

AIMS Mathematics, 5(6): 7285–7300. DOI: 10.3934/math.2020466 Received: 11 August 2020 Accepted: 15 September 2020 Published: 17 September 2020

http://www.aimspress.com/journal/Math

Research article

Properties of the power-mean and their applications

Jing-Feng Tian^{1,2,*}, Ming-Hu Ha³ and Hong-Jie Xing⁴

- ¹ School of Management, Hebei University, Wusi Road 180, Baoding 071002, P. R. China
- ² Department of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, P. R. China
- ³ School of Science, Hebei University of Engineering, Taiji Road 19, Handan 056038, P. R. China
- ⁴ College of Mathematics and Information Science, Hebei University, Wusi Road 180, Baoding 071002, P. R. China
- * Correspondence: Email: tianjf@ncepu.edu.cn; Tel: +8603127525072.

Abstract: Suppose w, v > 0, $w \neq v$ and $A_u(w, v)$ is the *u*-order power mean (PM) of *w* and *v*. In this paper, we completely describe the convexity of $u \mapsto A_u(w, v)$ on \mathbb{R} and $s \mapsto A_{u(s)}(w, v)$ with $u(s) = (\ln 2) / \ln (1/s)$ on $(0, \infty)$. These yield some new inequalities for PMs, and give an answer to an open problem.

Keywords: power mean; power-type mean; convexity; inequality **Mathematics Subject Classification:** 26E60, 26A51

1. Introduction

A function $M : \mathbb{R}^2_+ \mapsto \mathbb{R}$ is called a bivariate mean (BM) if for all w, v > 0

 $\min(w, v) \le M(w, v) \le \max(w, v)$

is valid. A BM is symmetric if for all w, v > 0

$$M(w, v) = M(v, w)$$

is valid. It is said to be homogeneous (of degree one) if for all $\lambda, w, v > 0$

$$M\left(\lambda w,\lambda v\right)=\lambda M\left(w,v\right)$$

is valid. If a BM *M* is differentiable on \mathbb{R}^2_+ , then the function $M_u : \mathbb{R}^2_+ \to \mathbb{R}$ defined by

$$M_u(w, v) = M^{1/u}(w^u, v^u) \text{ if } u \neq 0 \text{ and } M_0(w, v) = w^{M_x(1,1)} v^{M_y(1,1)}, \tag{1.1}$$

is called "*u*-order *M* mean", where $M_x(x, y)$, $M_y(x, y)$ are the first-order partial derivatives in regard to the first and second components of M(x, y), respectively (see [1]). For example, the arithmetic mean (AM), logarithmic mean (LM) and identric mean (IM) are given by

$$A(w,v) = \frac{w+v}{2}, \quad L(w,v) = \frac{w-v}{\ln w - \ln v}, \quad I(w,v) = e^{-1} \left(\frac{v^v}{w^w}\right)^{1/(v-w)},$$

respectively, then

$$A_{u}(w,v) = \left(\frac{w^{u} + v^{u}}{2}\right)^{1/u} \text{ if } u \neq 0 \text{ and } A_{0}(w,v) = \sqrt{wv}, \tag{1.2}$$

$$L_{u}(w,v) = \left(\frac{w^{u} - v^{u}}{u(\ln w - \ln v)}\right)^{1/p} \text{ if } u \neq 0 \text{ and } L_{0}(w,v) = \sqrt{wv},$$
(1.3)

$$I_{u}(w,v) = e^{-1/u} \left(\frac{v^{v^{u}}}{w^{w^{u}}}\right)^{1/(v^{u}-w^{u})} \text{ if } u \neq 0 \text{ and } I_{0}(w,v) = \sqrt{wv}$$
(1.4)

are *u*-order AM, *u*-order LM and *u*-order IM, respectively. As usual, the *u*-order AM is still called *u*-order PM. Correspondingly, since the form of M_u is similar to PM A_u , it is also known simply as "power-type mean". More general means than power-type mean including Stolarsky means, Gini means, and two-parameters functions, etc., which can be seen in [2–7].

For those means with parameters, there are many nice properties including monotonicity, (log-) convexity, comparability, additivity, stability and inequalities, which can be found in [8–17].

In this paper, we are interested in the properties of the PM A_u . As is well-known that $u \mapsto A_u(w, v)$ is increasing on \mathbb{R} (see [5]). The log-convexity of $u \mapsto A_u(w, v)$, $L_u(w, v)$ and $I_u(w, v)$ is a direct consequence of [9, Conclusion 1. 1)] when q = 0, that is,

Theorem 1. The functions $u \mapsto A_u(w, v)$, $L_u(w, v)$ and $I_u(w, v)$ are log-convex on $(-\infty, 0)$ and log-concave on $(0, \infty)$.

The log-convexity of the function $u \mapsto A_u(w, v)$ was reproved in [19] by Begea, Bukor and Tóhb. The authors proposed an open problem on the convexity of the function $u \mapsto A_u(w, v)$:

Problem 1. Prove that

$$\inf_{w,v>0} \{u : A_u(w,v) \text{ is concave for variable } u \in \mathbb{R}\} = \frac{1}{2} \ln 2,$$

$$\sup_{w,v>0} \{u : A_u(w,v) \text{ is convex for variable } u \in \mathbb{R}\} = \frac{1}{2}.$$

Problem 1 was proven by Matejíčka in [20]. In 2016, Raïsouli and Sándor [16, Problem 1] proposed the following problem.

Problem 2. Let $p, q, r \in \mathbb{R}$ with q > r > p. Are there $0 < \beta, \alpha < 1$ with $\beta > \alpha$, such that the double inequality

 $(1-\alpha)A_p + \alpha A_q < A_r < (1-\beta)A_p + \beta A_q$

holds? If it is positive, what are the best β and α ?

AIMS Mathematics

Clearly, this problem is partly related to the convexity of $u \mapsto A_u(w, v)$. Motivated by Problem 2, the main purpose of this paper is to investigate completely the convexity of $u \mapsto A_u(w, v)$ on \mathbb{R} and $s \mapsto A_{u(s)}(w, v)$ with $u(s) = (\ln 2) / \ln (1/s)$ on $(0, \infty)$. As applications, some new inequalities for power means are established, and an answer to Problem 2 is given. Final, three problems on the convexity of certain power-type means and inequalities are proposed.

It should be noted that a homogeneous BM can be represented by the exponential functions. If M(x, y) is a HM of positive arguments x and y, then M(x, y) can be represented as

$$M(x, y) = \sqrt{xy}M(e^t, e^{-t}),$$

where $t = (1/2) \ln (x/y)$. Further, if M(x, y) is symmetric, then M(x, y) can be expressed in terms of hyperbolic functions (see [18, Lemma 3]). For example, in view of symmetry, we suppose v > w > 0. Then we find $t = (1/2) \ln (v/w) > 0$. Thus the PM $A_u(w, v)$, *u*-order LM $L_u(w, v)$ and *u*-order IM $I_u(w, v)$ can be represented as

$$\frac{A_u(w,v)}{\sqrt{wv}} = \cosh^{1/u}(ut), \ \frac{L_u(w,v)}{\sqrt{wv}} = \left[\frac{\sinh(ut)}{ut}\right]^{1/u}, \ \frac{I_u(w,v)}{\sqrt{wv}} = \exp\left[\frac{t}{\tanh(ut)} - \frac{1}{u}\right]$$

if $u \neq 0$.

The first result of the paper is the following theorem.

Theorem 2. The function $u \mapsto A_u(w, v)$ is convex on $(-\infty, \ln \sqrt{2})$ and concave on $(1/2, \infty)$ for all w, v > 0 with $w \neq v$. While $u \in (\ln \sqrt{2}, 1/2)$, the function $u \mapsto A_u(w, v)$ is concave then convex. Equivalently, the function

 $F_t(u) = \cosh^{1/u}\left(ut\right)$

is convex (concave) for all t > 0 if and only if $u \le \ln \sqrt{2}$ ($u \ge 1/2$). While $\ln \sqrt{2} < u < 1/2$, there is a $u_1 \in (\ln \sqrt{2}, 1/2)$ such that $F_t(u)$ is concave on $(\ln \sqrt{2}, u_1)$ and convex on $(u_1, 1/2)$.

Remark 1. Theorem 2 not only gives an answer to Problem 1, but also describes completely the convexity of the function $u \mapsto A_u(w, v)$ on \mathbb{R} .

Remark 2. By Theorems 1 and 2, we see that the function $u \mapsto A_u(w, v)$ has the following (log-) convexity:

и	$(-\infty, 0)$	$(0, \ln \sqrt{2})$	$\left(\ln\sqrt{2},1/2\right)$	(1/2,∞)
A_u	U	U	$\cap \cup$	\cap
$\ln A_u$	U	\cap	\cap	\cap

where and in what follows the symbols " \cup " and " \cap " denote the given function are convex and concave, " $\cap \cup$ " and " $\cup \cap$ " denote the given function are "concave then convex" and "convex then concave", respectively.

The second and third results of the paper are the following theorems.

Theorem 3. Suppose w, v > 0 and $w \neq v$. The function $s \mapsto A_{u(s)}(w, v)$ with $u = u(s) = (\ln 2) / \ln (1/s)$ is convex on $(e^{-2}, 1)$ and concave on $(1, \infty)$. While $s \in (0, e^{-2})$, the function $s \mapsto A_{u(s)}(w, v)$ is convex then concave. Equivalently, the function

$$G_t(s) = \cosh^{1/u}(ut)$$
, where $u = \frac{\ln 2}{\ln(1/s)}$

AIMS Mathematics

7288

is convex (concave) for all t > 0 if and only if $s \in (e^{-2}, 1)$ ($s \in (1, \infty)$). While $s \in (0, e^{-2})$, there is a $s_2^* \in (0, e^{-2})$ such that $G_t(s)$ is convex on $(0, s_2^*)$ and concave on (s_2^*, e^{-2}) .

Theorem 4. Suppose w, v > 0 and $a \neq b$. The function $s \mapsto A_{u(s)}(w, v)$ with $u(s) = (\ln 2) / \ln (1/s)$ is log-concave on $(0, e^{-2}) \cup (1, \infty)$. Equivalently, the function $G_t(s)$ is log-concave for all t > 0 if and only if $s \in (0, e^{-2}) \cup (1, \infty)$.

Remark 3. By Theorems 3 and 4, the function $s \mapsto A_{u(s)}(w, v)$ has the following (log-) convexity:

S	$(0, e^{-2})$	$(e^{-2}, 1)$	$(1,\infty)$
$A_{u(s)}$	UN	U	\cap
$\ln A_{u(s)}$	\cap		\cap

2. Tools

To prove the lemmas listed in Sections 3–5, we need two tools. The first is the so-called L'Hospital Monotone Rule (LMR), which appeared in [21] (see also [22]).

Proposition 1. Suppose $-\infty \le a < b \le \infty$, ϕ and ψ are differentiable functions on (a, b). Suppose also the derivative ψ' is nonzero and does not change sign on (a, b), and $\phi(a^+) = \psi(a^+) = 0$ or $\phi(b^-) = \psi(b^-) = 0$. If ϕ'/ψ' is increasing (decreasing) on (a, b) then so is ϕ/ψ .

Before stating the second tool, we present first an important function $H_{\phi,\psi}$. Assume that ϕ and ψ are differentiable functions on (a, b) with $\psi' \neq 0$, where $-\infty \leq a < b \leq \infty$. It was introduced by Yang in [23, Eq (2.1)] that

$$H_{\phi,\psi} := \frac{\phi'}{\psi'}\psi - \phi, \qquad (2.1)$$

which we call Yang's H-function. This function has some good properties, see [23, Properties 1 and 2], and plays an important role in the proof of a monotonicity criterion for the quotient of two functions, see for example, [24–28].

To study the monotonicity of the ratio ϕ/ψ on (a, b), Yang [23, Property 1] presented two identities in term of $H_{\phi,\psi}$, which state that, if ϕ and ψ are twice differentiable with $\psi\psi' \neq 0$ on (a, b), then

$$\left(\frac{\phi}{\psi}\right)' = \frac{\psi'}{\psi^2} \left(\frac{\phi'}{\psi'}\psi - \phi\right) = \frac{\psi'}{\psi^2} H_{\phi,\psi}, \qquad (2.2)$$

$$H'_{\phi,\psi} = \left(\frac{\phi'}{\psi'}\right)'\psi. \tag{2.3}$$

3. Proof of Theorem 2

In order to prove Theorem 2, we need the following lemma.

Lemma 1. Let $h_1(x) = f_1(x) / g_1(x)$, where

$$f_1(x) = (x \tanh x - \ln (\cosh x))^2, \qquad (3.1)$$

AIMS Mathematics

$$g_1(x) = 2x \tanh x - \frac{x^2}{\cosh^2 x} - 2\ln(\cosh x).$$
 (3.2)

Then $h_1(x)$ is strictly decreasing from $(0, \infty)$ onto $\left(\ln \sqrt{2}, 1/2\right)$.

Proof. Differentiation yields

$$f_{1}'(x) = \frac{2x}{\cosh^{2} x} (x \tanh x - \ln \cosh x) := \frac{2x}{\cosh^{2} x} f_{2}(x),$$

$$g_{1}'(x) = 2\frac{x^{2} \sinh x}{\cosh^{3} x} := \frac{2x}{\cosh^{2} x} g_{2}(x),$$

where

$$f_2(x) = x \tanh x - \ln \cosh x, \quad g_2(x) = x \tanh x;$$

$$f'_{2}(x) = \frac{x}{\cosh^{2} x}, \quad g'_{2}(x) = \frac{x + \cosh x \sinh x}{\cosh^{2} x}$$

Then

$$\frac{f_1'(x)}{g_1'(x)} = \frac{f_2(x)}{g_2(x)},$$

$$\frac{f_2'(x)}{g_2'(x)} = \frac{x}{x + \cosh x \sinh x} = \frac{1}{1 + \sinh(2x)/(2x)}.$$

Clearly, for $x \in (0, \infty)$, $g'_1(x) > 0$, and hence, $g_1(x) > g_1(0) = 0$. Since $\sinh(2x)/(2x)$ is strictly increasing for $x \in (0, \infty)$, it is readily seen that for $x \in (0, \infty)$, the function $f'_2(x)/g'_2(x)$ is strictly decreasing. Due to $f_2(0) = g_2(0) = 0$, so is $f_2(x)/g_2(x)$ by Proposition 1. Similarly, in view of $f_1(0) = g_1(x) = 0$, so is $f_1(x)/g_1(x) = h_1(x)$ using Proposition 1 again. An easy computation gives

$$\lim_{x \to 0} \frac{f_1(x)}{g_1(x)} = \frac{1}{2} \text{ and } \lim_{x \to \infty} \frac{f_1(x)}{g_1(x)} = \frac{1}{2} \ln 2,$$

thereby completing the proof.

Now we shall prove Theorem 2.

Proof of Theorem 2. Differentiation yields

$$F'_t(u) = \frac{t}{u} \cosh^{1/u-1}(ut) \sinh(ut) - \frac{1}{u^2} \cosh^{1/u}(ut) \ln\cosh(ut),$$

$$F_{t}''(u) = \frac{t}{u^{3}} \sinh(ut) \left[(1-u)(ut) \sinh(ut) - \cosh(ut) \ln\cosh(ut) \right] \cosh^{1/u-2}(ut) \\ + \frac{t}{u^{2}} \left[ut \cosh(ut) - \sinh(ut) \right] \cosh^{1/u-1}(ut) \\ - \frac{1}{u^{4}} \left[ut \sinh(ut) - \cosh(ut) \ln\cosh(ut) \right] \cosh^{1/u-1}(ut) \ln\cosh(ut) \\ - \frac{1}{u^{3}} \left[ut \tanh(ut) - 2 \ln\cosh(ut) \right] \cosh^{1/u}(ut).$$

AIMS Mathematics

Volume 5, Issue 6, 7285–7300.

7289

Letting ut = x and simplifying give

$$\frac{u^4}{\cosh^{1/u-2}(ut)}F''_t(u) = x(\sinh x)\left[(1-u)x\sinh x - \cosh x\ln\cosh x\right] +ux(x\cosh x - \sinh x)\cosh x -(x\sinh x - \cosh x\ln\cosh x)\cosh x\ln\cosh x -u(x\tanh x - 2\ln\cosh x)\cosh^2 x$$

$$= u [2 \cosh^2 x \ln \cosh x + x^2 - 2x \cosh x \sinh x] + (x \sinh x - \cosh x \ln \cosh x)^2 = - [u - h_1(x)] g_1(x) \cosh^2 x$$

where $h_1(x)$ and $g_1(x)$ are given in Lemma 1. Since $h_1(x)$ and $g_1(x)$ are even on $(-\infty, \infty)$ and $g_1(x) = g_1(|x|) > 0$ shown in Lemma 1, $F''_t(u) \ge (\le) 0$ for t > 0 if and only if

$$Q_1(t) = u - h_1(|ut|) \le (\ge 0)$$
.

From Lemma 1 we find

$$Q'_{1}(t) = -|u| h'_{1}(|ut|) > 0$$

for all t > 0 and

$$\lim_{t \to 0} Q_1(t) = u - \lim_{t \to 0} h_1(|ut|) = u - \frac{1}{2},$$

$$\lim_{t \to \infty} Q_1(t) = u - \lim_{t \to \infty} h_1(|ut|) = u - \frac{1}{2} \ln 2$$

We conclude thus that $F''_t(u) > (<) 0$ for all t > 0 if and only if

$$u \le \min\left\{\frac{1}{2}, \frac{1}{2}\ln 2\right\} = \frac{1}{2}\ln 2 \text{ or } u \ge \max\left\{\frac{1}{2}, \frac{1}{2}\ln 2\right\} = \frac{1}{2}.$$

When $\ln \sqrt{2} < u < 1/2$, since $Q'_1(t) > 0$ with $Q_1(0^+) = u - 1/2 < 0$ and $Q_1(\infty) = u - \ln \sqrt{2} > 0$, there is a $t_1 = t_1(u)$ such that $Q_1(t) < 0$ on $(0, t_1)$ and $Q_1(t) > 0$ on (t_1, ∞) , where t_1 is a solution of the equation

$$Q_1(t) = u - h_1(|ut|) = 0.$$
(3.3)

Since for $x \in (0, \infty)$, the function $h_1(x)$ is strictly decreasing, the inverse of h_1 exists and so is h_1^{-1} . Solving the equation (3.3) for t yields

$$t = \frac{h_1^{-1}(u)}{u} = T_1(u)$$

Noting that 1/u and $h_1^{-1}(u)$ are both positive and decreasing, so is $t = T_1(u)$. This implies $u = T_1^{-1}(t)$ exists and strictly decreasing on $(0, \infty)$. It then follows that

$$t \in (0, t_1) \iff u \in (T_1^{-1}(t_1), 1/2) = (u_1, 1/2), t \in (t_1, \infty) \iff u \in (\ln \sqrt{2}, T_1^{-1}(t_1)) = (\ln \sqrt{2}, u_1),$$

where $u_1 = T_1^{-1}(t_1)$.

We thus arrive at that

$$F_t''(u) \begin{cases} > 0 & \text{if } u \in (u_1, 1/2), \\ < 0 & \text{if } u \in (\ln \sqrt{2}, u_1), \end{cases}$$

which completes the proof.

AIMS Mathematics

Volume 5, Issue 6, 7285-7300.

4. Proof of Theorem 3

Lemma 2. The function

$$h_2(x) = \frac{(\ln 2) (x \sinh x - (\cosh x) \ln \cosh x) \cosh x - (x \sinh x - (\cosh x) \ln \cosh x)^2}{x^2}$$

is strictly decreasing from $(0, \infty)$ onto $(0, \ln \sqrt{2})$

Proof. We write

$$h_2(x) = \frac{(x \tanh x - \ln \cosh x) \ln 2 - (x \tanh x - \ln \cosh x)^2}{x^2 / \cosh^2 x} := \frac{f_3(x)}{g_3(x)},$$

where

$$f_3(x) = (x \tanh x - \ln \cosh x) \ln 2 - (x \tanh x - \ln \cosh x)^2,$$

$$g_3(x) = \frac{x^2}{\cosh^2 x}.$$

It is easy to check that

$$f_3(0) = g_3(0) = f_3(\infty) = g_3(\infty) = 0.$$

Differentiation yields

$$f'_{3}(x) = \frac{x \ln 2}{\cosh^{2} x} - 2(x \tanh x - \ln \cosh x) \frac{x}{\cosh^{2} x} := \frac{x}{\cosh^{2} x} f_{4}(x),$$

$$g'_{3}(x) = 2x \frac{\cosh x - x \sinh x}{\cosh^{3} x} = \frac{x}{\cosh^{2} x} g_{4}(x),$$

where

$$f_4(x) = \ln 2 - 2(x \tanh x - \ln \cosh x), g_4(x) = 2 - 2x \tanh x;$$

$$f'_{4}(x) = -\frac{2x}{\cosh^{2} x},$$

$$g'_{4}(x) = -2\frac{x + \cosh x \sinh x}{\cosh^{2} x}$$

Then

$$\frac{f'_{3}(x)}{g'_{3}(x)} = \frac{\ln 2 - 2(x \tanh x - \ln \cosh x)}{2 - 2x \tanh x} = \frac{f_{4}(x)}{g_{4}(x)},$$
$$\frac{f'_{4}(x)}{g'_{4}(x)} = \frac{x}{x + \cosh x \sinh x} = \frac{1}{1 + \sinh(2x)/(2x)},$$

where $g_4(x) \neq 0$. As shown in the proof of Lemma 1, $f'_4(x) / g'_4(x)$ is strictly decreasing on $(0, \infty)$.

AIMS Mathematics

Since $f'_4(x) < 0$ with $f_4(0) = \ln 2$ and $f_4(\infty) = -\ln 2$, there is an $x_1 > 0$ such that $f_4(x) > 0$ on $(0, x_1)$ and $f_4(x) < 0$ on (x_1, ∞) . Likewise, the facts that $g'_4(x) < 0$ with $g_4(0) = 2$ and $g_4(\infty) = -\infty$ implies that there is an $x_2 > 0$ such that $g_4(x) > 0$ on $(0, x_2)$ and $g_4(x) < 0$ on (x_2, ∞) . We claim that $x_1 < \ln 3 < x_2$. In fact, since

$$f_4 (\ln 3) = \ln 2 - \frac{8}{5} \ln 3 + 2 \ln \frac{5}{3} < 0,$$

$$g_4 (\ln 3) = 2 - \frac{8}{5} \ln 3 > 0,$$

it is deduced that $x_1 \in (0, \ln 3)$ and $x_2 \in (\ln 3, \infty)$, and therefore, $x_1 < \ln 3 < x_2$.

We next prove that $h_2 = f_3/g_3$ is strictly decreasing on $(0, \infty)$ by distinguishing two cases.

Case 1: $x \in (0, x_2)$. Due to $x_1 < \ln 3 < x_2$, we have $f_4(x_2) < 0$, $g_4(x_2) = 0$. Since $(f'_4/g'_4)' < 0$ for $x \in (0, \infty)$, $g_4 > 0$ for $x \in (0, x_2)$, by the second identity (2.3) it is seen that $H'_{f_{4},g_4} = (f'_4/g'_4)' g_4 < 0$ for $x \in (0, x_2)$. On the other hand, we see that

$$H_{f_4,g_4}(x_2) = \lim_{x \to x_2^+} \left[\frac{f_4'(x)}{g_4'(x)} g_4(x) - f_4(x) \right] = -f_4(x_2) > 0.$$
(4.1)

Then $H_{f_{4},g_{4}}(x) > H_{f_{4},g_{4}}(x_{2}) > 0$ for $x \in (0, x_{2})$. Due to $g'_{4}(x) < 0$, it follows from the first identity (2.2) that

$$\left(\frac{f_4}{g_4}\right)' = \frac{g'_4}{g_4^2} H_{f_4,g_4} < 0 \text{ for } x \in (0, x_2).$$

In view of $f_3(0) = g_3(0) = 0$, by Proposition 1 we find that $h_2 = f_3/g_3$ is strictly decreasing on $(0, x_2)$.

Case 2: $x \in (x_2, \infty)$. We have $f_4(x_2) < 0$, $g_4(x_2) = 0$. Since $(f'_4/g'_4)' < 0$ for $x \in (0, \infty)$, $g_4 < 0$ for $x \in (x_2, \infty)$, by the second identity (2.3) it is deduced that $H'_{f_4,g_4} = (f'_4/g'_4)' g_4 > 0$ for $x \in (x_2, \infty)$. This together with (4.1) gives that $H_{f_4,g_4}(x) > H_{f_4,g_4}(x_2) > 0$ for $x \in (x_2, \infty)$. Due to $g'_4(x) < 0$, it follows that

$$\left(\frac{f_4}{g_4}\right)' = \frac{g_4'}{g_4^2} H_{f_4,g_4} < 0 \text{ for } x \in (x_2,\infty).$$

In view of $f_3(\infty) = g_3(\infty) = 0$, by Proposition 1 we deduce that $h_2 = f_3/g_3$ is strictly decreasing on (x_2, ∞) .

Taking into account Cases 1 and 2 as well the continuity of the function $g_3(x)$ at $x = x_2$, we conclude that $h_2 = f_3/g_3$ is strictly decreasing on $(0, \infty)$. An easy calculation yields $h_2(0) = \ln \sqrt{2}$ and $h_2(\infty) = 0$, and the proof is completed.

Now we shall prove Theorem 3.

Proof of Theorem 3. Differentiation give

$$G'_{t}(s) = [ut \sinh(ut) - \cosh(ut) \ln\cosh(ut)] \frac{\cosh^{1/u-1}(ut)}{u^{2}} \frac{\ln 2}{s \ln^{2} s}$$
$$= [ut \sinh(ut) - \cosh(ut) \ln\cosh(ut)] \frac{\cosh^{1/u-1}(ut)}{s \ln 2},$$

AIMS Mathematics

$$G_t''(s) = \left[ut^2 \cosh(ut) - t \sinh(ut) \ln \cosh(ut) \right] \frac{\ln 2}{s \ln^2 s} \frac{\cosh^{1/u-1}(ut)}{s \ln 2} \\ + \left[ut \sinh(ut) - \cosh(ut) \ln \cosh(ut) \right] \\ \times \frac{(1-u) ut \sinh(ut) - \cosh(ut) \ln \cosh(ut)}{s \ln 2} \frac{\cosh^{1/u-2}(ut)}{u^2} \frac{\ln 2}{s \ln^2 s} \\ - \left[ut \sinh(ut) - \cosh(ut) \ln \cosh(ut) \right] \frac{\cosh^{1/u-1}(ut)}{s^2 \ln 2}.$$

Letting ut = x and simplifying give

$$\frac{s^2 \ln^2 2}{\cosh^{1/u-2}(ut)} G_t''(s) = u \left(x^2 \cosh x - x \sinh x \ln \cosh x \right) \cosh x + (x \sinh x - \cosh x \ln \cosh x) \times \left[(1 - u) x \sinh x - \cosh x \ln \cosh x \right] - (\ln 2) (x \sinh x - \cosh x \ln \cosh x) \cosh x$$

$$= ux^{2} - [(\ln 2) (x \sinh x - \cosh x \ln \cosh x) \cosh x - (x \sinh x - \cosh x \ln \cosh x)^{2}] = x^{2} [u - h_{2} (x)],$$

where $h_2(x)$ is as in Lemma 2. Since $h_2(x)$ is even on $(-\infty, \infty)$, $G''_t(s) \ge (\le) 0$ for all t > 0 if and only if

$$Q_2(t) = u - h_2(|ut|) \ge (\le 0)$$

for t > 0. From Lemma 2 we find

$$Q_{2}'(t) = -|u|h_{2}(|ut|) > 0$$

for all t > 0 and

$$\lim_{t \to 0} Q_2(t) = u - \lim_{t \to 0} h_2(|ut|) = u - \frac{1}{2} \ln 2,$$

$$\lim_{t \to \infty} Q_2(t) = u - \lim_{t \to \infty} h_2(|ut|) = u.$$

We conclude thus that $G''_t(s) \ge (\le) 0$ for all t > 0 if and only if

$$u \ge \max\left\{0, \frac{1}{2}\ln 2\right\} = \frac{1}{2}\ln 2 \text{ or } u \le \min\left\{0, \frac{1}{2}\ln 2\right\} = 0,$$

which, by the relation $u = (\ln 2) / \ln (1/s)$, implies that $e^{-2} \le s < 1$ or s > 1.

When $0 < u(s) < \ln \sqrt{2}$, that is, $s \in (0, \ln \sqrt{2})$, since $Q'_2(t) > 0$, $Q_2(0^+) = u - \ln \sqrt{2} < 0$ and $Q_2(\infty) = u > 0$, there is a $t_2 > 0$ such that $Q_2(t) < 0$, $t \in (0, t_2)$ and $Q_2(t) > 0$, $t \in (t_2, \infty)$, where t_2 is a solution of the equation

$$Q_2(t) = u - h_2(|ut|) = 0.$$
(4.2)

Since the function $h_2(x)$, (x > 0) is strictly decreasing, the inverse of h_2 exists and so is h_2^{-1} . Solving the Eq (4.2) for *t* yields

$$t = \frac{h_2^{-1}(u)}{u} = T_2(u).$$

AIMS Mathematics

Because that 1/u and $h_2^{-1}(u)$ are both positive and strictly decreasing, so is $t = T_2(u)$. This implies $u = T_2^{-1}(t)$ exists and strictly decreasing on $(0, \infty)$. It then follows that

$$t \in (0, t_2) \iff u \in \left(T_2^{-1}(t_2), \ln \sqrt{2}\right) = \left(u_2, \ln \sqrt{2}\right),$$

$$t \in (t_2, \infty) \iff u \in \left(0, T_2^{-1}(t_2)\right) = (0, u_2),$$

where $u_2 = T_2^{-1}(t_2) \in (0, \ln \sqrt{2})$. We thus deduce that $G''_t(s) < 0$ for $u \in (u_2, \ln \sqrt{2})$ and $G''_t(s) > 0$ for $u \in (0, u_2)$. Due to $u = (\ln 2) / \ln (1/s)$, it follows that $G''_t(s) < 0$ on $u \in (s_2^*, e^{-2})$ and $G''_t(s) > 0$ on $(0, s_2^*)$, where $s_2^* = 2^{-1/u_2}$. This completes the proof.

5. Proof of Theorem 4

Lemma 3. The function

$$h_3(x) = \frac{x \tanh x - \ln\left(\cosh x\right)}{x^2 / \cosh^2 x} \ln 2$$

is strictly increasing from $(0, \infty)$ onto $(\ln \sqrt{2}, \infty)$.

Proof. As shown in Lemmas 1 and 2, $x \tanh x - \ln \cosh x = f_2(x)$ and $x^2 / \cosh^2 x = g_3(x)$ with $f_2(0) = g_3(0) = 0$. Since $f'_2(x) = x / \cosh^2 x > 0$, we have $f_2(x) > f_2(0) = 0$ for x > 0. Note that

$$\frac{g'_{3}(x)}{f'_{2}(x)} = 2 - 2x \tanh x, \left[\frac{g'_{3}(x)}{f'_{2}(x)}\right]' = -2\frac{x + \cosh x \sinh x}{\cosh^{2} x} < 0.$$

By Proposition 1 we deduce that $g_3(x)/f_2(x)$ is strictly decreasing on $(0, \infty)$, which, due to $g_3(x)/f_2(x) > 0$, implies that $h_3(x) = [f_2(x)/g_3(x)] \ln 2$ is strictly increasing on $(0, \infty)$. A simple computation yields

$$\lim_{x \to 0} h_3(x) = \frac{1}{2} \ln 2$$
 and $\lim_{x \to \infty} h_3(x) = \infty$,

which completes the proof.

Based on Lemma 3, we now check Theorem 4.

Proof of Theorem 4. Differentiation yields

$$[\ln G_t(s)]' = [ut \tanh(ut) - \ln \cosh(ut)] \frac{1}{u^2} \frac{\ln 2}{s \ln^2 s}$$
$$= \frac{ut \tanh(ut) - \ln \cosh(ut)}{s \ln 2},$$

$$[\ln G_t(s)]'' = \frac{ut^2}{\cosh^2(ut)} \frac{\ln 2}{s \ln^2 s} \frac{1}{s \ln 2} - \frac{ut \tanh(ut) - \ln \cosh(ut)}{s^2 \ln 2}$$

AIMS Mathematics

Volume 5, Issue 6, 7285-7300.

$$= \frac{(ut)^2}{\cosh^2(ut)} \frac{u}{s^2 \ln^2 2} - \frac{ut \tanh(ut) - \ln\cosh(ut)}{s^2 \ln 2},$$

Letting ut = x and simplifying lead to

$$\frac{s^2 \ln^2 2}{x^2} \left(\cosh^2 x \right) \left[\ln G_t(s) \right]'' = u - \frac{x \tanh x - \ln \cosh x}{x^2 / \cosh^2 x} \ln 2 = u - h_3(x),$$

where $h_3(x)$ is given in Lemma 3. Since $h_3(x)$ is even on $(-\infty, \infty)$, $[\ln G_t(s)]'' \ge (\le) 0$ for t > 0 if and only if

$$Q_3(t) = u - h_3(|ut|) \ge (\le 0)$$

for t > 0. From Lemma 3 we get

$$Q'_{3}(t) = -|u|h_{3}(|ut|) < 0$$

for t > 0 and

$$\lim_{t \to 0} Q_3(t) = u - \lim_{t \to 0} h_3(|ut|) = u - \frac{1}{2} \ln 2,$$

$$\lim_{t \to \infty} Q_3(t) = u - \lim_{t \to \infty} h_3(|ut|) = -\infty.$$

We conclude thus that $[\ln G_t(s)]'' \le 0$ for all t > 0 if and only if $u \le \ln \sqrt{2}$, which, by the relation $u = (\ln 2) / \ln (1/s)$, implies that $0 < s \le e^{-2}$ or s > 1. This completes the proof.

6. Several new inequalities

Using Theorems 2 and 4, we get the following corollary.

Corollary 1. Suppose w, v > 0, $w \neq v$. If $p < r < q \le \ln \sqrt{2}$, then the double inequality

$$A_{p}(w,v)^{1-\beta_{0}}A_{q}(w,v)^{\beta_{0}} < A_{r}(w,v) < (1-\alpha_{0})A_{p}(w,v) + \alpha_{0}A_{q}(w,v)$$
(6.1)

holds, where

$$\alpha_0 = \frac{r-p}{q-p} \quad and \quad \beta_0 = \frac{2^{-1/r} - 2^{-1/p}}{2^{-1/q} - 2^{-1/p}}.$$
(6.2)

The second inequality of (6.1) is reversed if $1/2 \le p < r < q$.

Proof. By Theorem 4, the function $s \mapsto \ln A_{u(s)}(w, v)$ is concave on $(0, e^{-2}] \cup (1, \infty)$. Then for $s_i \in (0, e^{-2}]$ or $s_i \in (1, \infty)$, i = 1, 2, 3, using the property of convex functions we have

$$\frac{\ln A_{u(s_2)}(w,v) - \ln A_{u(s_1)}(w,v)}{s_2 - s_1} > \frac{\ln A_{u(s_3)}(w,v) - \ln A_{u(s_1)}(w,v)}{s_3 - s_1},$$
(6.3)

which is equivalent to

$$\ln A_{u(s_2)}(w,v) > \frac{s_3 - s_2}{s_3 - s_1} \ln A_{u(s_1)}(w,v) + \frac{s_2 - s_1}{s_3 - s_1} \ln A_{u(s_3)}(w,v).$$
(6.4)

Let $(u(s_1), u(s_2), u(s_3)) = (p, r, q)$. Then by the relation $u(s) = (\ln 2) / \ln (1/s)$ we get $(s_1, s_2, s_3) = (2^{-1/p}, 2^{-1/r}, 2^{-1/q})$ with $\ln \sqrt{2} \le p < r < q$. The inequality (6.4) thus becomes to the left hand side inequality of (6.1).

AIMS Mathematics

From Theorem 2, the function $u \mapsto A_u(w, v)$ is convex on $(-\infty, \ln \sqrt{2})$ and concave on $(1/2, \infty)$, where $w, v > 0, w \neq v$. Then for $p < r < q \le \ln \sqrt{2}$ the right hand side inequality of (6.1) holds, which is reversed if $1/2 \le p < r < q$. This completes the proof.

Using Theorems 1 and 3, we obtain the following corollary.

Corollary 2. Suppose $w, v > 0, w \neq v$. If $\ln \sqrt{2} \leq p < r < q$, then the double inequality

$$A_{p}(w,v)^{1-\alpha_{0}}A_{q}(w,v)^{\alpha_{0}} < A_{r}(w,v) < (1-\beta_{0})A_{p}(w,v) + \beta_{0}A_{q}(w,v)$$
(6.5)

holds, where α_0 and β_0 are given in (6.2) are the best constants. The double inequality (6.5) is reversed if p < r < q < 0 with the best constants α_0 and β_0 .

Proof. By Theorem 1 the function $u \mapsto \ln A_u(w, v)$ is convex on $(-\infty, 0)$ and concave on $(0, \infty)$. This implies that, for 0 <math>(p < r < q < 0), the inequality

$$\frac{q-r}{q-p}\ln A_p(w,v) + \frac{r-p}{q-p}\ln A_q(w,v) < (>)\ln A_r(w,v)$$

holds, that is,

$$A_{p}(w,v)^{1-\alpha_{0}}A_{q}(w,v)^{\alpha_{0}} < (>)A_{r}(w,v)$$

By Theorem 3, the function $s \mapsto A_{u(s)}(w, v)$ is convex on $[e^{-2}, 1)$ and concave on $(1, \infty)$. Then for $s_i \in [e^{-2}, 1), i = 1, 2, 3$, with $s_1 < s_2 < s_3$, by the property of concave functions we have

$$\frac{A_{u(s_2)}(w,v) - A_{u(s_1)}(w,v)}{s_2 - s_1} < \frac{A_{u(s_3)}(w,v) - A_{u(s_1)}(w,v)}{s_3 - s_1},\tag{6.6}$$

which is equivalent to

$$A_{u(s_2)}(w,v) < \frac{s_3 - s_2}{s_3 - s_1} A_{u(s_1)}(w,v) + \frac{s_2 - s_1}{s_3 - s_1} A_{u(s_3)}(w,v).$$
(6.7)

Let $(u(s_1), u(s_2), u(s_3)) = (p, r, q)$. Then by the relation $u(s) = (\ln 2) / \ln (1/s)$ we get $(s_1, s_2, s_3) = (2^{-1/p}, 2^{-1/r}, 2^{-1/q})$ with $\ln \sqrt{2} \le p < r < q$. The inequality (6.7) thus becomes to the right hand side inequality of (6.5).

If $s_i \in (1, \infty)$, i = 1, 2, 3, with $s_1 < s_2 < s_3$, by the property of concave functions, the inequality (6.6) is reversed, and so is the right hand side inequality of (6.5) if p < r < q < 0.

Without loss of generality, we suppose that 0 < w < v. Then $\varsigma = \ln \sqrt{v/w} > 0$. Due to

$$\lim_{v \to w} \frac{\ln A_r(w, v) - \ln A_p(w, v)}{\ln A_q(w, v) - \ln A_p(w, v)}$$

$$= \lim_{\varsigma \to 0} \frac{\ln \cosh^{1/r}(r\varsigma) - \ln \cosh^{1/p}(p\varsigma)}{\ln \cosh^{1/q}(q\varsigma) - \ln \cosh^{1/p}(p\varsigma)} = \frac{r - p}{q - p} = \alpha_0,$$

$$\lim_{v \to \infty} \frac{A_r(w, v) - A_p(w, v)}{A_q(w, v) - A_p(w, v)}$$

$$= \lim_{\varsigma \to \infty} \frac{\cosh^{1/r}(r\varsigma) - \cosh^{1/p}(p\varsigma)}{\cosh^{1/q}(q\varsigma) - \cosh^{1/p}(p\varsigma)} = \frac{2^{-1/r} - 2^{-1/p}}{2^{-1/q} - 2^{-1/p}} = \beta_0$$

for max $\{p, q, r\} < 0$ or min $\{p, q, r\} > 0$, α_0 and β_0 are the best. This completes the proof.

AIMS Mathematics

Similarly, by means of Theorems 1 and 4 we can prove the following corollary, all the details of proof are omitted here.

Corollary 3. Suppose $w, v > 0, w \neq v$. If p < r < q < 0, then

$$A_{p}(w,v)^{1-\beta_{0}}A_{q}(w,v)^{\beta_{0}} < A_{r}(w,v) < A_{p}(w,v)^{1-\alpha_{0}}A_{q}(w,v)^{\alpha_{0}},$$

where α_0 and β_0 are given in (6.2).

By means of Corollaries 1 and 2, we have

Corollary 4. Suppose $p, q, r \in \mathbb{R}$, p < r < q. (i) If $p \ge 1/2$, then for w, v > 0, $w \ne v$ the double mean-inequality

$$(1 - \beta)A_p(w, v) + \beta A_q(w, v) > A_r(w, v) > (1 - \alpha)A_p(w, v) + \alpha A_q(w, v)$$
(6.8)

is valid if and only if

$$\alpha \le \alpha_0 = \frac{r-p}{q-p} \text{ and } \beta \ge \beta_0 = \frac{2^{-1/r} - 2^{-1/p}}{2^{-1/q} - 2^{-1/p}}$$

(ii) If q < 0, then for w, v > 0, $w \neq v$ the double inequality (6.8) is reversed if and only if $\alpha \ge \alpha_0$ and $\beta \le \beta_0$.

Proof. (i) Necessity. Since w, v > 0 with $w \neq v$, we suppose v > w > 0. Then $\varsigma = \ln \sqrt{v/w} > 0$. If the first inequality of (6.8) holds for all v > w > 0, then

$$\alpha \leq \lim_{\varsigma \to 0} \frac{\cosh^{1/r}(r\varsigma) - \cosh^{1/p}(p\varsigma)}{\cosh^{1/q}(q\varsigma) - \cosh^{1/p}(p\varsigma)} = \frac{r-p}{q-p} = \alpha_0.$$

If the second inequality of (6.8) is valid for v > w > 0, then

$$\beta \geq \lim_{\varsigma \to \infty} \frac{\cosh^{1/r}(r\varsigma) - \cosh^{1/p}(p\varsigma)}{\cosh^{1/q}(q\varsigma) - \cosh^{1/p}(p\varsigma)} = \frac{2^{-1/r} - 2^{-1/p}}{2^{-1/q} - 2^{-1/p}} = \beta_0.$$

Sufficiency. By Corollaries 1 and 2, the reverse of the right hand side inequality in (6.1) for $\alpha = \alpha_0$ and the inequality (6.5) for $\beta = \beta_0$ both hold if $1/2 \le p < r < q$, that is, for w, v > 0, $w \ne v$ and $(\alpha, \beta) = (\alpha_0, \beta_0)$, the double inequality (6.8) is valid. It is easy to find that, for $\alpha \le \alpha_0$,

$$A_{r}(w, v) > (1 - \alpha_{0})A_{p}(w, v) + \alpha_{0}A_{q}(w, v) \ge (1 - \alpha)A_{p}(w, v) + \alpha A_{q}(w, v),$$

and for $\beta \geq \beta_0$,

$$(1 - \beta)A_p(w, v) + \beta A_q(w, v) > (1 - \beta_0)A_p(w, v) + \beta_0 A_q(w, v) > A_r(w, v).$$

This proves the sufficiency.

(ii) The second assertion of this theorem can be proven in a similar way. This completes the proof.

Remark 4. Clearly, Corollary 4 gives an answer to Problem 2.

AIMS Mathematics

7. Conclusions

In this paper, we completely described the convexity of $u \mapsto A_u(w, v)$ on \mathbb{R} and $s \mapsto A_{u(s)}(w, v)$, ln $A_{u(s)}(w, v)$ with $u(s) = (\ln 2) / \ln (1/s)$ on $(0, \infty)$ by using two tools. From which we obtained several new sharp inequalities involving the power means (Corollaries 1–4), where Corollary 4 gives an answer to Problem 2. Moreover, we gave another new proof of Problem 1.

Final inspired by Theorems 1–4, we propose the following problem.

Problem 3. For all w, v > 0, $w \neq v$, determine the best $p \in \mathbb{R}$ such that the functions $p \mapsto L_p(w, v)$, $I_p(w, v)$ are convex or concave.

The second problem is inspired by Corollary 3 and Problem 2.

Problem 4. Suppose $p, q, r \in \mathbb{R}$ with p < r < q and v, w > 0 with $v \neq w$. Determine the best $\alpha, \beta \in (0, 1)$ with $\alpha < \beta$ such that the double inequality

$$A_{p}(w,v)^{1-\beta}A_{q}(w,v)^{\beta} < A_{r}(w,v) < A_{p}(w,v)^{1-\alpha}A_{q}(w,v)^{\alpha}$$

is valid.

It was shown in [29, Lemma 6] (see also [30, 31]) that the function $p \mapsto 2^{1/p}A_p(w, v)$ is strictly decreasing and log-convex on $(0, \infty)$. Motivated by this, it is natural to propose the following problem.

Problem 5. Describe the convexity of the function $p \mapsto 2^{1/p}A_p(w, v)$ on $(-\infty, 0)$ and $(0, \infty)$.

Acknowledgments

This work is supported by the NNSF of China (No. 61672205).

Conflict of interest

The authors declare no conflict of interest.

References

- 1. Z. H. Yang, Y. M. Chu, An optimal inequalities chain for bivariate means, J. Math. Inequal., 9 (2015), 331–343.
- 2. K. B. Stolarsky, Generalizations of the Logarithmic Mean, Math. Mag., 48 (1975), 87–92.
- 3. E. B. Leach, M. C. Sholander, Extended mean values, Amer. Math. Monthly, 85 (1978), 84-90.
- 4. C. Gini, *Diuna formula comprensiva delle media*, Metron, **13** (1938), 3–22.
- 5. Z. H. Yang, On the homogeneous functions with two parameters and its monotonicity, J. Inequal. Pure Appl. Math., 6 (2005), 1–11.
- 6. Z. H. Yang, On the monotonicity and log-convexity of a four-parameter homogeneous mean, J. Inequal. Appl., **2008** (2008), 1–12.

- 7. A. Witkowski, *Comparison theorem for two-parameter means*, Math. Inequal. Appl., **12** (2009), 11–20.
- 8. F. Qi, *Logarithmic convexities of the extended mean values*, Proc. Amer. Math. Soc., **130** (2002), 1787–1796.
- 9. Z. H. Yang, *On the log-convexity of two-parameter homogeneous functions*, Math. Inequal. Appl., **10** (2007), 499–516.
- 10. Zs. Páles, Inequalities for sums of powers, J. Math. Anal. Appl., 131 (1988), 265–270.
- 11. Zs. Páles, Inequalities for differences of powers, J. Math. Anal. Appl., 131 (1988), 271–281.
- L. Losonczi, Zs. Páles, *Minkowki's inequality for two variable Gini means*, Acta Sci. Math. Szeged, 62 (1996), 413–425.
- 13. L. Losonczi, Zs. Páles, *Minkowki's inequality for two variable difference means*, Proc. Amer. Math. Soc., **126** (1998), 779–791.
- 14. E. Neuman, Zs. Páles, On comparison of Stolarsky and Gini means, J. Math. Anal. Appl., 278 (2003), 274–284.
- 15. Y. M. Li, B. Y. Long, Y. M. Chu, *Sharp bounds by the power mean for the generalized Heronian mean*, J. Inequal. Appl., **2012** (2012), 1–9.
- M. Raïsouli, J. Sándor, Sub-super-stabilizability of certain bivariate means via mean-convexity, J. Inequal. Appl., 2016 (2016), 1–13.
- 17. Z. H. Yang, On converses of some comparison inequalities for homogeneous means, Hacet. J. Math. Stat., **46** (2017), 629–644.
- 18. Z. H. Yang, New sharp bounds for identric mean in terms of logarithmic mean and arithmetic mean, J. Math. Inequal., 6 (2012), 533–543.
- 19. A. Begea, J. Bukor, J. T. Tóhb, *On (log-) convexity of power mean*, Anna. Math. Inform., **42** (2013), 3–7.
- 20. L. Matejíčka, Short note on convexity of power mean, Tamkang J. Math., 46 (2015), 423-426.
- 21. I. Pinelis, *L'Hospital type rules for oscillation, with applications*, J. Inequal. Pure Appl. Math., **2** (2001), 1–24.
- 22. G. D. Anderson, M. Vamanamurthy, M. Vuorinen, *Monotonicity rules in calculus*, Amer. Math. Monthly, **113** (2006), 805–816.
- 23. Z. H. Yang, A new way to prove L'Hospital Monotone Rules with applications, arXiv:1409.6408, 2014. Available from: https://arxiv.org/abs/1409.6408.
- 24. Z. H. Yang, Y. M. Chu, M. K. Wang, *Monotonicity criterion for the quotient of power series with applications*, J. Math. Anal. Appl., **428** (2015), 587–604.
- 25. Z. H. Yang, Y. M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., **20** (2017), 729–735.
- 26. Z. H. Yang, W. Zhang, Y. M. Chu, Sharp Gautschi inequality for parameter 0 with applications, Math. Inequal. Appl.,**20**(2017), 1107–1120.
- 27. Z. H. Yang, J. F. Tian, *The monotonicity rules for the ratio of two Laplace transforms with applications*, J. Math. Anal. Appl., **470** (2019), 821–845.

AIMS Mathematics

- 28. Z. H. Yang, K. F. Tin, Q. Gao, *The monotonicity of ratios involving arctangent function with applications*, Open Math., **17** (2019), 1450–1467.
- 29. Z. H. Yang, *Estimates for Neuman-Sándor mean by power means and their relative errors*, J. Math. Inequal., **7** (2013), 711–726.
- 30. Z. H. Yang, Some monotonicity results for the ratio of two-parameter symmetric homogeneous functions, Int. J. Math. Math. Sci., **2009** (2019), 1–12.
- 31. Z. H. Yang, *Log-convexity of ratio of the two-parameter symmetric homogeneous functions and an application*, J. Inequal. Spec. Func., **2010** (2010), 16–29.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)