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1. Introduction

A function M : R2
+ 7→ R is called a bivariate mean (BM) if for all w, v > 0

min (w, v) ≤ M (w, v) ≤ max (w, v)

is valid. A BM is symmetric if for all w, v > 0

M (w, v) = M (v,w)

is valid. It is said to be homogeneous (of degree one) if for all λ,w, v > 0

M (λw, λv) = λM (w, v)

is valid. If a BM M is differentiable on R2
+, then the function Mu : R2

+ 7→ R defined by

Mu (w, v) = M1/u (wu, vu) if u , 0 and M0 (w, v) = wMx(1,1)vMy(1,1), (1.1)
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is called “u-order M mean”, where Mx (x, y), My (x, y) are the first-order partial derivatives in regard to
the first and second components of M(x, y), respectively (see [1]). For example, the arithmetic mean
(AM), logarithmic mean (LM) and identric mean (IM) are given by

A (w, v) =
w + v

2
, L (w, v) =

w − v
ln w − ln v

, I (w, v) = e−1
(

vv

ww

)1/(v−w)

,

respectively, then

Au (w, v) =

(
wu + vu

2

)1/u

if u , 0 and A0 (w, v) =
√

wv, (1.2)

Lu (w, v) =

(
wu − vu

u (ln w − ln v)

)1/p

if u , 0 and L0 (w, v) =
√

wv, (1.3)

Iu (w, v) = e−1/u
(

vvu

wwu

)1/(vu−wu)

if u , 0 and I0 (w, v) =
√

wv (1.4)

are u-order AM, u-order LM and u-order IM, respectively. As usual, the u-order AM is still called
u-order PM. Correspondingly, since the form of Mu is similar to PM Au, it is also known simply
as “power-type mean”. More general means than power-type mean including Stolarsky means, Gini
means, and two-parameters functions, etc., which can be seen in [2–7].

For those means with parameters, there are many nice properties including monotonicity, (log-)
convexity, comparability, additivity, stability and inequalities, which can be found in [8–17].

In this paper, we are interested in the properties of the PM Au. As is well-known that u 7→ Au (w, v)
is increasing on R (see [5]). The log-convexity of u 7→ Au (w, v), Lu (w, v) and Iu (w, v) is a direct
consequence of [9, Conclusion 1. 1)] when q = 0, that is,

Theorem 1. The functions u 7→ Au (w, v), Lu (w, v) and Iu (w, v) are log-convex on (−∞, 0) and log-
concave on (0,∞).

The log-convexity of the function u 7→ Au (w, v) was reproved in [19] by Begea, Bukor and Tóhb.
The authors proposed an open problem on the convexity of the function u 7→ Au (w, v):

Problem 1. Prove that

inf
w,v>0
{u : Au(w, v) is concave for variable u ∈ R} =

1
2

ln 2,

sup
w,v>0
{u : Au(w, v) is convex for variable u ∈ R} =

1
2
.

Problem 1 was proven by Matejı́čka in [20]. In 2016, Raı̈souli and Sándor [16, Problem 1] proposed
the following problem.

Problem 2. Let p, q, r ∈ R with q > r > p. Are there 0 < β, α < 1 with β > α, such that the double
inequality

(1 − α) Ap + αAq < Ar < (1 − β) Ap + βAq

holds? If it is positive, what are the best β and α?
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Clearly, this problem is partly related to the convexity of u 7→ Au (w, v). Motivated by Problem
2, the main purpose of this paper is to investigate completely the convexity of u 7→ Au (w, v) on R
and s 7→ Au(s) (w, v) with u (s) = (ln 2) / ln (1/s) on (0,∞). As applications, some new inequalities
for power means are established, and an answer to Problem 2 is given. Final, three problems on the
convexity of certain power-type means and inequalities are proposed.

It should be noted that a homogeneous BM can be represented by the exponential functions. If
M (x, y) is a HM of positive arguments x and y, then M (x, y) can be represented as

M (x, y) =
√

xyM
(
et, e−t) ,

where t = (1/2) ln (x/y). Further, if M (x, y) is symmetric, then M (x, y) can be expressed in terms of
hyperbolic functions (see [18, Lemma 3]). For example, in view of symmetry, we suppose v > w > 0.
Then we find t = (1/2) ln (v/w) > 0. Thus the PM Au (w, v), u-order LM Lu (w, v) and u-order IM
Iu (w, v) can be represented as

Au (w, v)
√

wv
= cosh1/u (ut) ,

Lu (w, v)
√

wv
=

[
sinh (ut)

ut

]1/u

,
Iu (w, v)
√

wv
= exp

[
t

tanh (ut)
−

1
u

]
if u , 0.

The first result of the paper is the following theorem.

Theorem 2. The function u 7→ Au (w, v) is convex on
(
−∞, ln

√
2
)

and concave on (1/2,∞) for all

w, v > 0 with w , v. While u ∈
(
ln
√

2, 1/2
)
, the function u 7→ Au (w, v) is concave then convex.

Equivalently, the function
Ft (u) = cosh1/u (ut)

is convex (concave) for all t > 0 if and only if u ≤ ln
√

2 (u ≥ 1/2). While ln
√

2 < u < 1/2, there is a
u1 ∈

(
ln
√

2, 1/2
)

such that Ft (u) is concave on
(
ln
√

2, u1

)
and convex on (u1, 1/2).

Remark 1. Theorem 2 not only gives an answer to Problem 1, but also describes completely the
convexity of the function u 7→ Au (w, v) on R.

Remark 2. By Theorems 1 and 2, we see that the function u 7→ Au (w, v) has the following (log-)
convexity:

u (−∞, 0)
(
0, ln

√
2
) (

ln
√

2, 1/2
)

(1/2,∞)
Au ∪ ∪ ∩∪ ∩

ln Au ∪ ∩ ∩ ∩

where and in what follows the symbols “∪” and “∩” denote the given function are convex and concave,
“∩∪” and “∪∩” denote the given function are “concave then convex” and “convex then concave”,
respectively.

The second and third results of the paper are the following theorems.

Theorem 3. Suppose w, v > 0 and w , v. The function s 7→ Au(s) (w, v) with u = u (s) = (ln 2) / ln (1/s)
is convex on

(
e−2, 1

)
and concave on (1,∞). While s ∈

(
0, e−2

)
, the function s 7→ Au(s) (w, v) is convex

then concave. Equivalently, the function

Gt (s) = cosh1/u (ut) , where u =
ln 2

ln (1/s)
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is convex (concave) for all t > 0 if and only if s ∈
(
e−2, 1

)
(s ∈ (1,∞)). While s ∈

(
0, e−2

)
, there is a

s∗2 ∈
(
0, e−2

)
such that Gt (s) is convex on

(
0, s∗2

)
and concave on

(
s∗2, e

−2
)
.

Theorem 4. Suppose w, v > 0 and a , b. The function s 7→ Au(s) (w, v) with u (s) = (ln 2) / ln (1/s) is
log-concave on

(
0, e−2

)
∪ (1,∞). Equivalently, the function Gt (s) is log-concave for all t > 0 if and

only if s ∈
(
0, e−2

)
∪ (1,∞).

Remark 3. By Theorems 3 and 4, the function s 7→ Au(s) (w, v) has the following (log-) convexity:

s
(
0, e−2

) (
e−2, 1

)
(1,∞)

Au(s) ∪∩ ∪ ∩

ln Au(s) ∩ ∩

2. Tools

To prove the lemmas listed in Sections 3–5, we need two tools. The first is the so-called L’Hospital
Monotone Rule (LMR), which appeared in [21] (see also [22]).

Proposition 1. Suppose −∞ ≤ a < b ≤ ∞, φ and ψ are differentiable functions on (a, b). Suppose
also the derivative ψ′ is nonzero and does not change sign on (a, b), and φ(a+) = ψ(a+) = 0 or
φ(b−) = ψ(b−) = 0. If φ′/ψ′ is increasing (decreasing) on (a, b) then so is φ/ψ.

Before stating the second tool, we present first an important function Hφ,ψ. Assume that φ and ψ
are differentiable functions on (a, b) with ψ′ , 0, where −∞ ≤ a < b ≤ ∞. It was introduced by Yang
in [23, Eq (2.1)] that

Hφ,ψ :=
φ′

ψ′
ψ − φ, (2.1)

which we call Yang’s H-function. This function has some good properties, see [23, Properties 1 and 2],
and plays an important role in the proof of a monotonicity criterion for the quotient of two functions,
see for example, [24–28].

To study the monotonicity of the ratio φ/ψ on (a, b), Yang [23, Property 1] presented two identities
in term of Hφ,ψ, which state that, if φ and ψ are twice differentiable with ψψ′ , 0 on (a, b), then(

φ

ψ

)′
=

ψ′

ψ2

(
φ′

ψ′
ψ − φ

)
=
ψ′

ψ2 Hφ,ψ, (2.2)

H′φ,ψ =

(
φ′

ψ′

)′
ψ. (2.3)

3. Proof of Theorem 2

In order to prove Theorem 2, we need the following lemma.

Lemma 1. Let h1 (x) = f1 (x) /g1 (x), where

f1 (x) = (x tanh x − ln (cosh x))2 , (3.1)
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g1 (x) = 2x tanh x −
x2

cosh2 x
− 2 ln (cosh x) . (3.2)

Then h1 (x) is strictly decreasing from (0,∞) onto
(
ln
√

2, 1/2
)
.

Proof. Differentiation yields

f ′1 (x) =
2x

cosh2 x
(x tanh x − ln cosh x) :=

2x
cosh2 x

f2 (x) ,

g′1 (x) = 2
x2 sinh x
cosh3 x

:=
2x

cosh2 x
g2 (x) ,

where
f2 (x) = x tanh x − ln cosh x, g2 (x) = x tanh x;

f ′2 (x) =
x

cosh2 x
, g′2 (x) =

x + cosh x sinh x
cosh2 x

.

Then

f ′1 (x)
g′1 (x)

=
f2 (x)
g2 (x)

,

f ′2 (x)
g′2 (x)

=
x

x + cosh x sinh x
=

1
1 + sinh (2x) / (2x)

.

Clearly, for x ∈ (0,∞), g′1 (x) > 0, and hence, g1 (x) > g1 (0) = 0. Since sinh (2x) / (2x) is strictly
increasing for x ∈ (0,∞), it is readily seen that for x ∈ (0,∞), the function f ′2 (x) /g′2 (x) is strictly
decreasing. Due to f2 (0) = g2 (0) = 0, so is f2 (x) /g2 (x) by Proposition 1. Similarly, in view of
f1 (0) = g1 (x) = 0, so is f1 (x) /g1 (x) = h1 (x) using Proposition 1 again. An easy computation gives

lim
x→0

f1 (x)
g1 (x)

=
1
2

and lim
x→∞

f1 (x)
g1 (x)

=
1
2

ln 2,

thereby completing the proof. �

Now we shall prove Theorem 2.

Proof of Theorem 2. Differentiation yields

F′t (u) =
t
u

cosh1/u−1 (ut) sinh (ut) −
1
u2 cosh1/u (ut) ln cosh (ut) ,

F′′t (u) =
t

u3 sinh (ut) [(1 − u) (ut) sinh (ut) − cosh (ut) ln cosh (ut)] cosh1/u−2 (ut)

+
t

u2 [ut cosh (ut) − sinh (ut)] cosh1/u−1 (ut)

−
1
u4 [ut sinh (ut) − cosh (ut) ln cosh (ut)] cosh1/u−1 (ut) ln cosh (ut)

−
1
u3 [ut tanh (ut) − 2 ln cosh (ut)] cosh1/u (ut) .
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Letting ut = x and simplifying give

u4

cosh1/u−2 (ut)
F′′t (u) = x (sinh x) [(1 − u) x sinh x − cosh x ln cosh x]

+ux (x cosh x − sinh x) cosh x

− (x sinh x − cosh x ln cosh x) cosh x ln cosh x

−u (x tanh x − 2 ln cosh x) cosh2 x

= u
[
2 cosh2 x ln cosh x + x2 − 2x cosh x sinh x

]
+ (x sinh x − cosh x ln cosh x)2 = − [u − h1 (x)] g1 (x) cosh2 x,

where h1 (x) and g1 (x) are given in Lemma 1. Since h1 (x) and g1 (x) are even on (−∞,∞) and g1 (x) =

g1 (|x|) > 0 shown in Lemma 1, F′′t (u) ≥ (≤) 0 for t > 0 if and only if

Q1 (t) = u − h1 (|ut|) ≤ (≥ 0) .

From Lemma 1 we find
Q′1 (t) = − |u| h′1 (|ut|) > 0

for all t > 0 and

lim
t→0

Q1 (t) = u − lim
t→0

h1 (|ut|) = u −
1
2
,

lim
t→∞

Q1 (t) = u − lim
t→∞

h1 (|ut|) = u −
1
2

ln 2.

We conclude thus that F′′t (u) > (<) 0 for all t > 0 if and only if

u ≤ min
{

1
2
,

1
2

ln 2
}

=
1
2

ln 2 or u ≥ max
{

1
2
,

1
2

ln 2
}

=
1
2
.

When ln
√

2 < u < 1/2, since Q′1 (t) > 0 with Q1 (0+) = u − 1/2 < 0 and Q1 (∞) = u − ln
√

2 > 0,
there is a t1 = t1 (u) such that Q1 (t) < 0 on (0, t1) and Q1 (t) > 0 on (t1,∞), where t1 is a solution of the
equation

Q1 (t) = u − h1 (|ut|) = 0. (3.3)

Since for x ∈ (0,∞), the function h1 (x) is strictly decreasing, the inverse of h1 exists and so is h−1
1 .

Solving the equation (3.3) for t yields

t =
h−1

1 (u)
u

= T1 (u) .

Noting that 1/u and h−1
1 (u) are both positive and decreasing, so is t = T1 (u). This implies u = T−1

1 (t)
exists and strictly decreasing on (0,∞). It then follows that

t ∈ (0, t1) ⇐⇒ u ∈
(
T−1

1 (t1) , 1/2
)

= (u1, 1/2) ,

t ∈ (t1,∞) ⇐⇒ u ∈
(
ln
√

2,T−1
1 (t1)

)
=

(
ln
√

2, u1

)
,

where u1 = T−1
1 (t1).

We thus arrive at that

F′′t (u)
{
> 0 if u ∈ (u1, 1/2),
< 0 if u ∈ (ln

√
2, u1),

which completes the proof. �
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4. Proof of Theorem 3

Lemma 2. The function

h2 (x) =
(ln 2) (x sinh x − (cosh x) ln cosh x) cosh x − (x sinh x − (cosh x) ln cosh x)2

x2

is strictly decreasing from (0,∞) onto
(
0, ln

√
2
)

Proof. We write

h2 (x) =
(x tanh x − ln cosh x) ln 2 − (x tanh x − ln cosh x)2

x2/ cosh2 x
:=

f3 (x)
g3 (x)

,

where

f3 (x) = (x tanh x − ln cosh x) ln 2 − (x tanh x − ln cosh x)2 ,

g3 (x) =
x2

cosh2 x
.

It is easy to check that
f3 (0) = g3 (0) = f3 (∞) = g3 (∞) = 0.

Differentiation yields

f ′3 (x) =
x ln 2

cosh2 x
− 2 (x tanh x − ln cosh x)

x
cosh2 x

:=
x

cosh2 x
f4 (x) ,

g′3 (x) = 2x
cosh x − x sinh x

cosh3 x
=

x
cosh2 x

g4 (x) ,

where

f4 (x) = ln 2 − 2 (x tanh x − ln cosh x) ,
g4 (x) = 2 − 2x tanh x;

f ′4 (x) = −
2x

cosh2 x
,

g′4 (x) = −2
x + cosh x sinh x

cosh2 x
.

Then

f ′3 (x)
g′3 (x)

=
ln 2 − 2 (x tanh x − ln cosh x)

2 − 2x tanh x
=

f4 (x)
g4 (x)

,

f ′4 (x)
g′4 (x)

=
x

x + cosh x sinh x
=

1
1 + sinh (2x) / (2x)

,

where g4 (x) , 0. As shown in the proof of Lemma 1, f ′4 (x) /g′4 (x) is strictly decreasing on (0,∞).
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Since f ′4 (x) < 0 with f4 (0) = ln 2 and f4 (∞) = − ln 2, there is an x1 > 0 such that f4 (x) > 0 on
(0, x1) and f4 (x) < 0 on (x1,∞). Likewise, the facts that g′4 (x) < 0 with g4 (0) = 2 and g4 (∞) = −∞

implies that there is an x2 > 0 such that g4 (x) > 0 on (0, x2) and g4 (x) < 0 on (x2,∞). We claim that
x1 < ln 3 < x2. In fact, since

f4 (ln 3) = ln 2 −
8
5

ln 3 + 2 ln
5
3
< 0,

g4 (ln 3) = 2 −
8
5

ln 3 > 0,

it is deduced that x1 ∈ (0, ln 3) and x2 ∈ (ln 3,∞), and therefore, x1 < ln 3 < x2.
We next prove that h2 = f3/g3 is strictly decreasing on (0,∞) by distinguishing two cases.
Case 1: x ∈ (0, x2). Due to x1 < ln 3 < x2, we have f4 (x2) < 0, g4 (x2) = 0. Since

(
f ′4/g

′
4

)′
< 0 for

x ∈ (0,∞), g4 > 0 for x ∈ (0, x2), by the second identity (2.3) it is seen that H′f4,g4
=

(
f ′4/g

′
4

)′
g4 < 0 for

x ∈ (0, x2). On the other hand, we see that

H f4,g4 (x2) = lim
x→x+

2

[
f ′4 (x)
g′4 (x)

g4 (x) − f4 (x)
]

= − f4 (x2) > 0. (4.1)

Then H f4,g4 (x) > H f4,g4 (x2) > 0 for x ∈ (0, x2). Due to g′4 (x) < 0, it follows from the first identity (2.2)
that (

f4

g4

)′
=

g′4
g2

4

H f4,g4 < 0 for x ∈ (0, x2) .

In view of f3 (0) = g3 (0) = 0, by Proposition 1 we find that h2 = f3/g3 is strictly decreasing on (0, x2).
Case 2: x ∈ (x2,∞). We have f4 (x2) < 0, g4 (x2) = 0. Since

(
f ′4/g

′
4

)′
< 0 for x ∈ (0,∞), g4 < 0 for

x ∈ (x2,∞), by the second identity (2.3) it is deduced that H′f4,g4
=

(
f ′4/g

′
4

)′
g4 > 0 for x ∈ (x2,∞). This

together with (4.1) gives that H f4,g4 (x) > H f4,g4 (x2) > 0 for x ∈ (x2,∞). Due to g′4 (x) < 0, it follows
that (

f4

g4

)′
=

g′4
g2

4

H f4,g4 < 0 for x ∈ (x2,∞) .

In view of f3 (∞) = g3 (∞) = 0, by Proposition 1 we deduce that h2 = f3/g3 is strictly decreasing on
(x2,∞).

Taking into account Cases 1 and 2 as well the continuity of the function g3 (x) at x = x2, we
conclude that h2 = f3/g3 is strictly decreasing on (0,∞). An easy calculation yields h2 (0) = ln

√
2 and

h2 (∞) = 0, and the proof is completed. �

Now we shall prove Theorem 3.

Proof of Theorem 3. Differentiation give

G′t (s) = [ut sinh (ut) − cosh (ut) ln cosh (ut)]
cosh1/u−1 (ut)

u2

ln 2
s ln2 s

= [ut sinh (ut) − cosh (ut) ln cosh (ut)]
cosh1/u−1 (ut)

s ln 2
,
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G′′t (s) =
[
ut2 cosh (ut) − t sinh (ut) ln cosh (ut)

] ln 2
s ln2 s

cosh1/u−1 (ut)
s ln 2

+ [ut sinh (ut) − cosh (ut) ln cosh (ut)]

×
(1 − u) ut sinh (ut) − cosh (ut) ln cosh (ut)

s ln 2
cosh1/u−2 (ut)

u2

ln 2
s ln2 s

− [ut sinh (ut) − cosh (ut) ln cosh (ut)]
cosh1/u−1 (ut)

s2 ln 2
.

Letting ut = x and simplifying give

s2 ln2 2
cosh1/u−2 (ut)

G′′t (s) = u
(
x2 cosh x − x sinh x ln cosh x

)
cosh x

+ (x sinh x − cosh x ln cosh x)

× [(1 − u) x sinh x − cosh x ln cosh x]
− (ln 2) (x sinh x − cosh x ln cosh x) cosh x

= ux2 − [(ln 2) (x sinh x − cosh x ln cosh x) cosh x

− (x sinh x − cosh x ln cosh x)2
]

= x2 [u − h2 (x)] ,

where h2 (x) is as in Lemma 2. Since h2 (x) is even on (−∞,∞), G′′t (s) ≥ (≤) 0 for all t > 0 if and only
if

Q2 (t) = u − h2 (|ut|) ≥ (≤ 0)

for t > 0. From Lemma 2 we find
Q′2 (t) = − |u| h2 (|ut|) > 0

for all t > 0 and

lim
t→0

Q2 (t) = u − lim
t→0

h2 (|ut|) = u −
1
2

ln 2,

lim
t→∞

Q2 (t) = u − lim
t→∞

h2 (|ut|) = u.

We conclude thus that G′′t (s) ≥ (≤) 0 for all t > 0 if and only if

u ≥ max
{

0,
1
2

ln 2
}

=
1
2

ln 2 or u ≤ min
{

0,
1
2

ln 2
}

= 0,

which, by the relation u = (ln 2) / ln (1/s), implies that e−2 ≤ s < 1 or s > 1.
When 0 < u (s) < ln

√
2, that is, s ∈

(
0, ln

√
2
)
, since Q′2 (t) > 0, Q2 (0+) = u − ln

√
2 < 0 and

Q2 (∞) = u > 0, there is a t2 > 0 such that Q2 (t) < 0, t ∈ (0, t2) and Q2 (t) > 0, t ∈ (t2,∞), where t2 is a
solution of the equation

Q2 (t) = u − h2 (|ut|) = 0. (4.2)

Since the function h2 (x) , (x > 0) is strictly decreasing, the inverse of h2 exists and so is h−1
2 . Solving

the Eq (4.2) for t yields

t =
h−1

2 (u)
u

= T2 (u) .
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Because that 1/u and h−1
2 (u) are both positive and strictly decreasing, so is t = T2 (u). This implies

u = T−1
2 (t) exists and strictly decreasing on (0,∞). It then follows that

t ∈ (0, t2) ⇐⇒ u ∈
(
T−1

2 (t2) , ln
√

2
)

=
(
u2, ln

√
2
)
,

t ∈ (t2,∞) ⇐⇒ u ∈
(
0,T−1

2 (t2)
)

= (0, u2) ,

where u2 = T−1
2 (t2) ∈

(
0, ln

√
2
)
. We thus deduce that G′′t (s) < 0 for u ∈

(
u2, ln

√
2
)

and G′′t (s) > 0

for u ∈ (0, u2). Due to u = (ln 2) / ln (1/s), it follows that G′′t (s) < 0 on u ∈
(
s∗2, e

−2
)

and G′′t (s) > 0 on(
0, s∗2

)
, where s∗2 = 2−1/u2 . This completes the proof. �

5. Proof of Theorem 4

Lemma 3. The function

h3 (x) =
x tanh x − ln (cosh x)

x2/ cosh2 x
ln 2

is strictly increasing from (0,∞) onto
(
ln
√

2,∞
)
.

Proof. As shown in Lemmas 1 and 2, x tanh x− ln cosh x = f2 (x) and x2/ cosh2 x = g3 (x) with f2 (0) =

g3 (0) = 0. Since f ′2 (x) = x/ cosh2 x > 0, we have f2 (x) > f2 (0) = 0 for x > 0. Note that

g′3 (x)
f ′2 (x)

= 2 − 2x tanh x,[
g′3 (x)
f ′2 (x)

]′
= −2

x + cosh x sinh x
cosh2 x

< 0.

By Proposition 1 we deduce that g3 (x) / f2 (x) is strictly decreasing on (0,∞), which, due to
g3 (x) / f2 (x) > 0, implies that h3 (x) =

[
f2 (x) /g3 (x)

]
ln 2 is strictly increasing on (0,∞). A simple

computation yields

lim
x→0

h3 (x) =
1
2

ln 2 and lim
x→∞

h3 (x) = ∞,

which completes the proof. �

Based on Lemma 3, we now check Theorem 4.

Proof of Theorem 4. Differentiation yields

[ln Gt (s)]′ = [ut tanh (ut) − ln cosh (ut)]
1
u2

ln 2
s ln2 s

=
ut tanh (ut) − ln cosh (ut)

s ln 2
,

[ln Gt (s)]′′ =
ut2

cosh2 (ut)
ln 2

s ln2 s
1

s ln 2
−

ut tanh (ut) − ln cosh (ut)
s2 ln 2
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=
(ut)2

cosh2 (ut)
u

s2 ln2 2
−

ut tanh (ut) − ln cosh (ut)
s2 ln 2

,

Letting ut = x and simplifying lead to

s2 ln2 2
x2

(
cosh2 x

)
[ln Gt (s)]′′ = u −

x tanh x − ln cosh x
x2/ cosh2 x

ln 2 = u − h3 (x) ,

where h3 (x) is given in Lemma 3. Since h3 (x) is even on (−∞,∞), [ln Gt (s)]′′ ≥ (≤) 0 for t > 0 if and
only if

Q3 (t) = u − h3 (|ut|) ≥ (≤ 0)

for t > 0. From Lemma 3 we get
Q′3 (t) = − |u| h3 (|ut|) < 0

for t > 0 and

lim
t→0

Q3 (t) = u − lim
t→0

h3 (|ut|) = u −
1
2

ln 2,

lim
t→∞

Q3 (t) = u − lim
t→∞

h3 (|ut|) = −∞.

We conclude thus that [ln Gt (s)]′′ ≤ 0 for all t > 0 if and only if u ≤ ln
√

2, which, by the relation
u = (ln 2) / ln (1/s), implies that 0 < s ≤ e−2 or s > 1. This completes the proof. �

6. Several new inequalities

Using Theorems 2 and 4, we get the following corollary.

Corollary 1. Suppose w, v > 0, w , v. If p < r < q ≤ ln
√

2, then the double inequality

Ap (w, v)1−β0 Aq (w, v)β0 < Ar (w, v) < (1 − α0) Ap (w, v) + α0Aq (w, v) (6.1)

holds, where

α0 =
r − p
q − p

and β0 =
2−1/r − 2−1/p

2−1/q − 2−1/p . (6.2)

The second inequality of (6.1) is reversed if 1/2 ≤ p < r < q.

Proof. By Theorem 4, the function s 7→ ln Au(s) (w, v) is concave on (0, e−2] ∪ (1,∞). Then for si ∈

(0, e−2] or si ∈ (1,∞), i = 1, 2, 3, using the property of convex functions we have

ln Au(s2) (w, v) − ln Au(s1) (w, v)
s2 − s1

>
ln Au(s3) (w, v) − ln Au(s1) (w, v)

s3 − s1
, (6.3)

which is equivalent to

ln Au(s2) (w, v) >
s3 − s2

s3 − s1
ln Au(s1) (w, v) +

s2 − s1

s3 − s1
ln Au(s3) (w, v) . (6.4)

Let (u (s1) , u (s2) , u (s3)) = (p, r, q). Then by the relation u (s) = (ln 2) / ln (1/s) we get (s1, s2, s3) =(
2−1/p, 2−1/r, 2−1/q

)
with ln

√
2 ≤ p < r < q. The inequality (6.4) thus becomes to the left hand side

inequality of (6.1).

AIMS Mathematics Volume 5, Issue 6, 7285–7300.



7296

From Theorem 2, the function u 7→ Au (w, v) is convex on
(
−∞, ln

√
2
)

and concave on (1/2,∞),

where w, v > 0, w , v. Then for p < r < q ≤ ln
√

2 the right hand side inequality of (6.1) holds, which
is reversed if 1/2 ≤ p < r < q. This completes the proof. �

Using Theorems 1 and 3, we obtain the following corollary.

Corollary 2. Suppose w, v > 0, w , v. If ln
√

2 ≤ p < r < q, then the double inequality

Ap (w, v)1−α0 Aq (w, v)α0 < Ar (w, v) < (1 − β0) Ap (w, v) + β0Aq (w, v) (6.5)

holds, where α0 and β0 are given in (6.2) are the best constants. The double inequality (6.5) is reversed
if p < r < q < 0 with the best constants α0 and β0.

Proof. By Theorem 1 the function u 7→ ln Au (w, v) is convex on (−∞, 0) and concave on (0,∞). This
implies that, for 0 < p < r < q (p < r < q < 0), the inequality

q − r
q − p

ln Ap (w, v) +
r − p
q − p

ln Aq (w, v) < (>) ln Ar (w, v)

holds, that is,
Ap (w, v)1−α0 Aq (w, v)α0 < (>) Ar (w, v) .

By Theorem 3, the function s 7→ Au(s) (w, v) is convex on [e−2, 1) and concave on (1,∞). Then for
si ∈ [e−2, 1), i = 1, 2, 3, with s1 < s2 < s3, by the property of concave functions we have

Au(s2) (w, v) − Au(s1) (w, v)
s2 − s1

<
Au(s3) (w, v) − Au(s1) (w, v)

s3 − s1
, (6.6)

which is equivalent to

Au(s2) (w, v) <
s3 − s2

s3 − s1
Au(s1) (w, v) +

s2 − s1

s3 − s1
Au(s3) (w, v) . (6.7)

Let (u (s1) , u (s2) , u (s3)) = (p, r, q). Then by the relation u (s) = (ln 2) / ln (1/s) we get (s1, s2, s3) =(
2−1/p, 2−1/r, 2−1/q

)
with ln

√
2 ≤ p < r < q. The inequality (6.7) thus becomes to the right hand side

inequality of (6.5).
If si ∈ (1,∞), i = 1, 2, 3, with s1 < s2 < s3, by the property of concave functions, the inequality

(6.6) is reversed, and so is the right hand side inequality of (6.5) if p < r < q < 0.
Without loss of generality, we suppose that 0 < w < v. Then ς = ln

√
v/w > 0. Due to

lim
v→w

ln Ar (w, v) − ln Ap (w, v)
ln Aq (w, v) − ln Ap (w, v)

= lim
ς→0

ln cosh1/r (rς) − ln cosh1/p (pς)
ln cosh1/q (qς) − ln cosh1/p (pς)

=
r − p
q − p

= α0,

lim
v→∞

Ar (w, v) − Ap (w, v)
Aq (w, v) − Ap (w, v)

= lim
ς→∞

cosh1/r (rς) − cosh1/p (pς)
cosh1/q (qς) − cosh1/p (pς)

=
2−1/r − 2−1/p

2−1/q − 2−1/p = β0

for max {p, q, r} < 0 or min {p, q, r} > 0, α0 and β0 are the best. This completes the proof. �
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Similarly, by means of Theorems 1 and 4 we can prove the following corollary, all the details of
proof are omitted here.

Corollary 3. Suppose w, v > 0, w , v. If p < r < q < 0, then

Ap (w, v)1−β0 Aq (w, v)β0 < Ar (w, v) < Ap (w, v)1−α0 Aq (w, v)α0 ,

where α0 and β0 are given in (6.2).

By means of Corollaries 1 and 2, we have

Corollary 4. Suppose p, q, r ∈ R, p < r < q. (i) If p ≥ 1/2, then for w, v > 0, w , v the double
mean-inequality

(1 − β) Ap (w, v) + βAq (w, v) > Ar (w, v) > (1 − α) Ap (w, v) + αAq (w, v) (6.8)

is valid if and only if

α ≤ α0 =
r − p
q − p

and β ≥ β0 =
2−1/r − 2−1/p

2−1/q − 2−1/p .

(ii) If q < 0, then for w, v > 0, w , v the double inequality (6.8) is reversed if and only if α ≥ α0 and
β ≤ β0.

Proof. (i) Necessity. Since w, v > 0 with w , v, we suppose v > w > 0. Then ς = ln
√

v/w > 0. If the
first inequality of (6.8) holds for all v > w > 0, then

α ≤ lim
ς→0

cosh1/r (rς) − cosh1/p (pς)
cosh1/q (qς) − cosh1/p (pς)

=
r − p
q − p

= α0.

If the second inequality of (6.8) is valid for v > w > 0, then

β ≥ lim
ς→∞

cosh1/r (rς) − cosh1/p (pς)
cosh1/q (qς) − cosh1/p (pς)

=
2−1/r − 2−1/p

2−1/q − 2−1/p = β0.

Sufficiency. By Corollaries 1 and 2, the reverse of the right hand side inequality in (6.1) for α = α0

and the inequality (6.5) for β = β0 both hold if 1/2 ≤ p < r < q, that is, for w, v > 0, w , v and
(α, β) = (α0, β0), the double inequality (6.8) is valid. It is easy to find that, for α ≤ α0,

Ar (w, v) > (1 − α0) Ap (w, v) + α0Aq (w, v) ≥ (1 − α) Ap (w, v) + αAq (w, v) ,

and for β ≥ β0,

(1 − β) Ap (w, v) + βAq (w, v) > (1 − β0) Ap (w, v) + β0Aq (w, v) > Ar (w, v) .

This proves the sufficiency.
(ii) The second assertion of this theorem can be proven in a similar way. This completes the proof.

�

Remark 4. Clearly, Corollary 4 gives an answer to Problem 2.
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7. Conclusions

In this paper, we completely described the convexity of u 7→ Au (w, v) on R and s 7→ Au(s) (w, v),
ln Au(s) (w, v) with u (s) = (ln 2) / ln (1/s) on (0,∞) by using two tools. From which we obtained several
new sharp inequalities involving the power means (Corollaries 1–4), where Corollary 4 gives an answer
to Problem 2. Moreover, we gave another new proof of Problem 1.

Final inspired by Theorems 1–4, we propose the following problem.

Problem 3. For all w, v > 0, w , v, determine the best p ∈ R such that the functions p 7→ Lp (w, v),
Ip (w, v) are convex or concave .

The second problem is inspired by Corollary 3 and Problem 2.

Problem 4. Suppose p, q, r ∈ R with p < r < q and v,w > 0 with v , w. Determine the best
α, β ∈ (0, 1) with α < β such that the double inequality

Ap (w, v)1−β Aq (w, v)β < Ar (w, v) < Ap (w, v)1−α Aq (w, v)α

is valid.

It was shown in [29, Lemma 6] (see also [30, 31]) that the function p 7→ 21/pAp (w, v) is strictly
decreasing and log-convex on (0,∞). Motivated by this, it is natural to propose the following problem.

Problem 5. Describe the convexity of the function p 7→ 21/pAp (w, v) on (−∞, 0) and (0,∞).
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