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Abstract: In this paper by means of contour integration we will evaluate definite integrals of the form∫ 1

0

(
lnk(ay) − lnk

(
a
y

))
R(y)dy

in terms of a special function, where R(y) is a general function and k and a are arbitrary complex
numbers. These evaluations can be expressed in terms of famous mathematical constants such as
the Euler’s constant γ and Catalan’s constant C. Using derivatives, we will also derive new integral
representations for some Polygamma functions such as the Digamma and Trigamma functions along
with others.
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1. Introduction

Expressions for the logarithm of the gamma function, ln[Γ(z)] and related functions such as the
digamma function ψ(0)(z) = d ln[Γ(z)]/dz, [5] are important in the field of applied mathematics. Famous
mathematicians like Kölbig, Malmsten, Binet, Kummer, and Burnside reviewed in [7] all developed
definite integrals and series representations for this function. In this article we will use our contour
integration method to derive a new definite integral representation for the ln[Γ(z)] function, where z
is a general complex number. We will derive integrals as indicated in the abstract in terms of special
functions. We will then use this new integral representation to derive famous constants in terms of
a definite integral. The derivations follow the method used by us in [4]. The generalized Cauchy’s
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integral formula is given by
yk

k!
=

1
2πi

∫
C

ewy

wk+1 dw (1.1)

where C is the generalized Hankel contour with the path in the complex plane. This method involves
using a form of Eq (1.1), then multiplying both sides by a function, then take a definite integral of both
sides as defined in [4]. This yields a definite integral in terms of a contour integral. Then we multiply
both sides of Eq (1.1) by another function and take the infinite sum of both sides such that the contour
integral of both equations are the same.

2. Integrals involving the product of logarithmic functions

2.1. Definite integral of the contour integral

We use the method in [4]. In Cauchy’s integral formula we replace y by ln(ay) and ln(a/y), then
take the difference these two equations, followed by multiplying both sides by 1

y−1 to get(
lnk(ay) − lnk

(
a
y

))
k!(y − 1)

=
1

2πi

∫
C

aww−k−1
(
yw − y−w

y − 1

)
dw. (2.1)

The logarithmic function is defined in Eq (4.1.2) in [1]. We then take the definite integral over y ∈ [0, 1]
of both sides to get

1
k!

∫ 1

0

(
lnk(ay) − lnk

(
a
y

))
(y − 1)

dy =
1

2πi

∫ 1

0

∫
C

aww−k−1
(
yw − y−w

y − 1

)
dwdy

=
1

2πi

∫
C

(∫ 1

0

(
yw − y−w

y − 1

)
dy

)
awdw
wk+1

=
1

2πi

∫
C

(
aww−k−2 − awπw−k−1 cot (πw)

)
dw

(2.2)

from Eq (3.231.3) in [3] where −1 < <(w) < 1.

2.2. Infinite sum of the contour integral

Again, using the method in [4], replacing y with 2πi(p + 1) + ln(a) to yield

(2πi(p + 1) + ln(a))k

k!
=

1
2πi

∫
C

ew(2πi(p+1))

wk+1 awdw, (2.3)

followed by multiplying both sides by 2πi and taking the infinite sum of both sides of Eq (2.3) with
respect to p over [0,∞) to get

(2πi)k+1

k!
ζ

(
−k, 1 −

i ln(a)
2π

)
=

1
2πi

∞∑
p=0

∫
C

ew(2πi(p+1))

wk+1 awdw

=
1

2πi

∫
C

∞∑
p=0

ew(2πi(p+1))

wk+1 awdw

=
1

2πi

∫
C

(
−iπaww−k−1 − awπ cot (πw) w−k−1

)
dw,

(2.4)
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from (1.232.1) in [3] and =(w) > 0 for the convergence of the sum and if the <(k) < 0 then the
argument of the sum over p cannot be zero for some value of p. Note when using (1.232.1) we simply
replace x by −i(x +π/2) and multiply both sides by i to get the equivalent representation for cot(x). We
use (9.521.1) in [3] for the Hurwitz zeta function ζ(s, u).

To obtain the first contour integral in the last line of Eq (2.2) we use the Cauchy formula by replacing
y by ln(a), and k by k + 1, and simplifying we get

lnk+1(a)
(k + 1)!

=
1

2πi

∫
C

aww−2−kdw. (2.5)

To obtain the first contour integral in the last line in Eq (2.4) we use the Cauchy formula by replacing
y by ln(a) and multiplying both sides by πi and simplifying we get

πi lnk(a)
k!

=
1
2

∫
C

aww−1−kdw. (2.6)

Since the right hand-side of Eq (2.2), (2.4) is equal to the addition of (2.5) and (2.6), we can equate the
left hand-sides and simplify to get∫ 1

0

lnk(ay) − lnk
(

a
y

)
y − 1

dy = (2πi)k+1ζ

(
−k, 1 −

i ln(a)
2π

)
+

lnk+1(a)
k + 1

+ πi lnk(a) (2.7)

3. Derivation of some Gradshteyn and Ryzhik entries and special cases

In this section we will use the Polygamma function defined in [5].

3.1. Derivation of entry 4.282.11 in [3]

Using Eq (2.7) then setting a = eai and k = −2 simplify we get∫ 1

0

ln(y)

(1 − y)
(
a2 + ln2(y)

)2 dy =
1

8πa3

(
a2

(
−ψ(1)

( a
2π

+ 1
))

+ 2πa − 2π2
)

(3.1)

from Eq (1.8) in [11] and <(a) > 0. This closed form solution represents the analytic continuation
of the definite integral. The solution listed in [3] is not easily convergent for a ∈ Z+ and is invalid
otherwise.

3.2. When a is replaced by e2πai

We take the first derivative of (2.7) with respect to k and then set k = 0 to get∫ 1

0

ln
(

2iaπ+ln(y)
2iaπ−ln(y)

)
y − 1

dy =
1
2

(
π2 + ln(e2iaπ)

(
−2 − iπ + ln

(
1

4π2

)
+ 2 ln

(
ln

(
e2iaπ

))))
+

1
2

(
2iπ

(
−2 ln

(
−

1
2

i ln
(
e2iaπ

))
− ln

(
π2 ln

(
e2iaπ

))))
−

1
2

(
4iπ ln

[
Γ

(
ln(e2iaπ)

2πi

)])
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After rearranging and simplification we get

ln [Γ(a)] = ln
 √2aπ

a

 − a(1 − ln (a)) −
1

2πi

∫ 1

0

ln
(

2iaπ+ln(y)
2iaπ−ln(y)

)
y − 1

dy (3.2)

where the definition of the log-gamma function is from (7.105) in [2] and a is a general complex
number. This integral is a new representation for the logarithm of the gamma function. The integral
assumes that y is real and between 0 and 1 thus a must be purely imaginary for there to be a singularity.

3.3. An integral representation for the Digamma function

We take the first derivative of (2.7) with respect to k then set k = 0 and then take the first derivative
with respect to a and simplify to get

ψ(0)(a) = ln(a) −
1
2a
−

∫ 1

0

2 ln(y)
(y − 1)(4π2a2 + ln2(y))

dy (3.3)

where there are integrable singularities at both end points. At y = 0 the numerator is cancelled by the
log in the denominator giving zero. At y = 1, we could define z = 1 − y and use (4.1.24) in [1].

3.3.1. Derivation of entry 4.282.1 in [3]

We set a = 1 into Eq (3.3) and simplify to get

γ =
1
2

+

∫ 1

0

2 ln(y)
(y − 1)(4π2 + ln2(y))

dy (3.4)

from (1.2) in [7] and Eq (8.365.4) in [3] and γ is the Euler’s constant. We set a = 1
2 into Eq (3.3) and

simplify to get

γ = 1 − ln(2) +

∫ 1

0

2 ln(y)
(y − 1)(π2 + ln2(y))

dy (3.5)

from (1.2) in [7].

3.4. An integral representation for the Trigamma function

We take the first derivative of (2.7) with respect to k then set k = 0 and then take the second
derivative with respect to a and simplify to get

ψ(1)(a) =
1
a

+
1

2a2 +

∫ 1

0

16π2a ln(y)
(y − 1)(4π2a2 + ln2(y))2

dy (3.6)

where<(a) ≥ 0.

3.4.1. Integral representations for Catalan’s constant, G

We set a = 1
4 into Eq (3.6) and simplify to get

G = 8π2
∫ 1

0

ln(y)
(y − 1)(π2 + 4 ln2(y))2

dy −
(
π2 − 12

8

)
(3.7)

AIMS Mathematics Volume 5, Issue 6, 7252–7258.



7256

from [5].
We set a = 3

4 into Eq (3.6) and simplify to get

G = −24π2
∫ 1

0

ln(y)
(y − 1)(9π2 + 4 ln2(y))2

dy −
(
20 − 9π2

72

)
(3.8)

from [5].

3.5. An integral representation for the Hexagamma function

We take the first derivative of (2.7) with respect to k then set k = 0 and then fifth derivative with
respect to a and simplify to get

ψ(4)(a) = −768π4
∫ 1

0

ln(y)(80a4π4 − 40a2π2 ln2(y) + ln4(y))
(y − 1)(4a2π2 + ln2(y))5

dy −
6(2 + a)

a5 (3.9)

where a is a general complex number. This integral is a new representation for the Hexagamma
function which can be used in the calculation of the stellar radiation and dust emission [8]. The given
definite integral in [8] is unable to numerically evaluate complex ranges for the parameter a. The
value of ψ(4)(1) = −24ζ(5) can be derived from (6.4.2) in [1] and using Eq (3.9) with a = 1 we get

ζ(5) = 32π4
∫ 1

0

ln(y)(80π4 − 40π2 ln2(y) + ln4(y))
(y − 1)(4π2 + ln2(y))5

dy +
3
4

(3.10)

which is a new integral representation for the ζ(5) which also appears in Planck’s law as the average
energy of a photon from a blackbody.

Another application of the Hexagamma function is in the work of Grosshandler [9] where a is a
space variable used in the calculation of soot radiation from nonhomogeneous combustion products. A
definite integral form is used, but the range of a is<(a) > 0. We propose using Eq (3.9) where a is a
general complex number.

4. Formulae for Polygamma function ψ(m)(a), where m is a positive integer

To obtain the desired formulae for ψ(m)(a) we will take the (m + 1)-th partial derivative of Eq (3.2)
to get

ψ(m)(a) =
∂m+1

∂am+1
(ln[Γ(a)])

=
∂m+1

∂am+1

− 1
2πi

∫ 1

0

ln
(

2iaπ+ln(y)
2iaπ−ln(y)

)
y − 1

dy −
(
πi
4

+
πia
2

+ a ln
( e
ia

)
+ ln

(
a
√

2iaπ

))
= −

1
2πi

∫ 1

0

∂m+1

∂am+1

(
ln

(
2iaπ + ln(y)
2iaπ − ln(y)

))
dy

y − 1

−
∂m+1

∂am+1

(
πi
4

+
πia
2

+ a ln
( e
ia

)
+ ln

(
a
√

2iaπ

))

(4.1)
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4.1. Examples of the Polygamma function, ψ(m)(a)

4.1.1. To derive an integral expression for ζ(5) using ψ(4)( 1
3 )

Using Eq (4.1) when m = 4 and a = 1
3 we get

ζ(5) =

(
23328π4

121

) ∫ 1

0

ln(y)(80π4 − 360π2 ln2(y) + 81 ln4(y))
(y − 1)(4π2 + 9 ln2(y))5

dy −
1

2904

(
16π5

√
3
− 3402

)
(4.2)

from Theorem 5 in [6].

4.1.2. To derive an integral expression for ζ(7) using ψ(6)( 1
6 )

Using Eq (4.1) when m = 5 and a = 1
6 we get

ζ(7) = ρ

∫ 1

0

ln(y)(7π6 − 315π4 ln2(y) + 1701π2 ln4(y) − 729 ln6(y))
(y − 1)(π2 + 9 ln2(y))7

dy −
301
√

3π7 − 1662120
9447840π6

 (4.3)

from Theorem 5 in [6] where ρ = 75558272
1249299 .

5. Comparison with known formulas for the log gamma function and alternate forms

In this section we will summarize the comparison of our derived formula in Eq (3.2) with known
formulas by Malmsten (1.1) in [7], Kummer (1.7) in [10], Binet (1.6) in [10] and Burnside (1.1) in [7],
where the range of evaluation for the log-gamma function is <(a) > 0. We will look in particular at
the domains of evaluation. We have Eq (3.2) given by:

ln [Γ(a)] = ln
 √2aπ

a

 − a(1 − ln (a)) −
1

2πi

∫ 1

0

ln
(

2iaπ+ln(y)
2iaπ−ln(y)

)
y − 1

dy (5.1)

where a is a general complex number. This is an extension of the range of evaluation for the log-gamma
function using one formula. At y = 0 the numerator is cancelled by the log in the denominator giving
zero. At y = 1, we could define z = 1 − y and use (4.1.24) in [1].

6. Summary

In this article we derived some interesting definite integrals derived by famous mathematicians,
Binet, Kummer, Burnside and Malmsten. We also compared our results for the log-gamma function
to those of other work. We found that we are able to achieve a wider range of computation using one
formula as opposed to previous works. We will be looking at other integrals using this contour integral
method for future work. The results presented were numerically verified for both real and imaginary
values of the parameters in the integrals using Mathematica by Wolfram.
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