Mathematics
http://www.aimspress.com/journal/Math

Research article

Properties of the power-mean and their applications

Jing-Feng Tian ${ }^{1,2, *}$, Ming-Hu Ha ${ }^{3}$ and Hong-Jie Xing ${ }^{4}$
${ }^{1}$ School of Management, Hebei University, Wusi Road 180, Baoding 071002, P. R. China
${ }^{2}$ Department of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, P. R. China
${ }^{3}$ School of Science, Hebei University of Engineering, Taiji Road 19, Handan 056038, P. R. China
${ }^{4}$ College of Mathematics and Information Science, Hebei University, Wusi Road 180, Baoding 071002, P. R. China

* Correspondence: Email: tianjf@ncepu.edu.cn; Tel: +8603127525072.

Abstract

Suppose $w, v>0, w \neq v$ and $A_{u}(w, v)$ is the u-order power mean (PM) of w and v. In this paper, we completely describe the convexity of $u \mapsto A_{u}(w, v)$ on \mathbb{R} and $s \mapsto A_{u(s)}(w, v)$ with $u(s)=(\ln 2) / \ln (1 / s)$ on $(0, \infty)$. These yield some new inequalities for PMs, and give an answer to an open problem.

Keywords: power mean; power-type mean; convexity; inequality
Mathematics Subject Classification: 26E60, 26A51

1. Introduction

A function $M: \mathbb{R}_{+}^{2} \mapsto \mathbb{R}$ is called a bivariate mean (BM) if for all $w, v>0$

$$
\min (w, v) \leq M(w, v) \leq \max (w, v)
$$

is valid. A BM is symmetric if for all $w, v>0$

$$
M(w, v)=M(v, w)
$$

is valid. It is said to be homogeneous (of degree one) if for all $\lambda, w, v>0$

$$
M(\lambda w, \lambda v)=\lambda M(w, v)
$$

is valid. If a BM M is differentiable on \mathbb{R}_{+}^{2}, then the function $M_{u}: \mathbb{R}_{+}^{2} \mapsto \mathbb{R}$ defined by

$$
\begin{equation*}
M_{u}(w, v)=M^{1 / u}\left(w^{u}, v^{u}\right) \text { if } u \neq 0 \text { and } M_{0}(w, v)=w^{M_{x}(1,1)} v^{M_{y}(1,1)}, \tag{1.1}
\end{equation*}
$$

is called " u-order M mean", where $M_{x}(x, y), M_{y}(x, y)$ are the first-order partial derivatives in regard to the first and second components of $M(x, y)$, respectively (see [1]). For example, the arithmetic mean (AM), logarithmic mean (LM) and identric mean (IM) are given by

$$
A(w, v)=\frac{w+v}{2}, \quad L(w, v)=\frac{w-v}{\ln w-\ln v}, \quad I(w, v)=e^{-1}\left(\frac{v^{v}}{w^{w}}\right)^{1 /(v-w)}
$$

respectively, then

$$
\begin{align*}
& A_{u}(w, v)=\left(\frac{w^{u}+v^{u}}{2}\right)^{1 / u} \text { if } u \neq 0 \text { and } A_{0}(w, v)=\sqrt{w v}, \tag{1.2}\\
& L_{u}(w, v)=\left(\frac{w^{u}-v^{u}}{u(\ln w-\ln v)}\right)^{1 / p} \text { if } u \neq 0 \text { and } L_{0}(w, v)=\sqrt{w v}, \tag{1.3}\\
& I_{u}(w, v)=e^{-1 / u}\left(\frac{v^{v^{u}}}{w^{w^{u}}}\right)^{1 /\left(v^{u}-w^{u}\right)} \quad \text { if } u \neq 0 \text { and } I_{0}(w, v)=\sqrt{w v} \tag{1.4}
\end{align*}
$$

are u-order AM, u-order LM and u-order IM, respectively. As usual, the u-order AM is still called u-order PM. Correspondingly, since the form of M_{u} is similar to PM A_{u}, it is also known simply as "power-type mean". More general means than power-type mean including Stolarsky means, Gini means, and two-parameters functions, etc., which can be seen in [2-7].

For those means with parameters, there are many nice properties including monotonicity, (log-) convexity, comparability, additivity, stability and inequalities, which can be found in [8-17].

In this paper, we are interested in the properties of the PM A_{u}. As is well-known that $u \mapsto A_{u}(w, v)$ is increasing on \mathbb{R} (see [5]). The log-convexity of $u \mapsto A_{u}(w, v), L_{u}(w, v)$ and $I_{u}(w, v)$ is a direct consequence of $[9$, Conclusion 1.1)] when $q=0$, that is,

Theorem 1. The functions $u \mapsto A_{u}(w, v), L_{u}(w, v)$ and $I_{u}(w, v)$ are log-convex on $(-\infty, 0)$ and logconcave on $(0, \infty)$.

The log-convexity of the function $u \mapsto A_{u}(w, v)$ was reproved in [19] by Begea, Bukor and Tóhb. The authors proposed an open problem on the convexity of the function $u \mapsto A_{u}(w, v)$:

Problem 1. Prove that

$$
\begin{aligned}
\inf _{w, v>0}\left\{u: A_{u}(w, v) \text { is concave for variable } u \in \mathbb{R}\right\} & =\frac{1}{2} \ln 2, \\
\sup _{w, v>0}\left\{u: A_{u}(w, v) \text { is convex for variable } u \in \mathbb{R}\right\} & =\frac{1}{2} .
\end{aligned}
$$

Problem 1 was proven by Matejíčka in [20]. In 2016, Raïsouli and Sándor [16, Problem 1] proposed the following problem.

Problem 2. Let $p, q, r \in \mathbb{R}$ with $q>r>p$. Are there $0<\beta, \alpha<1$ with $\beta>\alpha$, such that the double inequality

$$
(1-\alpha) A_{p}+\alpha A_{q}<A_{r}<(1-\beta) A_{p}+\beta A_{q}
$$

holds? If it is positive, what are the best β and α ?

Clearly, this problem is partly related to the convexity of $u \mapsto A_{u}(w, v)$. Motivated by Problem 2 , the main purpose of this paper is to investigate completely the convexity of $u \mapsto A_{u}(w, v)$ on \mathbb{R} and $s \mapsto A_{u(s)}(w, v)$ with $u(s)=(\ln 2) / \ln (1 / s)$ on $(0, \infty)$. As applications, some new inequalities for power means are established, and an answer to Problem 2 is given. Final, three problems on the convexity of certain power-type means and inequalities are proposed.

It should be noted that a homogeneous BM can be represented by the exponential functions. If $M(x, y)$ is a HM of positive arguments x and y, then $M(x, y)$ can be represented as

$$
M(x, y)=\sqrt{x y} M\left(e^{t}, e^{-t}\right)
$$

where $t=(1 / 2) \ln (x / y)$. Further, if $M(x, y)$ is symmetric, then $M(x, y)$ can be expressed in terms of hyperbolic functions (see [18, Lemma 3]). For example, in view of symmetry, we suppose $v>w>0$. Then we find $t=(1 / 2) \ln (v / w)>0$. Thus the PM $A_{u}(w, v), u$-order LM $L_{u}(w, v)$ and u-order IM $I_{u}(w, v)$ can be represented as

$$
\frac{A_{u}(w, v)}{\sqrt{w v}}=\cosh ^{1 / u}(u t), \frac{L_{u}(w, v)}{\sqrt{w v}}=\left[\frac{\sinh (u t)}{u t}\right]^{1 / u}, \frac{I_{u}(w, v)}{\sqrt{w v}}=\exp \left[\frac{t}{\tanh (u t)}-\frac{1}{u}\right]
$$

if $u \neq 0$.
The first result of the paper is the following theorem.
Theorem 2. The function $u \mapsto A_{u}(w, v)$ is convex on $(-\infty, \ln \sqrt{2})$ and concave on $(1 / 2, \infty)$ for all $w, v>0$ with $w \neq v$. While $u \in(\ln \sqrt{2}, 1 / 2)$, the function $u \mapsto A_{u}(w, v)$ is concave then convex. Equivalently, the function

$$
F_{t}(u)=\cosh ^{1 / u}(u t)
$$

is convex (concave) for all $t>0$ if and only if $u \leq \ln \sqrt{2}(u \geq 1 / 2)$. While $\ln \sqrt{2}<u<1 / 2$, there is a $u_{1} \in(\ln \sqrt{2}, 1 / 2)$ such that $F_{t}(u)$ is concave on $\left(\ln \sqrt{2}, u_{1}\right)$ and convex on $\left(u_{1}, 1 / 2\right)$.
Remark 1. Theorem 2 not only gives an answer to Problem 1, but also describes completely the convexity of the function $u \mapsto A_{u}(w, v)$ on \mathbb{R}.

Remark 2. By Theorems 1 and 2, we see that the function $u \mapsto A_{u}(w, v)$ has the following (log-) convexity:

u	$(-\infty, 0)$	$(0, \ln \sqrt{2})$	$(\ln \sqrt{2}, 1 / 2)$	$(1 / 2, \infty)$
A_{u}	\cup	\cup	$\cap \cup$	\cap
$\ln A_{u}$	\cup	\cap	\cap	\cap

where and in what follows the symbols " \cup " and " \cap " denote the given function are convex and concave, " $\cap \cup$ " and " $\cup \cap$ " denote the given function are "concave then convex" and "convex then concave", respectively.

The second and third results of the paper are the following theorems.
Theorem 3. Suppose $w, v>0$ and $w \neq v$. The function $s \mapsto A_{u(s)}(w, v)$ with $u=u(s)=(\ln 2) / \ln (1 / s)$ is convex on $\left(e^{-2}, 1\right)$ and concave on $(1, \infty)$. While $s \in\left(0, e^{-2}\right)$, the function $s \mapsto A_{u(s)}(w, v)$ is convex then concave. Equivalently, the function

$$
G_{t}(s)=\cosh ^{1 / u}(u t), \text { where } u=\frac{\ln 2}{\ln (1 / s)}
$$

is convex (concave) for all $t>0$ if and only if $s \in\left(e^{-2}, 1\right)\left(s \in(1, \infty)\right.$. While $s \in\left(0, e^{-2}\right)$, there is a $s_{2}^{*} \in\left(0, e^{-2}\right)$ such that $G_{t}(s)$ is convex on $\left(0, s_{2}^{*}\right)$ and concave on $\left(s_{2}^{*}, e^{-2}\right)$.

Theorem 4. Suppose $w, v>0$ and $a \neq b$. The function $s \mapsto A_{u(s)}(w, v)$ with $u(s)=(\ln 2) / \ln (1 / s)$ is log-concave on $\left(0, e^{-2}\right) \cup(1, \infty)$. Equivalently, the function $G_{t}(s)$ is log-concave for all $t>0$ if and only if $s \in\left(0, e^{-2}\right) \cup(1, \infty)$.
Remark 3. By Theorems 3 and 4, the function $s \mapsto A_{u(s)}(w, v)$ has the following (log-) convexity:

s	$\left(0, e^{-2}\right)$	$\left(e^{-2}, 1\right)$	$(1, \infty)$
$A_{u(s)}$	$\cup \cap$	\cup	\cap
$\ln A_{u(s)}$	\cap		\cap

2. Tools

To prove the lemmas listed in Sections 3-5, we need two tools. The first is the so-called L'Hospital Monotone Rule (LMR), which appeared in [21] (see also [22]).

Proposition 1. Suppose $-\infty \leq a<b \leq \infty, \phi$ and ψ are differentiable functions on (a, b). Suppose also the derivative ψ^{\prime} is nonzero and does not change sign on (a, b), and $\phi\left(a^{+}\right)=\psi\left(a^{+}\right)=0$ or $\phi\left(b^{-}\right)=\psi\left(b^{-}\right)=0$. If $\phi^{\prime} / \psi^{\prime}$ is increasing (decreasing) on (a, b) then so is ϕ / ψ.

Before stating the second tool, we present first an important function $H_{\phi, \psi}$. Assume that ϕ and ψ are differentiable functions on (a, b) with $\psi^{\prime} \neq 0$, where $-\infty \leq a<b \leq \infty$. It was introduced by Yang in [23, Eq (2.1)] that

$$
\begin{equation*}
H_{\phi, \psi}:=\frac{\phi^{\prime}}{\psi^{\prime}} \psi-\phi, \tag{2.1}
\end{equation*}
$$

which we call Yang's H-function. This function has some good properties, see [23, Properties 1 and 2], and plays an important role in the proof of a monotonicity criterion for the quotient of two functions, see for example, [24-28].

To study the monotonicity of the ratio ϕ / ψ on (a, b), Yang [23, Property 1] presented two identities in term of $H_{\phi, \psi}$, which state that, if ϕ and ψ are twice differentiable with $\psi \psi^{\prime} \neq 0$ on (a, b), then

$$
\begin{align*}
\left(\frac{\phi}{\psi}\right)^{\prime} & =\frac{\psi^{\prime}}{\psi^{2}}\left(\frac{\phi^{\prime}}{\psi^{\prime}} \psi-\phi\right)=\frac{\psi^{\prime}}{\psi^{2}} H_{\phi, \psi} \tag{2.2}\\
H_{\phi, \psi}^{\prime} & =\left(\frac{\phi^{\prime}}{\psi^{\prime}}\right)^{\prime} \psi \tag{2.3}
\end{align*}
$$

3. Proof of Theorem 2

In order to prove Theorem 2, we need the following lemma.
Lemma 1. Let $h_{1}(x)=f_{1}(x) / g_{1}(x)$, where

$$
\begin{equation*}
f_{1}(x)=(x \tanh x-\ln (\cosh x))^{2} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
g_{1}(x)=2 x \tanh x-\frac{x^{2}}{\cosh ^{2} x}-2 \ln (\cosh x) \tag{3.2}
\end{equation*}
$$

Then $h_{1}(x)$ is strictly decreasing from $(0, \infty)$ onto $(\ln \sqrt{2}, 1 / 2)$.
Proof. Differentiation yields

$$
\begin{aligned}
& f_{1}^{\prime}(x)=\frac{2 x}{\cosh ^{2} x}(x \tanh x-\ln \cosh x):=\frac{2 x}{\cosh ^{2} x} f_{2}(x) \\
& g_{1}^{\prime}(x)=2 \frac{x^{2} \sinh x}{\cosh ^{3} x}:=\frac{2 x}{\cosh ^{2} x} g_{2}(x)
\end{aligned}
$$

where

$$
\begin{gathered}
f_{2}(x)=x \tanh x-\ln \cosh x, \quad g_{2}(x)=x \tanh x \\
f_{2}^{\prime}(x)=\frac{x}{\cosh ^{2} x}, \quad g_{2}^{\prime}(x)=\frac{x+\cosh x \sinh x}{\cosh ^{2} x} .
\end{gathered}
$$

Then

$$
\begin{aligned}
& \frac{f_{1}^{\prime}(x)}{g_{1}^{\prime}(x)}=\frac{f_{2}(x)}{g_{2}(x)} \\
& \frac{f_{2}^{\prime}(x)}{g_{2}^{\prime}(x)}=\frac{x}{x+\cosh x \sinh x}=\frac{1}{1+\sinh (2 x) /(2 x)}
\end{aligned}
$$

Clearly, for $x \in(0, \infty), g_{1}^{\prime}(x)>0$, and hence, $g_{1}(x)>g_{1}(0)=0$. Since $\sinh (2 x) /(2 x)$ is strictly increasing for $x \in(0, \infty)$, it is readily seen that for $x \in(0, \infty)$, the function $f_{2}^{\prime}(x) / g_{2}^{\prime}(x)$ is strictly decreasing. Due to $f_{2}(0)=g_{2}(0)=0$, so is $f_{2}(x) / g_{2}(x)$ by Proposition 1. Similarly, in view of $f_{1}(0)=g_{1}(x)=0$, so is $f_{1}(x) / g_{1}(x)=h_{1}(x)$ using Proposition 1 again. An easy computation gives

$$
\lim _{x \rightarrow 0} \frac{f_{1}(x)}{g_{1}(x)}=\frac{1}{2} \text { and } \lim _{x \rightarrow \infty} \frac{f_{1}(x)}{g_{1}(x)}=\frac{1}{2} \ln 2
$$

thereby completing the proof.
Now we shall prove Theorem 2.

Proof of Theorem 2. Differentiation yields

$$
\begin{aligned}
& F_{t}^{\prime}(u)=\frac{t}{u} \cosh ^{1 / u-1}(u t) \sinh (u t)-\frac{1}{u^{2}} \cosh ^{1 / u}(u t) \ln \cosh (u t), \\
& F_{t}^{\prime \prime}(u)= \frac{t}{u^{3}} \sinh (u t)[(1-u)(u t) \sinh (u t)-\cosh (u t) \ln \cosh (u t)] \cosh ^{1 / u-2}(u t) \\
&+\frac{t}{u^{2}}[u t \cosh (u t)-\sinh (u t)] \cosh ^{1 / u-1}(u t) \\
&-\frac{1}{u^{4}}[u t \sinh (u t)-\cosh (u t) \ln \cosh (u t)] \cosh ^{1 / u-1}(u t) \ln \cosh (u t) \\
&-\frac{1}{u^{3}}[u t \tanh (u t)-2 \ln \cosh (u t)] \cosh ^{1 / u}(u t) .
\end{aligned}
$$

Letting $u t=x$ and simplifying give

$$
\begin{aligned}
& \frac{u^{4}}{\cosh ^{1 / u-2}(u t)} F_{t}^{\prime \prime}(u)= x(\sinh x)[(1-u) x \sinh x-\cosh x \ln \cosh x] \\
&+u x(x \cosh x-\sinh x) \cosh x \\
&-(x \sinh x-\cosh x \ln \cosh x) \cosh x \ln \cosh x \\
&-u(x \tanh x-2 \ln \cosh x) \cosh ^{2} x \\
&=u\left[2 \cosh ^{2} x \ln \cosh x+x^{2}-2 x \cosh x \sinh x\right] \\
&+(x \sinh x-\cosh x \ln \cosh x)^{2}=-\left[u-h_{1}(x)\right] g_{1}(x) \cosh ^{2} x,
\end{aligned}
$$

where $h_{1}(x)$ and $g_{1}(x)$ are given in Lemma 1. Since $h_{1}(x)$ and $g_{1}(x)$ are even on $(-\infty, \infty)$ and $g_{1}(x)=$ $g_{1}(|x|)>0$ shown in Lemma $1, F_{t}^{\prime \prime}(u) \geq(\leq) 0$ for $t>0$ if and only if

$$
Q_{1}(t)=u-h_{1}(|u t|) \leq(\geq 0) .
$$

From Lemma 1 we find

$$
Q_{1}^{\prime}(t)=-|u| h_{1}^{\prime}(|u t|)>0
$$

for all $t>0$ and

$$
\begin{aligned}
& \lim _{t \rightarrow 0} Q_{1}(t)=u-\lim _{t \rightarrow 0} h_{1}(|u t|)=u-\frac{1}{2} \\
& \lim _{t \rightarrow \infty} Q_{1}(t)=u-\lim _{t \rightarrow \infty} h_{1}(|u t|)=u-\frac{1}{2} \ln 2 .
\end{aligned}
$$

We conclude thus that $F_{t}^{\prime \prime}(u)>(<) 0$ for all $t>0$ if and only if

$$
u \leq \min \left\{\frac{1}{2}, \frac{1}{2} \ln 2\right\}=\frac{1}{2} \ln 2 \text { or } u \geq \max \left\{\frac{1}{2}, \frac{1}{2} \ln 2\right\}=\frac{1}{2} .
$$

When $\ln \sqrt{2}<u<1 / 2$, since $Q_{1}^{\prime}(t)>0$ with $Q_{1}\left(0^{+}\right)=u-1 / 2<0$ and $Q_{1}(\infty)=u-\ln \sqrt{2}>0$, there is a $t_{1}=t_{1}(u)$ such that $Q_{1}(t)<0$ on $\left(0, t_{1}\right)$ and $Q_{1}(t)>0$ on $\left(t_{1}, \infty\right)$, where t_{1} is a solution of the equation

$$
\begin{equation*}
Q_{1}(t)=u-h_{1}(|u t|)=0 . \tag{3.3}
\end{equation*}
$$

Since for $x \in(0, \infty)$, the function $h_{1}(x)$ is strictly decreasing, the inverse of h_{1} exists and so is h_{1}^{-1}. Solving the equation (3.3) for t yields

$$
t=\frac{h_{1}^{-1}(u)}{u}=T_{1}(u) .
$$

Noting that $1 / u$ and $h_{1}^{-1}(u)$ are both positive and decreasing, so is $t=T_{1}(u)$. This implies $u=T_{1}^{-1}(t)$ exists and strictly decreasing on $(0, \infty)$. It then follows that

$$
\begin{aligned}
& t \in\left(0, t_{1}\right) \Longleftrightarrow u \in\left(T_{1}^{-1}\left(t_{1}\right), 1 / 2\right)=\left(u_{1}, 1 / 2\right), \\
& t \in\left(t_{1}, \infty\right) \Longleftrightarrow u \in\left(\ln \sqrt{2}, T_{1}^{-1}\left(t_{1}\right)\right)=\left(\ln \sqrt{2}, u_{1}\right),
\end{aligned}
$$

where $u_{1}=T_{1}^{-1}\left(t_{1}\right)$.
We thus arrive at that

$$
F_{t}^{\prime \prime}(u) \begin{cases}>0 & \text { if } u \in\left(u_{1}, 1 / 2\right), \\ <0 & \text { if } u \in\left(\ln \sqrt{2}, u_{1}\right)\end{cases}
$$

which completes the proof.

4. Proof of Theorem 3

Lemma 2. The function

$$
h_{2}(x)=\frac{(\ln 2)(x \sinh x-(\cosh x) \ln \cosh x) \cosh x-(x \sinh x-(\cosh x) \ln \cosh x)^{2}}{x^{2}}
$$

is strictly decreasing from $(0, \infty)$ onto $(0, \ln \sqrt{2})$
Proof. We write

$$
h_{2}(x)=\frac{(x \tanh x-\ln \cosh x) \ln 2-(x \tanh x-\ln \cosh x)^{2}}{x^{2} / \cosh ^{2} x}:=\frac{f_{3}(x)}{g_{3}(x)},
$$

where

$$
\begin{aligned}
& f_{3}(x)=(x \tanh x-\ln \cosh x) \ln 2-(x \tanh x-\ln \cosh x)^{2}, \\
& g_{3}(x)=\frac{x^{2}}{\cosh ^{2} x} .
\end{aligned}
$$

It is easy to check that

$$
f_{3}(0)=g_{3}(0)=f_{3}(\infty)=g_{3}(\infty)=0 .
$$

Differentiation yields

$$
\begin{aligned}
& f_{3}^{\prime}(x)=\frac{x \ln 2}{\cosh ^{2} x}-2(x \tanh x-\ln \cosh x) \frac{x}{\cosh ^{2} x}:=\frac{x}{\cosh ^{2} x} f_{4}(x), \\
& g_{3}^{\prime}(x)=2 x \frac{\cosh x-x \sinh x}{\cosh ^{3} x}=\frac{x}{\cosh ^{2} x} g_{4}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{4}(x)=\ln 2-2(x \tanh x-\ln \cosh x), \\
& g_{4}(x)=2-2 x \tanh x
\end{aligned}
$$

$$
\begin{aligned}
f_{4}^{\prime}(x) & =-\frac{2 x}{\cosh ^{2} x} \\
g_{4}^{\prime}(x) & =-2 \frac{x+\cosh x \sinh x}{\cosh ^{2} x}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{f_{3}^{\prime}(x)}{g_{3}^{\prime}(x)}=\frac{\ln 2-2(x \tanh x-\ln \cosh x)}{2-2 x \tanh x}=\frac{f_{4}(x)}{g_{4}(x)} \\
& \frac{f_{4}^{\prime}(x)}{g_{4}^{\prime}(x)}=\frac{x}{x+\cosh x \sinh x}=\frac{1}{1+\sinh (2 x) /(2 x)}
\end{aligned}
$$

where $g_{4}(x) \neq 0$. As shown in the proof of Lemma $1, f_{4}^{\prime}(x) / g_{4}^{\prime}(x)$ is strictly decreasing on $(0, \infty)$.

Since $f_{4}^{\prime}(x)<0$ with $f_{4}(0)=\ln 2$ and $f_{4}(\infty)=-\ln 2$, there is an $x_{1}>0$ such that $f_{4}(x)>0$ on $\left(0, x_{1}\right)$ and $f_{4}(x)<0$ on $\left(x_{1}, \infty\right)$. Likewise, the facts that $g_{4}^{\prime}(x)<0$ with $g_{4}(0)=2$ and $g_{4}(\infty)=-\infty$ implies that there is an $x_{2}>0$ such that $g_{4}(x)>0$ on $\left(0, x_{2}\right)$ and $g_{4}(x)<0$ on $\left(x_{2}, \infty\right)$. We claim that $x_{1}<\ln 3<x_{2}$. In fact, since

$$
\begin{aligned}
& f_{4}(\ln 3)=\ln 2-\frac{8}{5} \ln 3+2 \ln \frac{5}{3}<0, \\
& g_{4}(\ln 3)=2-\frac{8}{5} \ln 3>0,
\end{aligned}
$$

it is deduced that $x_{1} \in(0, \ln 3)$ and $x_{2} \in(\ln 3, \infty)$, and therefore, $x_{1}<\ln 3<x_{2}$.
We next prove that $h_{2}=f_{3} / g_{3}$ is strictly decreasing on $(0, \infty)$ by distinguishing two cases.
Case 1: $x \in\left(0, x_{2}\right)$. Due to $x_{1}<\ln 3<x_{2}$, we have $f_{4}\left(x_{2}\right)<0, g_{4}\left(x_{2}\right)=0$. Since $\left(f_{4}^{\prime} / g_{4}^{\prime}\right)^{\prime}<0$ for $x \in(0, \infty), g_{4}>0$ for $x \in\left(0, x_{2}\right)$, by the second identity (2.3) it is seen that $H_{f_{4}, g_{4}}^{\prime}=\left(f_{4}^{\prime} / g_{4}^{\prime}\right)^{\prime} g_{4}<0$ for $x \in\left(0, x_{2}\right)$. On the other hand, we see that

$$
\begin{equation*}
H_{f_{4}, g_{4}}\left(x_{2}\right)=\lim _{x \rightarrow x_{2}^{+}}\left[\frac{f_{4}^{\prime}(x)}{g_{4}^{\prime}(x)} g_{4}(x)-f_{4}(x)\right]=-f_{4}\left(x_{2}\right)>0 . \tag{4.1}
\end{equation*}
$$

Then $H_{f_{4}, g_{4}}(x)>H_{f_{4}, g_{4}}\left(x_{2}\right)>0$ for $x \in\left(0, x_{2}\right)$. Due to $g_{4}^{\prime}(x)<0$, it follows from the first identity (2.2) that

$$
\left(\frac{f_{4}}{g_{4}}\right)^{\prime}=\frac{g_{4}^{\prime}}{g_{4}^{2}} H_{f_{4}, g_{4}}<0 \text { for } x \in\left(0, x_{2}\right) .
$$

In view of $f_{3}(0)=g_{3}(0)=0$, by Proposition 1 we find that $h_{2}=f_{3} / g_{3}$ is strictly decreasing on $\left(0, x_{2}\right)$.
Case 2: $x \in\left(x_{2}, \infty\right)$. We have $f_{4}\left(x_{2}\right)<0, g_{4}\left(x_{2}\right)=0$. Since $\left(f_{4}^{\prime} / g_{4}^{\prime}\right)^{\prime}<0$ for $x \in(0, \infty), g_{4}<0$ for $x \in\left(x_{2}, \infty\right)$, by the second identity (2.3) it is deduced that $H_{f_{4}, 9_{4}}^{\prime}=\left(f_{4}^{\prime} / g_{4}^{\prime}\right)^{\prime} g_{4}>0$ for $x \in\left(x_{2}, \infty\right)$. This together with (4.1) gives that $H_{f_{4}, g_{4}}(x)>H_{f_{4}, g_{4}}\left(x_{2}\right)>0$ for $x \in\left(x_{2}, \infty\right)$. Due to $g_{4}^{\prime}(x)<0$, it follows that

$$
\left(\frac{f_{4}}{g_{4}}\right)^{\prime}=\frac{g_{4}^{\prime}}{g_{4}^{2}} H_{f_{4}, g_{4}}<0 \text { for } x \in\left(x_{2}, \infty\right)
$$

In view of $f_{3}(\infty)=g_{3}(\infty)=0$, by Proposition 1 we deduce that $h_{2}=f_{3} / g_{3}$ is strictly decreasing on $\left(x_{2}, \infty\right)$.

Taking into account Cases 1 and 2 as well the continuity of the function $g_{3}(x)$ at $x=x_{2}$, we conclude that $h_{2}=f_{3} / g_{3}$ is strictly decreasing on $(0, \infty)$. An easy calculation yields $h_{2}(0)=\ln \sqrt{2}$ and $h_{2}(\infty)=0$, and the proof is completed.

Now we shall prove Theorem 3.
Proof of Theorem 3. Differentiation give

$$
\begin{aligned}
G_{t}^{\prime}(s) & =[u t \sinh (u t)-\cosh (u t) \ln \cosh (u t)] \frac{\cosh ^{1 / u-1}(u t)}{u^{2}} \frac{\ln 2}{s \ln ^{2} s} \\
& =[u t \sinh (u t)-\cosh (u t) \ln \cosh (u t)] \frac{\cosh ^{1 / u-1}(u t)}{s \ln 2},
\end{aligned}
$$

$$
\begin{aligned}
G_{t}^{\prime \prime}(s)= & {\left[u t^{2} \cosh (u t)-t \sinh (u t) \ln \cosh (u t)\right] \frac{\ln 2}{s \ln ^{2} s} \frac{\cosh ^{1 / u-1}(u t)}{s \ln 2} } \\
& +[u t \sinh (u t)-\cosh (u t) \ln \cosh (u t)] \\
& \times \frac{(1-u) u t \sinh (u t)-\cosh (u t) \ln \cosh (u t)) \frac{\cosh ^{1 / u-2}(u t)}{u^{2}} \frac{\ln 2}{s \ln ^{2} s}}{} \\
& -[u t \sinh (u t)-\cosh (u t) \ln \cosh (u t)] \frac{\cosh ^{1 / u-1}(u t)}{s^{2} \ln 2} .
\end{aligned}
$$

Letting $u t=x$ and simplifying give

$$
\begin{aligned}
& \frac{s^{2} \ln ^{2} 2}{\cosh ^{1 / u-2}(u t)} G_{t}^{\prime \prime}(s)= u\left(x^{2} \cosh x-x \sinh x \ln \cosh x\right) \cosh x \\
&+(x \sinh x-\cosh x \ln \cosh x) \\
& \times[(1-u) x \sinh x-\cosh x \ln \cosh x] \\
&-(\ln 2)(x \sinh x-\cosh x \ln \cosh x) \cosh x \\
&=u x^{2}-[(\ln 2)(x \sinh x-\cosh x \ln \cosh x) \cosh x \\
&\left.-(x \sinh x-\cosh x \ln \cosh x)^{2}\right]=x^{2}\left[u-h_{2}(x)\right],
\end{aligned}
$$

where $h_{2}(x)$ is as in Lemma 2. Since $h_{2}(x)$ is even on $(-\infty, \infty), G_{t}^{\prime \prime}(s) \geq(\leq) 0$ for all $t>0$ if and only if

$$
Q_{2}(t)=u-h_{2}(|u t|) \geq(\leq 0)
$$

for $t>0$. From Lemma 2 we find

$$
Q_{2}^{\prime}(t)=-|u| h_{2}(|u t|)>0
$$

for all $t>0$ and

$$
\begin{aligned}
& \lim _{t \rightarrow 0} Q_{2}(t)=u-\lim _{t \rightarrow 0} h_{2}(|u t|)=u-\frac{1}{2} \ln 2, \\
& \lim _{t \rightarrow \infty} Q_{2}(t)=u-\lim _{t \rightarrow \infty} h_{2}(|u t|)=u .
\end{aligned}
$$

We conclude thus that $G_{t}^{\prime \prime}(s) \geq(\leq) 0$ for all $t>0$ if and only if

$$
u \geq \max \left\{0, \frac{1}{2} \ln 2\right\}=\frac{1}{2} \ln 2 \text { or } u \leq \min \left\{0, \frac{1}{2} \ln 2\right\}=0
$$

which, by the relation $u=(\ln 2) / \ln (1 / s)$, implies that $e^{-2} \leq s<1$ or $s>1$.
When $0<u(s)<\ln \sqrt{2}$, that is, $s \in(0, \ln \sqrt{2})$, since $Q_{2}^{\prime}(t)>0, Q_{2}\left(0^{+}\right)=u-\ln \sqrt{2}<0$ and $Q_{2}(\infty)=u>0$, there is a $t_{2}>0$ such that $Q_{2}(t)<0, t \in\left(0, t_{2}\right)$ and $Q_{2}(t)>0, t \in\left(t_{2}, \infty\right)$, where t_{2} is a solution of the equation

$$
\begin{equation*}
Q_{2}(t)=u-h_{2}(|u t|)=0 . \tag{4.2}
\end{equation*}
$$

Since the function $h_{2}(x),(x>0)$ is strictly decreasing, the inverse of h_{2} exists and so is h_{2}^{-1}. Solving the Eq (4.2) for t yields

$$
t=\frac{h_{2}^{-1}(u)}{u}=T_{2}(u) .
$$

Because that $1 / u$ and $h_{2}^{-1}(u)$ are both positive and strictly decreasing, so is $t=T_{2}(u)$. This implies $u=T_{2}^{-1}(t)$ exists and strictly decreasing on $(0, \infty)$. It then follows that

$$
\begin{aligned}
& t \in\left(0, t_{2}\right) \Longleftrightarrow u \in\left(T_{2}^{-1}\left(t_{2}\right), \ln \sqrt{2}\right)=\left(u_{2}, \ln \sqrt{2}\right), \\
& t \in\left(t_{2}, \infty\right) \Longleftrightarrow u \in\left(0, T_{2}^{-1}\left(t_{2}\right)\right)=\left(0, u_{2}\right),
\end{aligned}
$$

where $u_{2}=T_{2}^{-1}\left(t_{2}\right) \in(0, \ln \sqrt{2})$. We thus deduce that $G_{t}^{\prime \prime}(s)<0$ for $u \in\left(u_{2}, \ln \sqrt{2}\right)$ and $G_{t}^{\prime \prime}(s)>0$ for $u \in\left(0, u_{2}\right)$. Due to $u=(\ln 2) / \ln (1 / s)$, it follows that $G_{t}^{\prime \prime}(s)<0$ on $u \in\left(s_{2}^{*}, e^{-2}\right)$ and $G_{t}^{\prime \prime}(s)>0$ on $\left(0, s_{2}^{*}\right)$, where $s_{2}^{*}=2^{-1 / u_{2}}$. This completes the proof.

5. Proof of Theorem 4

Lemma 3. The function

$$
h_{3}(x)=\frac{x \tanh x-\ln (\cosh x)}{x^{2} / \cosh ^{2} x} \ln 2
$$

is strictly increasing from $(0, \infty)$ onto $(\ln \sqrt{2}, \infty)$.
Proof. As shown in Lemmas 1 and 2, $x \tanh x-\ln \cosh x=f_{2}(x)$ and $x^{2} / \cosh ^{2} x=g_{3}(x)$ with $f_{2}(0)=$ $g_{3}(0)=0$. Since $f_{2}^{\prime}(x)=x / \cosh ^{2} x>0$, we have $f_{2}(x)>f_{2}(0)=0$ for $x>0$. Note that

$$
\begin{aligned}
\frac{g_{3}^{\prime}(x)}{f_{2}^{\prime}(x)} & =2-2 x \tanh x, \\
{\left[\frac{g_{3}^{\prime}(x)}{f_{2}^{\prime}(x)}\right]^{\prime} } & =-2 \frac{x+\cosh x \sinh x}{\cosh ^{2} x}<0 .
\end{aligned}
$$

By Proposition 1 we deduce that $g_{3}(x) / f_{2}(x)$ is strictly decreasing on $(0, \infty)$, which, due to $g_{3}(x) / f_{2}(x)>0$, implies that $h_{3}(x)=\left[f_{2}(x) / g_{3}(x)\right] \ln 2$ is strictly increasing on $(0, \infty)$. A simple computation yields

$$
\lim _{x \rightarrow 0} h_{3}(x)=\frac{1}{2} \ln 2 \text { and } \lim _{x \rightarrow \infty} h_{3}(x)=\infty,
$$

which completes the proof.
Based on Lemma 3, we now check Theorem 4.
Proof of Theorem 4. Differentiation yields

$$
\begin{aligned}
{\left[\ln G_{t}(s)\right]^{\prime} } & =[u t \tanh (u t)-\ln \cosh (u t)] \frac{1}{u^{2}} \frac{\ln 2}{s \ln ^{2} s} \\
& =\frac{u t \tanh (u t)-\ln \cosh (u t)}{s \ln 2}, \\
{\left[\ln G_{t}(s)\right]^{\prime \prime} } & =\frac{u t^{2}}{\cosh ^{2}(u t)} \frac{\ln 2}{s \ln ^{2} s} \frac{1}{s \ln 2}-\frac{u t \tanh (u t)-\ln \cosh (u t)}{s^{2} \ln 2}
\end{aligned}
$$

$$
=\frac{(u t)^{2}}{\cosh ^{2}(u t)} \frac{u}{s^{2} \ln ^{2} 2}-\frac{u t \tanh (u t)-\ln \cosh (u t)}{s^{2} \ln 2},
$$

Letting $u t=x$ and simplifying lead to

$$
\frac{s^{2} \ln ^{2} 2}{x^{2}}\left(\cosh ^{2} x\right)\left[\ln G_{t}(s)\right]^{\prime \prime}=u-\frac{x \tanh x-\ln \cosh x}{x^{2} / \cosh ^{2} x} \ln 2=u-h_{3}(x),
$$

where $h_{3}(x)$ is given in Lemma 3. Since $h_{3}(x)$ is even on $(-\infty, \infty),\left[\ln G_{t}(s)\right]^{\prime \prime} \geq(\leq) 0$ for $t>0$ if and only if

$$
Q_{3}(t)=u-h_{3}(|u t|) \geq(\leq 0)
$$

for $t>0$. From Lemma 3 we get

$$
Q_{3}^{\prime}(t)=-|u| h_{3}(|u t|)<0
$$

for $t>0$ and

$$
\begin{aligned}
& \lim _{t \rightarrow 0} Q_{3}(t)=u-\lim _{t \rightarrow 0} h_{3}(|u t|)=u-\frac{1}{2} \ln 2, \\
& \lim _{t \rightarrow \infty} Q_{3}(t)=u-\lim _{t \rightarrow \infty} h_{3}(|u t|)=-\infty .
\end{aligned}
$$

We conclude thus that $\left[\ln G_{t}(s)\right]^{\prime \prime} \leq 0$ for all $t>0$ if and only if $u \leq \ln \sqrt{2}$, which, by the relation $u=(\ln 2) / \ln (1 / s)$, implies that $0<s \leq e^{-2}$ or $s>1$. This completes the proof.

6. Several new inequalities

Using Theorems 2 and 4 , we get the following corollary.
Corollary 1. Suppose $w, v>0, w \neq v$. If $p<r<q \leq \ln \sqrt{2}$, then the double inequality

$$
\begin{equation*}
A_{p}(w, v)^{1-\beta_{0}} A_{q}(w, v)^{\beta_{0}}<A_{r}(w, v)<\left(1-\alpha_{0}\right) A_{p}(w, v)+\alpha_{0} A_{q}(w, v) \tag{6.1}
\end{equation*}
$$

holds, where

$$
\begin{equation*}
\alpha_{0}=\frac{r-p}{q-p} \quad \text { and } \quad \beta_{0}=\frac{2^{-1 / r}-2^{-1 / p}}{2^{-1 / q}-2^{-1 / p}} . \tag{6.2}
\end{equation*}
$$

The second inequality of (6.1) is reversed if $1 / 2 \leq p<r<q$.
Proof. By Theorem 4, the function $s \mapsto \ln A_{u(s)}(w, v)$ is concave on $\left(0, e^{-2}\right] \cup(1, \infty)$. Then for $s_{i} \in$ ($\left.0, e^{-2}\right]$ or $s_{i} \in(1, \infty), i=1,2,3$, using the property of convex functions we have

$$
\begin{equation*}
\frac{\ln A_{u\left(s_{2}\right)}(w, v)-\ln A_{u\left(s_{1}\right)}(w, v)}{s_{2}-s_{1}}>\frac{\ln A_{u\left(s_{3}\right)}(w, v)-\ln A_{u\left(s_{1}\right)}(w, v)}{s_{3}-s_{1}} \tag{6.3}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\ln A_{u\left(s_{2}\right)}(w, v)>\frac{s_{3}-s_{2}}{s_{3}-s_{1}} \ln A_{u\left(s_{1}\right)}(w, v)+\frac{s_{2}-s_{1}}{s_{3}-s_{1}} \ln A_{u\left(s_{3}\right)}(w, v) . \tag{6.4}
\end{equation*}
$$

Let $\left(u\left(s_{1}\right), u\left(s_{2}\right), u\left(s_{3}\right)\right)=(p, r, q)$. Then by the relation $u(s)=(\ln 2) / \ln (1 / s)$ we get $\left(s_{1}, s_{2}, s_{3}\right)=$ $\left(2^{-1 / p}, 2^{-1 / r}, 2^{-1 / q}\right)$ with $\ln \sqrt{2} \leq p<r<q$. The inequality (6.4) thus becomes to the left hand side inequality of (6.1).

From Theorem 2, the function $u \mapsto A_{u}(w, v)$ is convex on $(-\infty, \ln \sqrt{2})$ and concave on $(1 / 2, \infty)$, where $w, v>0, w \neq v$. Then for $p<r<q \leq \ln \sqrt{2}$ the right hand side inequality of (6.1) holds, which is reversed if $1 / 2 \leq p<r<q$. This completes the proof.

Using Theorems 1 and 3 , we obtain the following corollary.
Corollary 2. Suppose $w, v>0, w \neq v$. If $\ln \sqrt{2} \leq p<r<q$, then the double inequality

$$
\begin{equation*}
A_{p}(w, v)^{1-\alpha_{0}} A_{q}(w, v)^{\alpha_{0}}<A_{r}(w, v)<\left(1-\beta_{0}\right) A_{p}(w, v)+\beta_{0} A_{q}(w, v) \tag{6.5}
\end{equation*}
$$

holds, where α_{0} and β_{0} are given in (6.2) are the best constants. The double inequality (6.5) is reversed if $p<r<q<0$ with the best constants α_{0} and β_{0}.
Proof. By Theorem 1 the function $u \mapsto \ln A_{u}(w, v)$ is convex on $(-\infty, 0)$ and concave on $(0, \infty)$. This implies that, for $0<p<r<q(p<r<q<0)$, the inequality

$$
\frac{q-r}{q-p} \ln A_{p}(w, v)+\frac{r-p}{q-p} \ln A_{q}(w, v)<(>) \ln A_{r}(w, v)
$$

holds, that is,

$$
A_{p}(w, v)^{1-\alpha_{0}} A_{q}(w, v)^{\alpha_{0}}<(>) A_{r}(w, v) .
$$

By Theorem 3, the function $s \mapsto A_{u(s)}(w, v)$ is convex on $\left[e^{-2}, 1\right)$ and concave on $(1, \infty)$. Then for $s_{i} \in\left[e^{-2}, 1\right), i=1,2,3$, with $s_{1}<s_{2}<s_{3}$, by the property of concave functions we have

$$
\begin{equation*}
\frac{A_{u\left(s_{2}\right)}(w, v)-A_{u\left(s_{1}\right)}(w, v)}{s_{2}-s_{1}}<\frac{A_{u\left(s_{3}\right)}(w, v)-A_{u\left(s_{1}\right)}(w, v)}{s_{3}-s_{1}}, \tag{6.6}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
A_{u\left(s_{2}\right)}(w, v)<\frac{s_{3}-s_{2}}{s_{3}-s_{1}} A_{u\left(s_{1}\right)}(w, v)+\frac{s_{2}-s_{1}}{s_{3}-s_{1}} A_{u\left(s_{3}\right)}(w, v) . \tag{6.7}
\end{equation*}
$$

Let $\left(u\left(s_{1}\right), u\left(s_{2}\right), u\left(s_{3}\right)\right)=(p, r, q)$. Then by the relation $u(s)=(\ln 2) / \ln (1 / s)$ we get $\left(s_{1}, s_{2}, s_{3}\right)=$ $\left(2^{-1 / p}, 2^{-1 / r}, 2^{-1 / q}\right)$ with $\ln \sqrt{2} \leq p<r<q$. The inequality (6.7) thus becomes to the right hand side inequality of (6.5).

If $s_{i} \in(1, \infty), i=1,2,3$, with $s_{1}<s_{2}<s_{3}$, by the property of concave functions, the inequality (6.6) is reversed, and so is the right hand side inequality of (6.5) if $p<r<q<0$.

Without loss of generality, we suppose that $0<w<v$. Then $\varsigma=\ln \sqrt{v / w}>0$. Due to

$$
\begin{aligned}
& \lim _{v \rightarrow w} \frac{\ln A_{r}(w, v)-\ln A_{p}(w, v)}{\ln A_{q}(w, v)-\ln A_{p}(w, v)} \\
= & \lim _{\varsigma \rightarrow 0} \frac{\ln \cosh ^{1 / r}(r \varsigma)-\ln \cosh ^{1 / p}(p \varsigma)}{\ln ^{\cosh ^{1 / q}(q \varsigma)-\ln \cosh ^{1 / p}(p \varsigma)}=\frac{r-p}{q-p}=\alpha_{0},} \\
& \lim _{v \rightarrow \infty} \frac{A_{r}(w, v)-A_{p}(w, v)}{A_{q}(w, v)-A_{p}(w, v)} \\
= & \lim _{\varsigma \rightarrow \infty} \frac{\cosh ^{1 / r}(r \varsigma)-\cosh ^{1 / p}(p \varsigma)}{\cosh ^{1 / q}(q \varsigma)-\cosh ^{1 / p}(p \varsigma)}=\frac{2^{-1 / r}-2^{-1 / p}}{2^{-1 / q}-2^{-1 / p}}=\beta_{0}
\end{aligned}
$$

for $\max \{p, q, r\}<0$ or $\min \{p, q, r\}>0, \alpha_{0}$ and β_{0} are the best. This completes the proof.

Similarly, by means of Theorems 1 and 4 we can prove the following corollary, all the details of proof are omitted here.

Corollary 3. Suppose $w, v>0, w \neq v$. If $p<r<q<0$, then

$$
A_{p}(w, v)^{1-\beta_{0}} A_{q}(w, v)^{\beta_{0}}<A_{r}(w, v)<A_{p}(w, v)^{1-\alpha_{0}} A_{q}(w, v)^{\alpha_{0}},
$$

where α_{0} and β_{0} are given in (6.2).
By means of Corollaries 1 and 2, we have
Corollary 4. Suppose $p, q, r \in \mathbb{R}, p<r<q$. (i) If $p \geq 1 / 2$, then for $w, v>0, w \neq v$ the double mean-inequality

$$
\begin{equation*}
(1-\beta) A_{p}(w, v)+\beta A_{q}(w, v)>A_{r}(w, v)>(1-\alpha) A_{p}(w, v)+\alpha A_{q}(w, v) \tag{6.8}
\end{equation*}
$$

is valid if and only if

$$
\alpha \leq \alpha_{0}=\frac{r-p}{q-p} \text { and } \beta \geq \beta_{0}=\frac{2^{-1 / r}-2^{-1 / p}}{2^{-1 / q}-2^{-1 / p}} .
$$

(ii) If $q<0$, then for $w, v>0, w \neq v$ the double inequality (6.8) is reversed if and only if $\alpha \geq \alpha_{0}$ and $\beta \leq \beta_{0}$.
Proof. (i) Necessity. Since $w, v>0$ with $w \neq v$, we suppose $v>w>0$. Then $\varsigma=\ln \sqrt{v / w}>0$. If the first inequality of (6.8) holds for all $v>w>0$, then

$$
\alpha \leq \lim _{\varsigma \rightarrow 0} \frac{\cosh ^{1 / r}(r \varsigma)-\cosh ^{1 / p}(p \varsigma)}{\cosh ^{1 / q}(q \varsigma)-\cosh ^{1 / p}(p \varsigma)}=\frac{r-p}{q-p}=\alpha_{0} .
$$

If the second inequality of (6.8) is valid for $v>w>0$, then

$$
\beta \geq \lim _{\varsigma \rightarrow \infty} \frac{\cosh ^{1 / r}(r \varsigma)-\cosh ^{1 / p}(p \varsigma)}{\cosh ^{1 / q}(q \varsigma)-\cosh ^{1 / p}(p \varsigma)}=\frac{2^{-1 / r}-2^{-1 / p}}{2^{-1 / q}-2^{-1 / p}}=\beta_{0} .
$$

Sufficiency. By Corollaries 1 and 2, the reverse of the right hand side inequality in (6.1) for $\alpha=\alpha_{0}$ and the inequality (6.5) for $\beta=\beta_{0}$ both hold if $1 / 2 \leq p<r<q$, that is, for $w, v>0, w \neq v$ and $(\alpha, \beta)=\left(\alpha_{0}, \beta_{0}\right)$, the double inequality (6.8) is valid. It is easy to find that, for $\alpha \leq \alpha_{0}$,

$$
A_{r}(w, v)>\left(1-\alpha_{0}\right) A_{p}(w, v)+\alpha_{0} A_{q}(w, v) \geq(1-\alpha) A_{p}(w, v)+\alpha A_{q}(w, v)
$$

and for $\beta \geq \beta_{0}$,

$$
(1-\beta) A_{p}(w, v)+\beta A_{q}(w, v)>\left(1-\beta_{0}\right) A_{p}(w, v)+\beta_{0} A_{q}(w, v)>A_{r}(w, v) .
$$

This proves the sufficiency.
(ii) The second assertion of this theorem can be proven in a similar way. This completes the proof.

Remark 4. Clearly, Corollary 4 gives an answer to Problem 2.

7. Conclusions

In this paper, we completely described the convexity of $u \mapsto A_{u}(w, v)$ on \mathbb{R} and $s \mapsto A_{u(s)}(w, v)$, $\ln A_{u(s)}(w, v)$ with $u(s)=(\ln 2) / \ln (1 / s)$ on $(0, \infty)$ by using two tools. From which we obtained several new sharp inequalities involving the power means (Corollaries 1-4), where Corollary 4 gives an answer to Problem 2. Moreover, we gave another new proof of Problem 1.

Final inspired by Theorems 1-4, we propose the following problem.
Problem 3. For all $w, v>0, w \neq v$, determine the best $p \in \mathbb{R}$ such that the functions $p \mapsto L_{p}(w, v)$, $I_{p}(w, v)$ are convex or concave .

The second problem is inspired by Corollary 3 and Problem 2.
Problem 4. Suppose $p, q, r \in \mathbb{R}$ with $p<r<q$ and $v, w>0$ with $v \neq w$. Determine the best $\alpha, \beta \in(0,1)$ with $\alpha<\beta$ such that the double inequality

$$
A_{p}(w, v)^{1-\beta} A_{q}(w, v)^{\beta}<A_{r}(w, v)<A_{p}(w, v)^{1-\alpha} A_{q}(w, v)^{\alpha}
$$

is valid.
It was shown in [29, Lemma 6] (see also [30,31]) that the function $p \mapsto 2^{1 / p} A_{p}(w, v)$ is strictly decreasing and log-convex on $(0, \infty)$. Motivated by this, it is natural to propose the following problem.

Problem 5. Describe the convexity of the function $p \mapsto 2^{1 / p} A_{p}(w, v)$ on $(-\infty, 0)$ and $(0, \infty)$.

Acknowledgments

This work is supported by the NNSF of China (No. 61672205).

Conflict of interest

The authors declare no conflict of interest.

References

1. Z. H. Yang, Y. M. Chu, An optimal inequalities chain for bivariate means, J. Math. Inequal., 9 (2015), 331-343.
2. K. B. Stolarsky, Generalizations of the Logarithmic Mean, Math. Mag., 48 (1975), 87-92.
3. E. B. Leach, M. C. Sholander, Extended mean values, Amer. Math. Monthly, 85 (1978), 84-90.
4. C. Gini, Diuna formula comprensiva delle media, Metron, 13 (1938), 3-22.
5. Z. H. Yang, On the homogeneous functions with two parameters and its monotonicity, J. Inequal. Pure Appl. Math., 6 (2005), 1-11.
6. Z. H. Yang, On the monotonicity and log-convexity of a four-parameter homogeneous mean, J. Inequal. Appl., 2008 (2008), 1-12.
7. A. Witkowski, Comparison theorem for two-parameter means, Math. Inequal. Appl., 12 (2009), 11-20.
8. F. Qi, Logarithmic convexities of the extended mean values, Proc. Amer. Math. Soc., $\mathbf{1 3 0}$ (2002), 1787-1796.
9. Z. H. Yang, On the log-convexity of two-parameter homogeneous functions, Math. Inequal. Appl., 10 (2007), 499-516.
10. Zs. Páles, Inequalities for sums of powers, J. Math. Anal. Appl., 131 (1988), 265-270.
11. Zs. Páles, Inequalities for differences of powers, J. Math. Anal. Appl., 131 (1988), 271-281.
12. L. Losonczi, Zs. Páles, Minkowki's inequality for two variable Gini means, Acta Sci. Math. Szeged, 62 (1996), 413-425.
13. L. Losonczi, Zs. Páles, Minkowki's inequality for two variable difference means, Proc. Amer. Math. Soc., 126 (1998), 779-791.
14. E. Neuman, Zs. Páles, On comparison of Stolarsky and Gini means, J. Math. Anal. Appl., 278 (2003), 274-284.
15. Y. M. Li, B. Y. Long, Y. M. Chu, Sharp bounds by the power mean for the generalized Heronian mean, J. Inequal. Appl., 2012 (2012), 1-9.
16. M. Raïsouli, J. Sándor, Sub-super-stabilizability of certain bivariate means via mean-convexity, J. Inequal. Appl., 2016 (2016), 1-13.
17. Z. H. Yang, On converses of some comparison inequalities for homogeneous means, Hacet. J. Math. Stat., 46 (2017), 629-644.
18. Z. H. Yang, New sharp bounds for identric mean in terms of logarithmic mean and arithmetic mean, J. Math. Inequal., 6 (2012), 533-543.
19. A. Begea, J. Bukor, J. T. Tóhb, On (log-) convexity of power mean, Anna. Math. Inform., 42 (2013), 3-7.
20. L. Matejička, Short note on convexity of power mean, Tamkang J. Math., 46 (2015), 423-426.
21. I. Pinelis, L'Hospital type rules for oscillation, with applications, J. Inequal. Pure Appl. Math., 2 (2001), 1-24.
22. G. D. Anderson, M. Vamanamurthy, M. Vuorinen, Monotonicity rules in calculus, Amer. Math. Monthly, 113 (2006), 805-816.
23. Z. H. Yang, A new way to prove L'Hospital Monotone Rules with applications, arXiv:1409.6408, 2014. Available from: https://arxiv.org/abs/1409.6408.
24. Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587-604.
25. Z. H. Yang, Y. M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729-735.
26. Z. H. Yang, W. Zhang, Y. M. Chu, Sharp Gautschi inequality for parameter $0<p<1$ with applications, Math. Inequal. Appl., 20 (2017), 1107-1120.
27. Z. H. Yang, J. F. Tian, The monotonicity rules for the ratio of two Laplace transforms with applications, J. Math. Anal. Appl., 470 (2019), 821-845.
28. Z. H. Yang, K. F. Tin, Q. Gao, The monotonicity of ratios involving arctangent function with applications, Open Math., 17 (2019), 1450-1467.
29. Z. H. Yang, Estimates for Neuman-Sándor mean by power means and their relative errors, J. Math. Inequal., 7 (2013), 711-726.
30. Z. H. Yang, Some monotonictiy results for the ratio of two-parameter symmetric homogeneous functions, Int. J. Math. Math. Sci., 2009 (2019), 1-12.
31. Z. H. Yang, Log-convexity of ratio of the two-parameter symmetric homogeneous functions and an application, J. Inequal. Spec. Func., 2010 (2010), 16-29.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
