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1. Introduction

Research on exact solutions of nonlinear differential equations with variable coefficients has been a
significant area for recent decades, see e.g. [1−25]. We consider nonlinear STO equation with variable
coefficients [26, 27].

ut + f (t)
(
uux +

1
3

u3
)

x
+ g (t) uxxx = 0, (1.1)

In which f (t) , 0 , g (t) , 0 are functions of t. In the scientific literature there are a various number of
effective methods for the exact solutions of nolinear PDEs. Among these methods, similarity
reduction [1], Adomian decomposition [13], Backlund transformation [2], Painleve expansion [3],
homogeneous balance [15], Jacobi elliptic function [5, 6], tanh function [16], F-expansion [17−20],
variational iteration [9−12], homotopy analysis [14] and Exp-function [21−23]. Riemann-Hilbert
method [28–31], Lie symmetry [32], Hirota bilinear [33], Darboux method [34], variable-coefficient
fractional Y-expansion method [35], Riccati equation method [36], fractional riccati method [37],
fractional dual-function method [38]. Noether symmetries [39], Kudryashov method [40,41],
Simplest equation method [42].

In order to study the traveling wave propagation solution of STO [43,44], let us introduce:

ζ = x +
ω

α

∫ t

0
g
(
t′
)

dt′, u (x, t) = u (ζ) , (1.2)

in which α is a parameter and ω is wave speed. By Eq (1.2), Eq (1.1) is written

ω

α
uζ + uζζζ + 3

(
uuζ +

1
3

u3
)
ζ

= 0, (1.3)

in which f (t)and g (t) satisfy f (t) = 3g (t). Integrating Eq (1.3), we get

ω

α
u + uζζ + 3

(
uuζ +

1
3

u3
)

= 0. (1.4)

In this study we get solitary wave and the periodic wave solutions by using algebraic direct method,
Sub-equations method and F-expansion method. In the next two sections, the new proposed methods
are presented and different types of exact solutions of STO are written down. Section 4 is devoted to
the conclusion.

2. Methodology

Let Z be a polynomial function of x, and t. Consider the nonlinear PDE

Z
(
u, ux, ut, uxx,...

)
= 0. (2.1)

Let
u (x, t) = u (ζ) , ζ = k (x + λt) , (2.2)

where k, λ are constants. Inserting Eq (2.2) into Eq (2.1), we get the ODE in terms of u (ξ)

χ
(
u, ku′, λku′, k2u′′, ...

)
= 0. (2.3)
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2.1. Extended F-Expansion method

Let the solution be written as

u (ζ) = a0 +

M∑
i=−M

aiχ
i (ζ) , (2.4)

in which a0 and ai are constants, and M , 0 is a natural number and χ (ζ)satisfies

χ′ (ζ) = A + Bχ (ζ) + Cχ2 (ζ) , (2.5)

where, χ′ (ζ) =
dχ
dζ and A, B, C are parameters.

In order to solve Eq (1.4) via F−expansion method, equating uξξ with u3 yields M = 1. Hence, Eq
(2.4) reads

u (ζ) = a0 + a1χ (ζ) +
a−1

χ (ζ)
, (2.6)

in which a0, a1 and a−1are constants. Inserting Eq (2.6) into the reduced Eq (1.4) yields:
Case (1.1): a−1 = 0, a1 = 1, a0 = −1, α = α and ω = −α. Using the transformation (1.2), the
corresponding solution in terms of the original coordinates is as follows

u1 (x, t) = −
1
2

+
1
4

tanh
(
x −

∫ t

0
g
(
t′
)

dt′
)

(2.7)

where g (t) is an arbitrary function.

Figure 1. (a) Three-dimensional mesh of Abs[u1 (x, t)] versus t and x, (b) variation Abs[u1 (x, t)] with
the normalized propagation position x for different values of the time.
Case (1.2): a−1 = 0, a1 = −1, a0 = 1

2 and ω = −α4 . Using the transformation (1.2), the corresponding
solution in terms of the original coordinates is as follows

u2 (x, t) =
1
4

coth
(
x −

1
4

∫ t

0
g
(
t′
)

dt′
)
, (2.8)

where g (t) is an arbitrary function.
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Figure 2. (a) Three-dimensional mesh of Abs[u2 (x, t)] versus t and x, (b) variation Abs[u2 (x, t)] with
the normalized propagation position x for different values of the time.

Case (1.3): a−1 = 1
2 , a1 = 1

2 , a0 = −1, α = α and ω = −4α. Using the transformation (1.2), the
corresponding solutions in terms of the original coordinates is

u3 (x, t) = −1 + 1
2
[
coth

(
x−4

∫ t
0 g(t′)dt′

)
±csc h

(
x−4

∫ t
0 g(t′)dt′

)]
+ 1

2

[
coth

(
x − 4

∫ t

0
g (t′) dt′

)
± csc h

(
x − 4

∫ t

0
g (t′) dt′

)] , (2.9)

u4 (x, t) = −1 + 1
2
[
tanh

(
x−4

∫ t
0 g(t′)dt′

)
±i sec h

(
x−4

∫ t
0 g(t′)dt′

)]
+ 1

2

[
tanh

(
x − 4

∫ t

0
g (t′) dt′

)
± i sec h

(
x − 4

∫ t

0
g (t′) dt′

)] , (2.10)

where g (t) is an arbitrary function.

Case (1.4): a−1 = 1, a1 = 1, a0 = −2, α = α and ω = −16α. From the transformation (1.2), the
corresponding solution in terms of the original coordinates is as follows

u5 (x, t) = −2 + coth
(
x − 16

∫ t

0
g
(
t′
)

dt′
)

+ tanh
(
x − 16

∫ t

0
g
(
t′
)

dt′
)
, (2.11)

where g (t) is an arbitrary function.

Case (2.1): a−1 = 1, a1 = −1, a0 = 2i, α = α and ω = 16α. Using the transformation (1.2), the
corresponding solution in terms of the original coordinates is taken as

u6 (x, t) = 2i + cot
(
x + 16

∫ t

0
g
(
t′
)

dt′
)
− tanh

(
x + 16

∫ t

0
g
(
t′
)

dt′
)
, (2.12)

where g (t) is an arbitrary function.
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Figure 3. (a) Three-dimensional mesh of Abs[u6 (x, t)] versus t and x, (b) variation Abs[u6 (x, t)] with
the normalized propagation position x for different values of the time.

Case (2.2): a−1 = A, a1 = 0, a0 = B
2 , α = α and ω = − B2α

4 . By means of Eq (1.2), the corresponding
solution in terms of the original coordinates gives

u7 (x, t) =
B
2

+
AB

exp
{
B

[
x − B2

4

∫ t

0
g (t′) dt′

]}
− A

, (2.13)

where g (t) is an arbitrary function.

Case (2.3): a−1 = −1, a1 = 1, a0 = 2i, α = α and ω = 16α. Using the transformation (1.2), the
corresponding solution in terms of the original coordinates admits to

u8 (x, t) = 2i −
1

cot
(
x + 16

∫ t

0
g (t′) dt′

) + cot
(
x + 16

∫ t

0
g
(
t′
)

dt′
)
, (2.14)

where g (t) is an arbitrary function.

Case (2.4): a−1 = 1
2 , a1 = −1

2 , a0 = ±i, α = α and ω = 4α. Making use the transformation (1.2), the
corresponding solutions in terms of the original coordinates yields

u9 (x, t) = ±i + 1
2
[
sec

(
x+4

∫ t
0 g(t′)dt′

)
+tan

(
x+4

∫ t
0 g(t′)dt′

)]
− 1

2

[
sec

(
x + 4

∫ t

0
g (t′) dt′

)
+ tan

(
x + 4

∫ t

0
g (t′) dt′

)] , (2.15)

u10 (x, t) = ±i + 1
2
[
csc

(
x+4

∫ t
0 g(t′)dt′

)
−cot

(
x+4

∫ t
0 g(t′)dt′

)]
− 1

2

[
csc

(
x + 4

∫ t

0
g (t′) dt′

)
− cot

(
x + 4

∫ t

0
g (t′) dt′

)] , (2.16)

where g (t) is an arbitrary function.
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Figure 4. (a) Three-dimensional mesh of Abs[u10 (x, t)] versus t and x, (b) variation Abs[u10 (x, t)] with
the normalized propagation position x for different values of the time.

2.2. New sub-equation method

In view this method (MAE) [24], affirms the general solution as the form as

u (ς) = a0 +

N∑
j=1

a jA j f (ς) +

N∑
j=1

b jA− j f (ς), (2.17)

The parametersa j, b jare arbitrary constants and f (ς)satisfy the following auxiliary equation

f ′ (ς) =
α + βA− f (ς) + σA f (ς)

ln (A)
, (2.18)

in which α, β, σare arbitrary constants and A > 0, A , 1.
To solve Eq (1.4), we employ Eq (2.17) to get solutions taking into consideration the homogeneous

balance between u3 and u′′in Eq (1.4) that results N=1. Set N=1 in Eq (2.17), we get

u (ς) = a0 + a1A f (ς) + b1A− f (ς), (2.19)

According to (MAE) method, writing Eq (2.19) in Eq (1.4) with the help of Eq (2.18), we get
Case 1:

{
w =

(
4ασ − β2

)
δ, δ = δ, a0 = −1

2β ±
1
2

√
β2 − 4ασ, a1 = −σ, b1 = 0

}
Case 2:

{
w = −1

4δβ
2 + δασ, δ = δ, a0 = 1

2β, a1 = 0, b1 = α
}

Case 3:
{
w = −δβ2 + 4δασ, δ = δ, a0 = β, a1 = 0, b1 = 2α

}
Case 4:

{
w =

(
4ασ − β2

)
δ, δ = δ, a0 = 1

2β ±
1
2

√
β2 − 4ασ, a1 = 0, b1 = α

}
Case 5:

{
w = −δβ2 + 4δασ, δ = δ, a0 = 0, a1 = −σ, b1 = α

}
In view of case [1], exact solutions of Eq (1.1) are given a

when β2 − 4ασ < 0 , and σ , 0,

u1 (ς) = −
1
2
β ±

1
2

√
β2 − 4ασ − σ

−β +
√

4ασ − β2 tan
(

1
2

√
4ασ − β2ζ

)
2σ

,
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u2 (ς) = −
1
2
β ±

1
2

√
β2 − 4ασ + σ

β +
√

4ασ − β2 cot
(

1
2

√
4ασ − β2ζ

)
2σ

. (2.20)

If β2 − 4ασ > 0, and σ , 0, we have

u3 (ς) = −
1
2
β ±

1
2

√
β2 − 4ασ + σ

β +
√
β2 − 4ασ tanh

(
1
2

√
4ασ − β2ζ

)
2σ

,

u4 (ς) = −
1
2
β ±

1
2

√
β2 − 4ασ + σ

β +
√
β2 − 4ασ tanh

(
1
2

√
4ασ − β2ζ

)
2σ

. (2.21)

If β2 − 4ασ = 0, and σ , 0,

u5 (ς) = −
1
2
β ±

1
2

√
β2 − 4ασ + σ

2 + βζ

2σζ
. (2.22)

Similarly as before, according to case [4], new exact solution s of Eq (1.1) is:
As long as β2 − 4ασ < 0 , and σ , 0, we have

u6 (ς) =
1
2
β ±

1
2

√
β2 − 4ασ + α

2σ

−β +
√

4ασ − β2 tan
(

1
2

√
4ασ − β2ζ

) ,
u7 (ς) =

1
2
β ±

1
2

√
β2 − 4ασ − α

2σ

β +
√

4ασ − β2 cot
(

1
2

√
4ασ − β2ζ

) . (2.23)

if β2 − 4ασ > 0 and σ , 0, admits to

u8 (ς) =
1
2
β ±

1
2

√
β2 − 4ασ − α

2σ

β +
√
β2 − 4ασ tanh

(
1
2

√
β2 − 4ασζ

) ,
u9 (ς) =

1
2
β ±

1
2

√
β2 − 4ασ − α

2σ

β +
√
β2 − 4ασ coth

(
1
2

√
β2 − 4ασζ

) . (2.24)

if β2 − 4ασ = 0 and σ , 0,

u10 (ς) =
1
2
β ±

1
2

√
β2 − 4ασ − α

2σζ
2 + βζ

,

ζ = x +
ω

α

∫ t

0
g
(
t′
)

dt′. (2.25)

3. Generalized Kudryashov expansion method

In view this method [25], suppose that the solution of Eq (1.4) is written as:

u (ζ) =

N∑
i=−N

aiψ
i (ζ) , (3.1)
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where ai are constants to be calculated afterward and verifies:

ψ′ (ς) = ln (A)
[
α + βψ (ς) + γψ2 (ς)

]
, (3.2)

where A, α, β and γ are constants.
Equating u′′ (ς) and u3 (ς), we get N = 1,thus Eq (3.1) leads to:

u (ς) = a0 + a1ψ (ς) +
a−1

ψ (ς)
, (3.3)

Now, we have:
Case [1]: a0 = 0, a1 = −σ ln (A), a−1 = α ln (A)

Case [2]: a0 =

(
−
β

2 +

√
β2−4ασ

2

)
ln (A),a1 = −σ ln (A), a−1 = 0

In view of case [1], new exact travelling wave solutions of Eq (1.1) are

ui(ζ) = −σ ln (A)ψi (ζ) +
α ln (A)
ψi (ζ)

. (3.4)

According to case [2], exact solutions of Eq (1.1) are:

ui(ζ) =

−β2 +

√
β2 − 4ασ

2

 ln (A) − σ ln (A)ψi (ζ) , (3.5)

where ψi (ς) is:
Family 1. In case of ∆ = β2 − 4ασ < 0, σ , 0, ψi (ς) reads

ψ1 (ς) = −
β

2σ
+

√
−∆

2σ
tanA

 √−∆

2
ς

 , (3.6)

ψ2 (ς) = −
β

2σ
−

√
−∆

2σ
cotA

 √−∆

2
ς

 , (3.7)

ψ3 (ς) = −
β

2σ
+

√
−∆

4σ
tanA

 √−∆

4
ς

 − √−∆

4σ
cotA

 √−∆

4
ς

 , (3.8)

Family 2. In case of ∆ = β2 − 4ασ > 0, σ , 0, ψi (ς) reads

ψ4 (ς) = −
β

2σ
−

√
∆

2σ
tanhA

 √∆

2
ς

 , (3.9)

ψ5 (ς) = −
β

2σ
−

√
∆

2σ
cothA

 √∆

2
ς

 , (3.10)

ψ6 (ς) = −
β

2σ
−

√
∆

2σ
cothA

(√
∆ς

)
±

√
pq∆

2σ
csc hA

(√
∆ς

)
, (3.11)

ψ7 (ς) = −
β

2σ
−

√
∆

2σ
tanhA

(√
∆ς

)
± i

√
pq∆2σ

S
sec hA

(√
∆ς

)
, (3.12)
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Family 3. In the limiting cas if ασ > 0, β = 0 , then

ψ8 (ς) =

√
α

σ
tanA

(√
ασς

)
, (3.13)

ψ9 (ς) = −

√
α

σ
cotA

(√
ασς

)
, (3.14)

ψ10 (ς) =

√
α

σ
tanA

(
2
√
ασς

)
±

√
pq
α

σ
secA

(
2
√
ασς

)
, (3.15)

ψ11 (ς) = −

√
α

σ
cotA

(
2
√
ασς

)
±

√
pq
α

σ
cscA

(
2
√
ασς

)
, (3.16)

Family 4. when σ = −α, β = 0 , then

ψ12 (ς) = − tanhA (ας) , (3.17)

ψ13 (ς) = − cothA (ας) , (3.18)

ψ14 (ς) = − tanhA (2ας) ± i
√

pq sec hA (2ας) , (3.19)

Family 5. when β = k, σ = mk , β = α = 0, β = k, α = mk, σ = 0, then

ψ16 (ς) =
pAkς

q − mpAkς , (3.20)

ψ17 (ς) =
−1

σς ln (A)
, (3.21)

ψ18 (ς) = Akς − m, (3.22)

ζ = x +
ω

α

∫ t

0
g
(
t′
)

dt′, (3.23)

where sinhA (ς) =
pAς−qA−ς

2 , coshA (ς) =
pAς+qA−ς

2 , tanhA (ς) =
pAς−qA−ς

pAς+qA−ς ,

cothA (ς) =
pAς + qA−ς

pAς − qA−ς
, tanA (ς) = −i

pAiς − qA−iς

pAiς + qA−iς , cotA (ς) = i
pAiς + qA−iς

pAiς − qA−iς . (3.24)

4. Conclusions

Methods of the extended sub-equation, direct algebraic and F-expansion have been successfully
applied to solve the variable coefficient STO equation with its fission and fusion. Using the F-expansion
method, one may able to classify ten types of solutions in terms of the arbitrary function g (t). The
advantage of the presence of that arbitrary function g (t), enable us to construct a wide range classes of
solutions according to the different choices of g (t)and any initial condition may be persuaded.

On the other hand, using different mathematical methods may lead us to another type of solutions.
For example, applying the improved tanh method, one obtains the following type of solution

u (x, t) = ±

(
sec

(
x + α

∫ t

0
g
(
t′
)

dt′
)
± tan

(
x + α

∫ t

0
g
(
t′
)

dt′
))
, (4.1)
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that maps to the triangular periodic solution where ω = α. In addition, one may also obtain the
numerous soliton like solutions,

u (x, t) = ±
1
2

tanh
(
x + α

∫ t

0
g (t′) dt′

)
1 ± sec h

(
x + α

∫ t

0
g (t′) dt′

) . (4.2)

where ω = −α and g (t) is an arbitrary function of t.
Application of these methods to fractal order PDEs may be seen in, e.g. [25–27, 45–53]. We will

investigate the applicability of these methods to fractional stochastic differential equations in a future
work.

Appendix

(A, B, C) values and F (ξ) in F′ = A + BF (ξ) + CF2 (ξ).
A B C χ (ζ)
0 1 −1 χ (ζ) = 1

2 + 1
2 tanh

(
ζ

2

)
0 −1 1 χ (ζ) = 1

2 −
1
2 coth

(
ζ

2

)
1
2 0 −1

2 χ (ζ) = coth (ζ) ± csc h (ζ), tan (ζ) ±
i sec h (ζ)

1 0 −1 χ (ζ) = tanh (ζ), coth (ζ)
1
2 0 1

2 χ (ζ) = sec (ζ)+tan (ζ), csc (ζ)−cot (ζ)
−1

2 0 −1
2 χ (ζ) = sec (ζ)−tan (ζ), csc (ζ)+cot (ζ)

1 (−1) 0 1 (−1) χ (ζ) = tan (ζ), cot (ζ)
0 0 , 0 χ (ζ) = −1

Cζ+λ

Constant 0 0 χ (ζ) = Aζ
Constant , 0 0 χ (ζ) =

exp(Bζ)−A
B

Acknowledgments

The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169,
11301127, 11701176, 11626101, 11601485).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

References

1. R. Hirota, Exact solutions of the KdV equation for multiple collisions of solitons, Phys. Rev. Lett.,
27 (1971), 1192-1-1192-3.

2. M. Wadati, K. Konno, Simple derivation of Bucklund transformation from Riccati form of inverse
method, Prog. Theor. Phys., 53 (1975), 1652–1656.

AIMS Mathematics Volume 5, Issue 6, 7272–7284.



7282

3. F. Cariello, M. Tabor, Similarity reductions from extended Painlev expansions for nonintegrable
evolution equations, Physica D: Nonlinear Phenomena, 53 (2003), 59–70.

4. M. J. Abolowitz, P. A. Clarkson, Solitons nonlinear evolution equations and inverse scattering,
London: Combridge University Press, 1991.

5. M. A. Abdou, A. Elhanbaly, Construction of periodic and solitary wave solutions by the extended
Jacobi elliptic function expansion method, Commun. Nonliner. Sci., 12 (2007), 1229–1241.

6. S. A. El-Wakil, M. A. Abdou, A. Elhanbaly, New solitons and periodic wave solutions for nonlinear
evolution equations, Phys. Lett. A, 353 (2006), 40–47.

7. S. A. El-Wakil, M. A. Abdou, The extended mapping method and its applications for nonlinear
evolutions equations, Phys. Lett. A, 358 (2006), 275–282.

8. M. A. Abdou, S. Zhang, New periodic wave solution via extended mapping method, Commun.
Nonliner. Sci., 14 (2009), 2–11.

9. M. A. Abdou, On the variational iteration method, Phys. Lett. A, 366 (2007), 61–68.
10. E. M. Abulwafa, M. A. Abdou, A. A. Mahmoud, The solution of nonlinear coagulation problem

with mass loss, Chaos, Solitons Fractals, 29 (2006), 313–330.
11. H. Ji-Huan, Some asymptotic methods for strongly nonlinear equations, Int. J. Modern Phys. B, 20

(2006), 1141–1199.
12. H. Ji-Huan, Non perturbative method for strongly nonlinear problems, dissertation, de Verlag im

Internet GmbH, Berlin, 2006.
13. M. Abdou, A. Elhanbaly, Decomposition method for solving a system of coupled fractional time

nonlinear equations, Phys. Scripta, 73 (2006), 338–348.
14. S. A. El-Wakil, M. A. Abdou, New applications of the homotopy analysis method, Zeitschrift fur

Naturforschung, 63 (2008), 1–8.
15. S. A. El-Wakil, E. M.Abulwafa, A. Elhanbaly, et al. The extended homogeneous balance method

and its applications for a class of nonlinear evolution equations, Chaos, Solitons Fractals, 33
(2007), 1512–1522.

16. S. A. El-Wakil, M. A. Abdou, New exact travelling wave solutions using Modified extended tanh
function method, Chaos, Solitons Fractals, 31 (2007), 840–852.

17. I. Liu, K. Yang, The extended F-expansion method and exact solutions of nonlinear PDEs, Chaos,
Solitons Fractals, 22 (2004), 111–121.

18. M. A. Abdou, An improved generalized F-expansion method and its applicatuions, J. Comput.
Appl. Math., 214 (2008), 202–208.

19. M. A. Abdou, The extended F-expansion method and its application for a class of nonlinear
evolution equations, Chaos, Solitons Fractals, 31 (2007), 95–104.

20. M. A. Abdou, Further improved F-expansion and new exact solutions for nonlinear evolution
equations, J. Nonlinear Dynamics, 52 (2007), 277–288.

21. H. Ji-Huan, M. A. Abdou, New periodic solutions for nonlinear evolution equations using Exp
function method, Chaos, Solitons Fractals, 34 (2007), 1421–1429.

22. S. A. El-Wakil, M. A. Abdou, A. Hendi, New periodic wave solutions via Exp-function method,
Phys. Lett. A, 372 (2008), 830–840.

AIMS Mathematics Volume 5, Issue 6, 7272–7284.



7283

23. M. A. Abdou, Generalized solitary and periodic solutions for nonlinear partial differential
equations by the Exp-function method, J. Nonlinear Dynamics, 52 (2008), 1–9.

24. M. S. Osman, D. Lu, M. M. A. Khater, et al. Complex wave structures for abundant solutions
related to the complex Ginzburg-Landau model, Optik, 192 (2019), 162927-1-162927-5.

25. S. Owyed, M. A. Abdou, A. H. Abdel-Aty, et al. New optical soliton solutions of nolinear evolution
equation describing nonlinear dispersion, Commun. Theor. Phys., 71 (2019), 1063–1068.

26. M. A. Abdou, On the quantum Zakharov Kuznetsov equation, Int. J. Nonlinear Sci., 26 (2018),
89–96.

27. S. Owyed, M. A. Abdou, A. H. Abdel-Aty, et al. Optical solitons solutions for perturbed time
fractional nonlinear Schrodinger equation via two strategic algorithms, Aims Math., Available
from: http://www.aimspress.com/journal/Math,2020, accepted and in press.

28. J. J. Yang, S. F. Tian, W. Q. Peng, et al. The N-coupled higher-order nonlinear Schrödinger
equation: Riemann-Hilbert problem and multi-soliton solutions, Math. Meth. Appl. Sci., (2019),
1–15.

29. W. Q. Peng, S. F. Tian, T. T. Zhang, Initial value problem for the pair transition coupled nonlinear
Schrödinger equations via the Riemann-Hilbert method, Complex Analy. Operator Theory, 14
(2020), 1–15.

30. T. Y. Xu, S. F. Tian, W. Q. Peng, Riemann-Hilbert approach for multisoliton solutions of
generalized coupled fourth-order nonlinear Schrödinger equations, Math. Meth. Appl. Sci., 43
(2019), 865–880.

31. W. Q. Peng, S. F. Tian, X. B. Wang, et al. Riemann-Hilbert method and multi-soliton solutions for
three-component coupled nonlinear Schrödinger equations, J. Geom. Phys., 146 (2019), 103508-
1-103508-9.

32. S. F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order
nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 106056-1-
106056-7.

33. L. D. Zhang, S. F. Tian, W. Q. Peng, et al. The dynamics of lump, lumpoff and Rogue wave solutions
of (2+1)-dimensional Hirota-Satsuma-Ito equations, East Asian J. Appl. Math., 10 (2020), 243–
255.

34. C. Q. Dai, J. F. Zhang, Controlling effect of vector and scalar crossed double-Ma breathers in a
partially nonlocal nonlinear medium with a linear potential, Nonlinear Dyn., 100 (2020), 1621–
1628.

35. G. Z. Wu, C. Q. Dai, Nonautonomous soliton solutions of variable-coefficient fractional nonlinear
Schrödinger equation, Appl. Math. Lett., 106 (2020), 106365-1-106365-6.

36. C. Q. Dai, Y. Fan, N. Zhang, Re-observation on localized waves constructed by variable separation
solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective
Riccati equation method, Appl. Math. Lett., 96 (2019), 20–26.

37. C. Q. Dai, Y. Fan, Y. Y. Wang, Three-dimensional optical solitons formed by the balance between
different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric
potentials, Nonlinear Dyn., 98 (2019), 489–499.

AIMS Mathematics Volume 5, Issue 6, 7272–7284.

http://www.aimspress.com/journal/Math,2020


7284

38. B. H. Wang, P. H. Lu, C. Q. Dai, et al. Vector optical soliton and periodic solutions of a coupled
fractional nonlinear Schrödinger equation, Results Phys., 17 (2020), 103036-1-103036-7.

39. B. Muatjetjeja, S. O. Mbusi, A. R. Adem, Noether symmetries of a generalized coupled Lane-
Emden-Klein-Gordon-Fock system with central symmetry, Symmetry, 12 (2020), 1–6.

40. B. Muatjetjeja, A. R. Adem, S. Oscar. Mbusi, Traveling wave solutions and conservation laws of a
generalized Kudryashov–Sinelshchikov equation, J. Appl. Anal., 25 (2019), 211–217.

41. A. R. Adem, B. Muatjetjeja, Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov
equation, Appl. Math. Lett., 48 (2015), 109–117.

42. A. R. Adem, C. M. Khalique, Conserved quantities and solutions of a (2 + 1)-dimensional
Haragus-Courcelle-Il’ichev model, Comput. Math. Appl., 71 (2016), 1129–1136.

43. C. A Garzon, On exact solutions for a generalized Burgers-Sharma-Tasso-Olver equation with
forcing term, Commun. Appl. Analy., 21 (2017), 127–134.

44. A. H. Salas, Exact solutions to a generalized sharma-Tasso-Olver equation, Appl. Math. Sci., 5
(2011), 2289–2295.

45. S. Owyed, M. A. Abdou, A. H. Abdel-Aty, et al. Numerical and approximate solutions for coupled
time fractional nonlinear evolutions equations via reduced differential transform method, Chaos,
Solitons Fractals, 131 (2020), 109474.

46. M. A. Abdou, A. Soliman, New exact travelling wave solutions for fractal order space time FPDEs
descring Transmisssion line, Results Phys., 9 (2018), 1497.

47. M. A. Abdou, Fractional reduced differentional transform method and its applications, Int. J.
Nonlinear Sci., 26 (2018), 55–64.

48. M. A. Abdou, New exact solutions for space-time fractal order nonlinear dynamics of microtubules
via the generalized Kudryashov method, Acta (2018), submitted.

49. M. A. Abdou, An anylatical approach for space-time fractal order nonlinear dynamics of
microtubules, Waves in random media and complex media, Available from:
https://doi.org/10.1080/17455030.2018.1517951.

50. M. A. Abdou, On the fractional order space-time nonlinear equations arising in plasma physics,
Indian J. Phys., 93 (2019), 537–541.

51. M. A. Abdou, A new analytical method for space-time fractional nonlinear differential equations
arising in plasma physics, J. Ocean Eng. Sci., 2 (2017), 1–5.

52. S. Owyed, M. A. Abdou, Abdel-Haleem Abdel-Aty, et al. New optical soliton solutions of nolinear
evolution equation describing nonlinear dispersion, Commun. Theor. Phys., 71 (2019), 1063–
1068.

53. Luu Vu Cam Hoan, S. Owyed, M. Inc, et al. New explicit optical solitons of fractional
nonlinear evolution equation via three different methods, Results Phy., (2020), doi:
https://doi.org/10.1016/j.rinp.2020.103209.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 6, 7272–7284.

https://doi.org/10.1080/17455030.2018.1517951.
http://creativecommons.org/licenses/by/4.0

	Introduction
	 Methodology
	Extended F-Expansion method
	New sub-equation method

	Generalized Kudryashov expansion method
	Conclusions

