawa-SHSS, the Uzawa-PSS and MLHSS methods to
achieve stopping criterion.

Table 2. Numerical results for singular case of Example 4.1.

Method Parameters IT CPU RES
q = 16 Uzawa-SSI 0.39 41 0.0469 9.1261e-07

Uzawa–HSS (0.51, 0.1) 153 0.1094 8.3426e-07
Uzawa-SHSS (0.05, 0.32) 46 0.0781 7.9389e-07
Uzawa–PSS (1.66, 1.08) 322 0.1406 9.8122e-07

MLHSS 0.56 219 0.0938 7.0314e-07
q = 32 Uzawa-SSI 0.37 40 0.0781 7.6433e-07

Uzawa–HSS (0.41,0.1) 369 1.1094 9.0712e-07
Uzawa-SHSS (0.01, 0.22) 58 0.7969 9.9234e-07
Uzawa–PSS (1.64, 1.02) 940 1.6094 9.5791e-07

MLHSS 0.58 701 0.8594 7.9512e-07
q = 64 Uzawa-SSI 0.35 41 0.4844 9.6804e-07

Uzawa–HSS (0.39, 0.1) 1072 22.0938 9.4074e-07
Uzawa-SHSS (0.01, 0.2) 89 1.5469 8.7736e-07
Uzawa–PSS – – – –

MLHSS – – – –
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In what follows, we consider two artificially constructed examples.

Example 4.2. Let us consider the nonsingular saddle-point problem (1.1) has the following coefficient
sub-matrices:

A =

[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
∈ R2q2×2q2

,

B =

[
I ⊗ F
F ⊗ I

]
∈ R2q2×q2

,

and
T =

ν

h2 · tridiag(−1, 2,−1) +
1

2h
· tridiag(−1, 0, 1) ∈ Rq×q,

F =
1
h
· tridiag(−1, 1, 0) ∈ Rq×q.

Here, ⊗ denotes the Kronecker product, ν is a parameter and h = 1
q+1 is the discretization meshsize,

see [18].

In Table 3, we report the numerical results for Example 4.2, we list the numerical results of the
Uzawa-SSI method, the Uzawa-HSS method, the Uzawa-SHSS method, the Uzawa-PSS method and
MLHSS method for nonsingular saddle point problems with ν = 1 . From Table 3 , we can observe
that for ν = 1, compared with other four methods, the Uzawa-SSI method is the most efficient one,
when reaching the stop criterion, it needs the least iteration steps and CPU times.

Table 3. Numerical results for Example 4.2 with ν = 1.

Method Parameters IT CPU RES
q = 16 Uzawa-SSI 2.2 40 0.0156 8.7237e-07

Uzawa-HSS (740, 0.58) 162 0.0781 9.9965e-07
Uzawa-SHSS (35.5, 1.44) 62 0.0625 9.9653e-07
Uzawa–PSS (560, 0.84) 126 0.0469 9.9214e-07

MLHSS 0.1 79 0.0469 9.3330e-07
q = 32 Uzawa-SSI 3.34 44 0.0469 8.5020e-07

Uzawa-HSS (910, 0.2) 623 1.2031 9.9177e-07
Uzawa-SHSS (20.2, 1.4) 99 0.0938 9.9719e-07
Uzawa–PSS (1860, 0.8) 247 0.2969 9.8611e-07

MLHSS 0.11 123 0.3594 9.9713e-07
q = 64 Uzawa-SSI 4.35 70 0.3750 8.9753e-07

Uzawa-HSS (4000, 0.2) 1087 11.7344 9.9075e-07
Uzawa-SHSS (20.2, 1.448) 147 1.1719 9.9804e-07
Uzawa–PSS – – – –

MLHSS 0.1 189 1.9531 9.7499e-07

Example 4.3. Let us consider the singular saddle-point problem (1.1) has the following coefficient
sub-matrices:

A =

[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
∈ R2q2×2q2

,
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B =
[

B̂ b1 b2

]
∈ R2q2×(q2+2),

with

B̂ =

[
I ⊗ F
F ⊗ I

]
∈ R2q2×q2

, b1 = B̂T

[
e
0

]
, b2 = B̂T

[
0
e

]
,

e = [1, 1, · · · , 1] ∈ Rq2/2,

and
T =

ν

h2 · tridiag(−1, 2,−1) +
1

2h
· tridiag(−1, 0, 1) ∈ Rq×q,

F =
1
h
· tridiag(−1, 1, 0) ∈ Rq×q.

Here, ⊗ denotes the Kronecker product, ν is a parameter and h = 1
q+1 is the discretization meshsize,

see [22, 27].

This problem is a technical modification of Example 4.2. Here, matrix B is an augmentation of the
full rank matrix B̂ with two linearly independent vectors b1 and b2. As b1 and b2 are linear combinations
of the columns of the matrix B̂, B is a rank-deficient matrix.

In Table 4, we list the numerical results of the Uzawa-SSI method, the Uzawa-HSS method, the
Uzawa-SHSS method, the Uzawa-PSS method and MLHSS method for singular saddle point problems
with ν = 1. We can observe that Uzawa-SSI method is most efficient one, which use least iteration
steps and CPU times than other four methods to achieve stopping criterion.

Table 4. Numerical results for Example 4.3 with ν = 1.

Method Parameters IT CPU RES
q = 16 Uzawa-SSI 0.41 40 0.0156 8.0268e-07

Uzawa–HSS (258, 0.14) 129 0.0625 9.9724e-07
Uzawa-SHSS (13.4, 0.27) 58 0.0313 9.9910e-07
Uzawa–PSS (230, 0.14) 146 0.1563 9.4478e-07

MLHSS – – – –
q = 32 Uzawa-SSI 0.295 66 0.0625 8.9038e-07

Uzawa–HSS (606, 0.093) 247 0.4844 9.9569e-07
Uzawa-SHSS (35.4, 0.214) 82 0.1094 9.6742e-07
Uzawa–PSS (510, 0.082) 279 3.3594 9.7925e-07

MLHSS – – – –
q = 64 Uzawa-SSI 0.16 114 0.5156 9.8078e-07

Uzawa–HSS (484, 0.024) 591 6.2031 9.9879e-07
Uzawa-SHSS (2.4, 0.06) 120 1.0781 9.9344e-07
Uzawa–PSS (1020, 0.04) 545 48.6719 9.9242e-07

MLHSS – – – –

From the numerical results, it can be observed that the Uzawa-SSI method is the best choice as it
outperforms other four methods for solving the non-Hermitian nonsingular and singular saddle-point
problems.
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5. Conclusions

In this paper, based on the SSI method for non-Hermitian positive definite linear system, we have
proposed the Uzawa-SSI method for solving non-Hermitian nonsingular and singular saddle point
problems (1.1). Compared with the Uzawa-HSS, the Uzawa-SHSS, the Uzawa-PSS and the MLHSS
methods, the proposed method has more simple convergence conditions, which are easy to be satisfied.
Numerical results verified the efficiency of the Uzawa-SSI method.

However, the Uzawa-SSI method involved a parameter τ. It is formidable to find a optimal
parameter τ in the actual calculation, therefore, we did not discuss the choice of the parameter τ in
this paper. Consider that the validity of the new method depends on the selection of parameters, how
to find a easy calculated parameter should be a direction for future research.
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