Mathematics

Research article

Central vertex join and central edge join of two graphs

Jahfar T K*and Chithra A V
Department of Mathematics, National Institute of Technology, Calicut, Kerala, India-673601

* Correspondence: Email: jahfartk @gmail.com; Tel: +919400796604.

Abstract

The central graph $C(G)$ of a graph G is obtained by sub dividing each edge of G exactly once and joining all the nonadjacent vertices in G. In this paper, we compute the adjacency, Laplacian and signless Laplacian spectra of central graph of a connected regular graph. Also, we define central vertex join and central edge join of two graphs and calculate their adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum. As an application, some new families of integral graphs and cospectral graphs are constructed. In addition to that the Kirchhoff index and number of spanning trees of the new joins are determined.

Keywords: central graph; adjacency spectrum; Laplacian spectrum; central vertex join; central edge join
Mathematics Subject Classification: 05C50

1. Introduction

In this paper, we consider only simple graphs. Let $G=(V, E)$ be a graph with vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, and let d_{i} be the degree of the vertex $v_{i}, i=1,2, \ldots, n$. The adjacency matrix $A(G)$ of the graph G is a square matrix of order n whose $(i, j)^{t h}$ entry is equal to unity if the vertices v_{i} and v_{j} are adjacent, and is equal to zero otherwise. The Laplacian matrix of G, denoted by $L(G)$ is defined as $L(G)=D(G)-A(G)$ and the signless Laplacian matrix of G, denoted by $Q(G)$ is defined as $Q(G)=D(G)+A(G)$, where $D(G)$ is the diagonal matrix with vertex degrees. The characteristic polynomial of the $n \times n$ matrix M of G is defined as $f(M, x)=\left|x I_{n}-M\right|$, where I_{n} is the identity matrix of order n. The matrices $A(G), L(G)$ and $Q(G)$ are real and symmetric matrices, its eigenvalues are real. The eigenvalues of $A(G), L(G)$ and $Q(G)$ are denoted by $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}, 0=$ $\mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{n}$ and $v_{1} \leq v_{2} \leq \ldots \leq v_{n}$ respectively. The collection of all the eigenvalues of $A(G)$ (respectively, $L(G), Q(G)$) together with their multiplicities are called the A - spectrum (respectively, L-spectrum, Q-spectrum) of G. Two graphs are said to be A-cospectral (respectively, L-cospectral, Q-cospectral), if they have same A-spectrum (respectively, L-spectrum, Q-spectrum). Otherwise, they
are non A-cospectral (respectively, non L-cospectral, non Q-cospectral) graphs.
It is well known that the spectrum of a graph contains a lot of structural information about the graphs, see $[2,3]$. Spectral graph theory plays an important role in theoretical physics and quantum mechanics. Graph spectra plays a vital role in solving various problems in communication networks. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}$ be the distinct eigenvalues of G with multiplicities $m_{1}, m_{2}, \ldots, m_{t}$. Then the spectrum of G is denoted by $S \operatorname{pec}(G)=\left(\begin{array}{llll}\lambda_{1} & \lambda_{2} & \ldots & \lambda_{t} \\ m_{1} & m_{2} & \ldots & m_{t}\end{array}\right)$. The incidence matrix of a graph $G, I(G)$ is the $n \times m$ matrix whose $(i, j)^{t h}$ entry is 1 if v_{i} is incident to e_{j} and 0 otherwise. It is known [2] that, $I(G) I(G)^{T}=$ $A(G)+D(G)$ and if G is an r-regular graph then $I(G) I(G)^{T}=A(G)+r I$. The adjacency matrix of the complement of a graph G is $A(\bar{G})=J_{n}-I_{n}-A(G)$, where J_{n} is an $n \times n$ matrix with all entries are ones. A graph G is called A-integral (respectively, L-integral, Q-integral) if the spectrum of $A(G)$ (respectively, $L(G), Q(G)$) consists only of integers. For an r-regular graph it is well known that, G is A-integral if and only if it is L-integral. If G is an r-regular graph then $\lambda_{i}(G)=r-\mu_{i}(G), i=1,2, \ldots, n$. Let G be a connected graph with n vertices. Then the number of spanning trees of G is $t(G)=\frac{\mu_{2} \cdot \mu_{3} . . \mu_{n}}{n}$ and the Kirchhoff index of G is defined as $K f(G)=n \sum_{i=2}^{n} \frac{1}{\mu_{i}}$. Let $K_{n}, K_{p, q}$ and $m K_{1}$ denote the complete graph on n vertices, complete bipartite graph on $p+q$ vertices and completely disconnected graph with m vertices respectively. Throughout, we use J_{n} is an $n \times n$ matrix with all entries are ones, $J_{s \times t}$ denote the $s \times t$ matrix with all entries equal to one and I_{n} is the identity matrix of order n.

In literature there are many graph operations like, complements, disjoint union, join, cartesian product, direct product, strong product, lexicographic product, corona, edge corona, neighbourhood corona etc. Recently, several variants of corona product of two graphs have been introduced and their spectra are computed. In [6], Liu and Lu introduced subdivision-vertex and subdivision-edge neighbourhood corona of two graphs and provided a complete description of their spectra. In [5], Lan and Zhou introduced R-vertex corona, R-edge corona, R-vertex neighborhood corona and R-edge neighborhood corona, and studied their spectra. Recently in [1], Adiga et al. introduced duplication corona, duplication neighborhood corona and duplication edge corona. In [4], Das and Panigrahi computed the spectrum of R-vertex join and R-edge join of two graphs. Motivated by these works, we define two new graph operations based on central graphs.

Definition 1.1. [9] Let G be a simple graph with n vertices and m edges. The central graph of G, denoted by $C(G)$ is obtained by sub dividing each edge of G exactly once and joining all the non adjacent vertices in G.
The number of vertices and edges in $C(G)$ are $m+n$ and $m+\frac{n(n-1)}{2}$ respectively.
The rest of the paper is organized as follows. In Section 2, we present some definitions and lemmas that will be used later. In Section 3, A-spectra, L-spectra, and Q-spectra of $C(G)$ and a formula for the number of spanning trees and Kirchhoff index of $C(G)$ is obtained. In Section 4, we introduce central vertex join and central edge join of two graphs and determine the A-spectra, L-spectra and Q-spectra of $G_{1} \dot{\vee} G_{2}$ (respectively $G_{1} \underline{\vee} G_{2}$) in terms of the corresponding spectra of G_{1} and G_{2}. Also some new classes of A-cospectral, L-cospectral and Q-cospectral graphs are constructed. In addition to that the number of spanning trees and Kirchhoff index of these join of two graphs are calculated. In Section 5, some new families of integral graphs are given.

2. Preliminaries

In this section, we give some definitions and results which are useful to prove our main results.
Lemma 2.1. [2] Let U, V, W and X be matrices with U invertible. Let

$$
S=\left[\begin{array}{cc}
U & V \\
W & X
\end{array}\right] .
$$

Then $\operatorname{det}(S)=\operatorname{det}(U) \operatorname{det}\left(X-W U^{-1} V\right)$ and if X is invertible, then $\operatorname{det}(S)=\operatorname{det}(X) \operatorname{det}\left(U-V X^{-1} W\right)$. If U and W are commutes then $\operatorname{det}(S)=\operatorname{det}(U X-W V)$.

Lemma 2.2. [2] Let G be a connected r-regular graph on n vertices with adjacency matrix A having t distinct eigenvalues $r=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}$. Then there exists a polynomial

$$
P(x)=n \frac{\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right) \ldots\left(x-\lambda_{t}\right)}{\left(r-\lambda_{2}\right)\left(r-\lambda_{3}\right) \ldots\left(r-\lambda_{t}\right)} .
$$

such that $P(A)=J_{n}, P(r)=n$ and $P\left(\lambda_{i}\right)=0$ for $\lambda_{i} \neq r$.
Definition 2.1. [4] The M-coronal $\chi_{M}(x)$ of $n \times n$ matrix M is defined as the sum of the entries of the matrix $\left(x I_{n}-M\right)^{-1}$ (if exists), that is,

$$
\chi_{M}(x)=J_{n \times 1}^{T}\left(x I_{n}-A\right)^{-1} J_{n \times 1} .
$$

Lemma 2.3. [8] Let G be an r-regular graph on n vertices, then $\chi_{A}(x)=\frac{n}{x-r}$.
For Laplacian matrix each row sum is zero, so $\chi_{L}(x)=\frac{n}{x}$.
Lemma 2.4. [8] Let G be a bipartite graph $K_{p, q}$ with $p+q=n$, then $\chi_{A(G)}(x)=\frac{n x+2 p q}{\left(x^{2}-p q\right)}$.
Lemma 2.5. [7] Let A be an $n \times n$ real matrix. Then $\operatorname{det}\left(A+\alpha J_{n}\right)=\operatorname{det}(A)+\alpha J_{n \times 1}^{T} a d j(A) J_{n \times 1}$, where α is a real number and adj(A) is the adjoint of A.

Corollary 2.6. [7] Let A be an $n \times n$ real matrix. Then

$$
\operatorname{det}\left(x I_{n}-A-\alpha J_{n}\right)=\left(1-\alpha \chi_{A}(x)\right) \operatorname{det}\left(x I_{n}-A\right) .
$$

Lemma 2.7. [7] For any real numbers $c, d>0,\left(c I_{n}-d J_{n}\right)^{-1}=\frac{1}{c} I_{n}+\frac{d}{c(c-n d)} J_{n}$.

3. Spectra of central graphs

In this section, we compute the adjacency spectrum (respectively, Laplacian spectrum, signless Laplacian spectrum) of central graph of regular graphs.

Theorem 3.1. Let G be an r-regular graph on n vertices and $\frac{n r}{2}$ edges. Then the characteristic polynomial of central graph of G is

$$
f(A(C(G)), x)=x^{\frac{n(r-2)}{2}}\left(x^{2}+\left(-n+1+\lambda_{i}\right) x-2 r\right) \prod_{i=2}^{n}\left[x\left(x+1+\lambda_{i}\right)-\left(\lambda_{i}+r\right)\right] .
$$

Proof. Let $I(G)$ be the incidence matrix of G and $m=\frac{n r}{2}$. Then by a proper labeling of vertices, the adjacency matrix of $C(G)$ can be written as

$$
A(C(G))=\left[\begin{array}{cc}
A(\bar{G}) & I(G) \\
I(G)^{T} & O_{m \times m}
\end{array}\right] .
$$

The characteristic polynomial of $C(G)$ is

$$
f(A(C(G)), x)=\operatorname{det}\left(\begin{array}{cc}
x I_{n}-J_{n}+I_{n}+A(G) & -I(G) \\
-I(G)^{T} & x I_{m}
\end{array}\right) .
$$

By Lemma 2.1, we have

$$
\begin{aligned}
f(A(C(G)), x) & =x^{m} \operatorname{det}\left[x I_{n}-J_{n}+I_{n}+A(G)-\frac{I(G) I(G)^{T}}{x}\right] \\
& =x^{m-n} \operatorname{det}\left[x\left(x I_{n}-J_{n}+I_{n}+A(G)\right)-I(G) I(G)^{T}\right] \\
& =x^{m-n} \operatorname{det}\left[x\left(x I_{n}-J_{n}+I_{n}+A(G)\right)-\left(A(G)+r I_{n}\right)\right] .
\end{aligned}
$$

By Lemma 2.2, we have

$$
\begin{aligned}
f(A(C(G)), x) & =x^{m-n} \prod_{i=1}^{n}\left[x\left(x-P\left(\lambda_{i}\right)+1+\lambda_{i}\right)-\left(\lambda_{i}+r\right)\right] . \\
& =x^{\frac{n(--2)}{2}}\left(x^{2}+\left(-n+1+\lambda_{i}\right) x-2 r\right) \prod_{i=2}^{n}\left[x\left(x+1+\lambda_{i}\right)-\left(\lambda_{i}+r\right)\right] .
\end{aligned}
$$

Corollary 3.2. Let G be an r-regular graph on n vertices and $\frac{n r}{2}$ edges. Then the spectrum of central graph of G is

$$
S \operatorname{pec}(C(G))=\left(\begin{array}{ccc}
0 & \frac{(n-1-r) \pm \sqrt{(n-1-r)^{2}+8 r}}{2} & \frac{-1-\lambda_{i} \pm \sqrt{\left(1+\lambda_{i}\right)^{2}+4\left(\lambda_{i}+r\right)}}{2} \\
\frac{n(r-2)}{2} & 1 & 1
\end{array}\right)
$$

$i=2, \ldots, n$.
Corollary 3.3. Let G be an r-regular graph on n vertices and $\frac{n r}{2}$ edges. Then the spectrum of central graph of K_{n} is

$$
S \operatorname{pec}\left(C\left(K_{n}\right)\right)=\left(\begin{array}{ccc}
0 & \pm \sqrt{2 n-2} & \pm \sqrt{n-2} \\
\frac{n(r-2)}{2} & 1 & n-1
\end{array}\right) .
$$

Theorem 3.4. Let G be an r-regular graph on n vertices and $\frac{n r}{2}$ edges. Then the Laplacian characteristic polynomial of central graph of G is

$$
f(L(C(G)), x)=(x-2)^{\frac{n(-2)}{2}}(x-r-2) \prod_{i=2}^{n}\left[(x-2)\left(x-n+1-1-\lambda_{i}\right)-\left(\lambda_{i}+r\right)\right] .
$$

Proof. Let $I(G)$ be the incidence matrix of G and $m=\frac{n r}{2}$. Then by a proper labeling of vertices, the Laplacian matrix of $C(G)$ can be written as

$$
L(C(G))=\left[\begin{array}{cc}
(n-1) I_{n}-A(\bar{G}) & -I(G) \\
-I(G)^{T} & 2 I_{m}
\end{array}\right] .
$$

The Laplacian characteristic polynomial of $C(G)$ is

$$
f(L(C(G)), x)=\operatorname{det}\left(\begin{array}{cc}
x I_{n}-(n-1) I_{n}+J_{n}-I_{n}-A(G) & -I(G) \\
-I(G)^{T} & (x-2) I_{m}
\end{array}\right) .
$$

By Lemmas 2.1 and 2.2 , we have

$$
\begin{aligned}
f(L(C(G)), x) & =(x-2)^{m} \operatorname{det}\left[x I_{n}-(n-1) I_{n}+J_{n}-I_{n}-A(G)-\frac{I(G) I(G)^{T}}{x-2}\right] \\
& =(x-2)^{m-n} \operatorname{det}\left[(x-2)\left(x I_{n}-(n-1) I_{n}+J_{n}-I_{n}-A(G)\right)-I(G) I(G)^{T}\right] \\
& =(x-2)^{m-n} \prod_{i=1}^{n}\left[(x-2)\left(x-n+1+P\left(\lambda_{i}\right)-1-\lambda_{i}\right)-\left(\lambda_{i}+r\right)\right] . \\
& =(x-2)^{\frac{n((-2)}{2}}(x-r-2) \prod_{i=2}^{n}\left[(x-2)\left(x-n+1-1-\lambda_{i}\right)-\left(\lambda_{i}+r\right)\right] .
\end{aligned}
$$

Corollary 3.5. Let G be an r-regular graph on n vertices and $\frac{n r}{2}$ edges. Then the Laplacian spectrum of central graph of G is

$$
\operatorname{Spec}_{L}(C(G))=\left(\begin{array}{cccc}
2 & 0 & r+2 & \frac{n+\lambda_{i}+2 \pm \sqrt{\left(n+\lambda_{i}+2\right)^{2}-4\left(2 n+\lambda_{i}-r\right)}}{2} \\
\frac{n(r-2)}{2} & 1 & 1 & 1
\end{array}\right)
$$

for $i=2, \ldots, n$.
By Corollary 3.5, we can readily obtain the following result.
Corollary 3.6. Let G be an r-regular graph on n vertices and $\frac{n r}{2}$ edges. Then the number of spanning trees of central graph of G is

$$
t(C(G))=2^{\frac{n(r-2)}{2}}(r+2) \prod_{i=2}^{n}\left(2 n+\lambda_{i}-r\right) .
$$

Corollary 3.7. Let G be an r-regular graph on n vertices and $\frac{n r}{2}$ edges. Then the Kirchhoff index of central graph of G is

$$
K f(C(G))=n\left[\frac{n(r-2)}{4}+\frac{1}{r+2}+\sum_{i=2}^{n} \frac{n+\lambda_{i}+2}{2 n+\lambda_{i}-r}\right]
$$

Theorem 3.8. Let G be an r-regular graph on n vertices and $\frac{n r}{2}$ edges. Then the signless Laplacian characteristic polynomial of central graph of G is

$$
f(Q(C(G)), x)=(x-2)^{\frac{n(--2)}{2}}\left(x^{2}+(-2 n+r) x+4 n-4 r-4\right) \prod_{i=2}^{n}\left[(x-2)\left(x-n+2+\lambda_{i}\right)-\left(\lambda_{i}+r\right)\right] .
$$

Proof. Let $I(G)$ be the incidence matrix of G and $m=\frac{n r}{2}$. Then by a proper labeling of vertices, the signless Laplacian matrix of $C(G)$ can be written as

$$
Q(C(G))=\left[\begin{array}{cc}
(n-1) I_{n}+A(\bar{G}) & I(G) \\
I(G)^{T} & 2 I_{m}
\end{array}\right] .
$$

The characteristic polynomial of $Q(C(G))$ is

$$
f(Q(C(G)), x)=\operatorname{det}\left(\begin{array}{cc}
x I_{n}-(n-1) I_{n}-J_{n}+I_{n}+A(G) & -I(G) \\
-I(G)^{T} & (x-2) I_{m}
\end{array}\right) .
$$

By Lemmas 2.1 and 2.2 , we have

$$
\begin{aligned}
f(Q(C(G)), x)= & (x-2)^{m} \operatorname{det}\left[x I_{n}-(n-1) I_{n}-J_{n}+I_{n}+A(G)-\frac{I(G) I(G)^{T}}{x-2}\right] \\
= & (x-2)^{m-n} \operatorname{det}\left[(x-2)\left(x I_{n}-(n-1) I_{n}-J_{n}+I_{n}+A(G)\right)-I(G) I(G)^{T}\right] \\
= & (x-2)^{m-n} \prod_{i=1}^{n}\left[(x-2)\left(x-n+1-P\left(\lambda_{i}\right)+1+\lambda_{i}\right)-\left(\lambda_{i}+r\right)\right] \\
= & (x-2)^{\frac{n((-2)}{2}}\left(x^{2}+(-2 n+r) x+4 n-4 r-4\right) \\
& \prod_{i=2}^{n}\left[(x-2)\left(x-n+2+\lambda_{i}\right)-\left(\lambda_{i}+r\right)\right] .
\end{aligned}
$$

Corollary 3.9. Let G be an r-regular graph on n vertices and $\frac{n r}{2}$ edges. Then the signless Laplacian spectrum of central graph of G is

$$
\operatorname{Spec}_{Q}(C(G))=\left(\begin{array}{ccc}
2 & \frac{2 n-r \pm \sqrt{(2 n-r)^{2}-16(n-1-r)}}{2} & \frac{n-\lambda_{i} \pm \sqrt{\left(n-\lambda_{i}\right)^{2}-4\left(2 n-3 \lambda_{i}-r-4\right)}}{2} \\
\frac{n(r-2)}{2} & 1 & 1
\end{array}\right)
$$

for $i=2, \ldots, n$.

4. Spectra of two new joins of graphs

In this section, we define two new joins namely the central vertex join and central edge join of two graphs and compute their spectra. Moreover, we determine the number of spanning trees and Kirchhoff index of central vertex join and central edge join of two regular graphs.

Definition 4.1. Let G_{1} and G_{2} be any two graphs on n_{1}, n_{2} vertices and m_{1}, m_{2} edges respectively. The central vertex join of G_{1} and G_{2} is the graph $G_{1} \dot{\vee} G_{2}$, is obtained from $C\left(G_{1}\right)$ and G_{2} by joining each vertex of G_{1} with every vertex of G_{2}.
Note that the central vertex join $G_{1} \dot{\vee} G_{2}$ has $m_{1}+n_{1}+n_{2}$ vertices and $m_{1}+m_{2}+n_{1} n_{2}+\frac{n_{1}\left(n_{1}-1\right)}{2}$ edges.

Figure 1. Graphs $P_{2} \dot{\vee} P_{3}, P_{3} \dot{\vee} P_{2}, P_{2} \underline{\vee} P_{3}$ and $P_{3} \underline{\vee} P_{2}$.

Definition 4.2. Let G_{i} be a graph with n_{i} vertices and m_{i} edges for $i=1$, 2. Then the central edge join of two graphs G_{1} and G_{2} is the graph $G_{1} \underline{\vee} G_{2}$ is obtained from $C\left(G_{1}\right)$ and G_{2} by joining each vertex corresponding to edges of G_{1} with every vertex of $V\left(G_{2}\right)$.
Note that the central edge join $G_{1} \underline{\vee} G_{2}$ has $m_{1}+n_{1}+n_{2}$ vertices and $m_{1}+m_{2}+m_{1} n_{2}+\frac{n_{1}\left(n_{1}-1\right)}{2}$ edges.
Example 4.1. Let $G_{1}=P_{2}$ and $G_{2}=P_{3}$. Then the central vertex join $G_{1} \dot{\vee} G_{2}$ and central edge join $G_{1} \underline{\vee} G_{2}$ are depicted in Figure 1.

The next theorem gives the adjacency characteristic polynomial of $G_{1} \dot{\vee} G_{2}$ and $G_{1} \underline{\vee} G_{2}$, where G_{i} is r_{i}-regular graph for $i=1,2$.

Theorem 4.1. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2$. Then the adjacency characteristic polynomial of $G_{1} \dot{\vee} G_{2}$ is

$$
\begin{gathered}
f\left(A\left(G_{1} \dot{\vee} G_{2}\right), x\right)=x^{m_{1}-n_{1}}\left(x^{3}+\left(-n_{1}+r_{1}+1-r_{2}\right) x^{2}+\left(-2 r_{1}+r_{2} n_{1}-r_{2}-r_{1} r_{2}-n_{1} n_{2}\right) x+2 r_{1} r_{2}\right) \\
\prod_{j=2}^{n_{2}}\left(x-\lambda_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left[\left(x^{2}-P\left(\lambda_{i}\left(G_{1}\right)\right) x+x+\lambda_{i}\left(G_{1}\right) x-\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right] .\right.\right.
\end{gathered}
$$

Proof. Let $I\left(G_{1}\right)$ be the incidence matrix of G_{1}. Then by a proper labeling of vertices, the adjacency
matrix of $G_{1} \dot{\mathrm{~V}} G_{2}$ can be written as

$$
A\left(G_{1} \dot{\vee} G_{2}\right)=\left[\begin{array}{ccc}
A\left(\bar{G}_{1}\right) & I\left(G_{1}\right) & J_{n_{1} \times n_{2}} \\
I\left(G_{1}\right)^{T} & O_{m_{1} \times m_{1}} & O_{m_{1} \times n_{2}} \\
J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}} & A\left(G_{2}\right)
\end{array}\right] .
$$

The characteristic polynomial of $G_{1} \dot{\vee} G_{2}$ is

$$
f\left(A\left(G_{1} \dot{\vee} G_{2}\right), x\right)=\operatorname{det}\left(\begin{array}{ccc}
x I_{n_{1}}-A\left(\bar{G}_{1}\right) & -I\left(G_{1}\right) & -J_{n_{1} \times n_{2}} \\
-I\left(G_{1}\right)^{T} & x I_{m_{1}} & O_{m_{1} \times n_{2}} \\
-J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}} & x I_{n_{2}}-A\left(G_{2}\right)
\end{array}\right) .
$$

By Lemmas 2.1,2.2, Definition 2.1 and Corollary 2.6, we have

$$
\begin{aligned}
& f\left(A\left(G_{1} \dot{\vee} G_{2}\right), x\right)=\operatorname{det}\left(x I_{n_{2}}-A\left(G_{2}\right)\right) \operatorname{det} S, \\
& \text { where } \mathrm{S}=\left[\begin{array}{cc}
x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right) & -I\left(G_{1}\right) \\
-I\left(G_{1}\right)^{T} & x I_{m 1}
\end{array}\right] \\
& -\left[\begin{array}{c}
J_{n_{1} \times n_{2}} \\
O_{m_{1} \times n_{2}}
\end{array}\right]\left(x I_{n 2}-A\left(G_{2}\right)\right)^{-1}\left[\begin{array}{ll}
J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right)-\chi_{A\left(G_{2}\right)}(x) J_{n_{1}} & -I\left(G_{1}\right) \\
-I\left(G_{1}\right)^{T} & x I_{m_{1}}
\end{array}\right] . \\
& \operatorname{det} S=\operatorname{det}\left(\begin{array}{cc}
x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right)-\chi_{A\left(G_{2}\right)}(x) J_{n_{1}} & -I\left(G_{1}\right) \\
-I\left(G_{1}\right)^{T} & x I_{m 1}
\end{array}\right) \\
& =x^{m_{1}} \operatorname{det}\left(x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right)-\chi_{A\left(G_{2}\right)}(x) J_{n_{1}}-\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x}\right) \\
& =x^{m_{1}}\left(1-\chi_{A\left(G_{2}\right)}(x) \chi_{\left(J_{n_{1}}-A\left(G_{1}\right)-I_{n_{1}}+\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x}\right)^{T}}(x)\right. \\
& \operatorname{det}\left(x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right)-\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x}\right) \\
& =x^{m_{1}}\left(1-\left(\frac{n_{2}}{x-r_{2}}\right)\left(\frac{n_{1}}{x-\left(n_{1}-r_{1}-1+\frac{2 r_{1}}{x}\right)}\right)\right) \\
& \operatorname{det}\left(x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right)-\frac{\left(r_{1} I_{n_{1}}+A\left(G_{1}\right)\right.}{x}\right) \text {. }
\end{aligned}
$$

Therefore the characteristic polynomial of $G_{1} \dot{\vee} G_{2}$ is

$$
\begin{gathered}
f\left(A\left(G_{1} \dot{\vee} G_{2}\right), x\right)=x^{m_{1}-n_{1}}\left(x^{3}+\left(-n_{1}+r_{1}+1-r_{2}\right) x^{2}+\left(-2 r_{1}+r_{2} n_{1}-r_{2}-r_{1} r_{2}-n_{1} n_{2}\right) x+2 r_{1} r_{2}\right) \\
\prod_{j=2}^{n_{2}}\left(x-\lambda_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left[\left(x^{2}-P\left(\lambda_{i}\left(G_{1}\right)\right) x+x+\lambda_{i}\left(G_{1}\right) x-\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right] .\right.\right.
\end{gathered}
$$

The following corollary describes the complete spectrum of $G_{1} \dot{\vee} G_{2}$ when G_{1} and G_{2} are regular graphs.

Corollary 4.2. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2$. Then the adjacency spectrum of $G_{1} \dot{\vee} G_{2}$ consists of

1. 0 with multiplicity $m_{1}-n_{1}$.
2. $\lambda_{j}\left(G_{2}\right), j=2,3, \ldots, n_{2}$.
3. Two roots of the equation $x^{2}+x+\lambda_{i}\left(G_{1}\right) x-\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)=0$ for $i=2, \ldots, n_{1}$.
4. Three roots of the equation $x^{3}+\left(-n_{1}+r_{1}+1-r_{2}\right) x^{2}+\left(-2 r_{1}+r_{2} n_{1}-r_{2}-r_{1} r_{2}-n_{1} n_{2}\right) x+2 r_{1} r_{2}=0$.

Corollary 4.3. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges. Then the adjacency spectrum of $G_{1} \dot{\vee} K_{p, q}$ consists of

1. 0 with multiplicity $m_{1}-n_{1}+p+q-2$.
2. Two roots of the equation $x^{2}+x+\lambda_{i}\left(G_{1}\right) x-\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)=0$ for $i=2, \ldots, n_{1}$.
3. Four roots of the equation $x^{4}+\left(-n_{1}+r_{1}-p n_{1}-q n_{1}\right) x^{3}+\left(-2 r_{1}-p q\right) x^{2}+\left(3 p q n_{1}-p q r_{1}-p q\right) x+2 p q n_{1}=$ 0.

The following corollary describes a construction of A-cospectral graphs.
Corollary 4.4. (a) Let G_{1} and G_{2} be A-cospectral regular graphs and H is a regular graph. Then $H \dot{\vee} G_{1}$ and $H \dot{\vee} G_{2}$ are A-cospectral.
(b) Let G_{1} and G_{2} be A-cospectral regular graphs and H is a regular graph. Then $G_{1} \dot{\vee} H$ and $G_{2} \dot{\vee} H$ are A-cospectral.
(c) Let G_{1} and G_{2} be A-cospectral regular graphs, H_{1} and H_{2} are another A-cospectral regular graphs. Then $G_{1} \dot{\vee} H_{1}$ and $G_{2} \dot{\vee} H_{2}$ are A-cospectral.
Theorem 4.5. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2$. Then the adjacency characteristic polynomial of $G_{1} \underline{\bigvee} G_{2}$ is

$$
\begin{gathered}
f\left(A\left(G_{1} \underline{\vee} G_{2}\right), x\right)=x^{m_{1}-n_{1}-1}\left[\left(x^{2}+\left(-n_{1}+1+r_{1}\right) x-2 r_{1}\right)\left(x^{2}-r_{2} x-m_{1} n_{2}\right)-n_{1} n_{2} r_{1}^{2}\right] \\
\prod_{j=2}^{n_{2}}\left(x-\lambda_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left[\left(x^{2}-P\left(\lambda_{i}\left(G_{1}\right)\right) x+x+\lambda_{i}\left(G_{1}\right) x-\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right] .\right.\right.
\end{gathered}
$$

Proof. Let $I\left(G_{1}\right)$ be the incidence matrix of G_{1}. Then by a proper labeling of vertices, the adjacency matrix of $A\left(G_{1} \underline{\vee} G_{2}\right)$ can be written as

$$
A\left(G_{1} \underline{\vee} G_{2}\right)=\left[\begin{array}{ccc}
A\left(\bar{G}_{1}\right) & I\left(G_{1}\right) & O_{n_{1} \times n_{2}} \\
I\left(G_{1}\right)^{T} & O_{m_{1} \times m_{1}} & J_{m_{1} \times n_{2}} \\
O_{n_{2} \times n_{1}} & J_{n_{2} \times m_{1}} & A\left(G_{2}\right)
\end{array}\right] .
$$

The characteristic polynomial of $G_{1} \underline{\vee} G_{2}$ is

$$
f\left(A\left(G_{1} \underline{\vee} G_{2}\right)\right)=\operatorname{det}\left(\begin{array}{ccc}
x I_{n_{1}}-A\left(\bar{G}_{1}\right) & -I\left(G_{1}\right) & O_{n_{1} \times n_{2}} \\
-I\left(G_{1}\right)^{T} & x I_{m_{1}} & -J_{m_{1} \times n_{2}} \\
O_{n_{2} \times n_{1}} & -J_{n_{2} \times m_{1}} & x I_{n_{2}}-A\left(G_{2}\right)
\end{array}\right) .
$$

By Lemmas 2.1,2.2,2.7, Definition 2.1 and Corollary 2.6, we have
$f\left(A\left(G_{1} \underline{\vee} G_{2}\right)\right)=\operatorname{det}\left(x I_{n_{2}}-A\left(G_{2}\right)\right) \operatorname{det} S$,

$$
\begin{aligned}
& \text { where } \mathrm{S}=\left[\begin{array}{cc}
x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right) & -I\left(G_{1}\right) \\
-I\left(G_{1}\right)^{T} & x I_{m_{1}}
\end{array}\right] \\
& -\left[\begin{array}{c}
O_{n_{1} \times n_{2}} \\
-J_{m_{1} \times n_{2}}
\end{array}\right]\left(x I_{n_{2}}-A\left(G_{2}\right)\right)^{-1}\left[\begin{array}{ll}
O_{n_{2} \times n_{1}} & -J_{n_{2} \times m_{1}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right) & -I\left(G_{1}\right) \\
-I\left(G_{1}\right)^{T} & x I_{m}-\chi_{A\left(G_{2}\right)}(x) J_{m_{1}}
\end{array}\right] . \\
& \operatorname{det} S=\operatorname{det}\left(\begin{array}{cc}
x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right) & -I\left(G_{1}\right) \\
-I(G)^{T} & x I_{m_{1}}-\chi_{A\left(G_{2}\right)}(x) J_{m_{1}}
\end{array}\right) \\
& =\operatorname{det}\left(x I_{m_{1}}-\chi_{A\left(G_{2}\right)}(x) J_{m_{1}}\right) \\
& \operatorname{det}\left(x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right)-I\left(G_{1}\right)\left(x I_{m_{1}}-\chi_{A\left(G_{2}\right)}(x) J_{m_{1}}\right)^{-1} I\left(G_{1}\right)^{T}\right) \\
& =\operatorname{det}\left(x I_{m_{1}}-\chi_{A\left(G_{2}\right)}(x) J_{m_{1}}\right) \operatorname{det}\left[\left(x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right)\right)\right. \\
& \left.-I\left(G_{1}\right)\left(\frac{1}{x} I_{m_{1}}+\frac{\chi_{A\left(G_{2}\right)}(x)}{x\left(x-m_{1} \chi_{A\left(G_{2}\right)}(x)\right)} J_{m_{1}}\right) I\left(G_{1}\right)^{T}\right] \\
& =x^{m_{1}}\left(1-\chi_{A\left(G_{2}\right)}(x) \frac{m_{1}}{x}\right) \operatorname{det}\left[\left(x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right)\right)\right. \\
& \left.-\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x}-\frac{\chi_{A\left(G_{2}\right)}(x)}{x\left(x-m_{1} \chi_{A\left(G_{2}\right)}(x)\right)} I\left(G_{1}\right) J_{m_{1}} I\left(G_{1}\right)^{T}\right] \\
& =x^{m_{1}}\left(1-\chi_{A\left(G_{2}\right)}(x) \frac{m_{1}}{x}\right) \operatorname{det}\left[\left(x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right)\right)\right. \\
& \left.-\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x}-\frac{\chi_{A\left(G_{2}\right)}(x)}{x\left(x-m_{1} \chi_{A\left(G_{2}\right)}(x)\right)} r_{1}^{2} J_{n_{1}}\right] \\
& =x^{m_{1}}\left(1-\chi_{A\left(G_{2}\right)}(x) \frac{m_{1}}{x}\right)\left[1-\frac{\chi_{A\left(G_{2}\right)}(x) r_{1}^{2} \chi_{J_{n_{1}}-I_{n_{1}}-A\left(G_{1}\right)+\frac{I\left(G_{1}\right) \backslash\left(G_{1}\right)^{T}}{}}(x)}{x\left(x-m_{1} \chi_{A\left(G_{2}\right)}(x)\right)}\right] \\
& \operatorname{det}\left(\left(x I_{n_{1}}-J_{n_{1}}+I_{n_{1}}+A\left(G_{1}\right)\right)-\frac{\left(r_{1} I+A\left(G_{1}\right)\right)}{x}\right) \\
& =x^{m_{1}}\left(1-\frac{n_{2}}{x-r_{2}} \frac{m_{1}}{x}\right)\left[1-\frac{\frac{n_{2}}{x-r_{2}} r_{1}^{2} \frac{n_{1}}{\left(x-n_{1}+1+r_{1}-\frac{2 r_{1}}{x}\right)}}{x\left(x-m_{1} \frac{n_{2}}{x-r_{2}}\right)}\right] \\
& \prod_{i=1}^{n_{1}}\left(\left(x-P\left(\lambda_{i}\right)+1+\lambda_{i}\left(G_{1}\right)\right)-\frac{\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)}{x}\right) \\
& =x^{m_{1}}\left(\frac{x\left(x-r_{2}\right)-n_{2} m_{1}}{x\left(x-r_{2}\right)}\right)\left[1-\frac{n_{1} n_{2} r_{1}^{2}}{\left(x^{2}+\left(-n_{1}+1+r_{1}\right) x-2 r_{1}\right)\left(x^{2}-r_{2} x-m_{1} n_{2}\right)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{i=1}^{n_{1}}\left(\left(x-P\left(\lambda_{i}\right)+1+\lambda_{i}\left(G_{1}\right)\right)-\frac{\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)}{x}\right) \\
= & x^{m_{1}-n_{1}}\left(\frac{x\left(x-r_{2}\right)-n_{2} m_{1}}{x\left(x-r_{2}\right)}\right)\left[\frac{\left(x^{2}+\left(-n_{1}+1+r_{1}\right) x-2 r_{1}\right)\left(x^{2}-r_{2} x-m_{1} n_{2}\right)-n_{1} n_{2} r_{1}^{2}}{\left(x^{2}+\left(-n_{1}+1+r_{1}\right) x-2 r_{1}\right)\left(x^{2}-r_{2} x-m_{1} n_{2}\right)}\right] \\
& \prod_{i=1}^{n_{1}}\left(\left(x^{2}-P\left(\lambda_{i}\right) x+x+\lambda_{i}\left(G_{1}\right) x\right)-\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)\right)
\end{aligned}
$$

Thus the adjacency characteristic polynomial of $G_{1} \underline{\vee} G_{2}$ is

$$
\begin{gathered}
f\left(A\left(G_{1} \underline{\vee} G_{2}\right), x\right)=x^{m_{1}-n_{1}-1}\left[\left(x^{2}+\left(-n_{1}+1+r_{1}\right) x-2 r_{1}\right)\left(x^{2}-r_{2} x-m_{1} n_{2}\right)-n_{1} n_{2} r_{1}^{2}\right] \\
\prod_{j=2}^{n_{2}}\left(x-\lambda_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left[\left(x^{2}-P\left(\lambda_{i}\left(G_{1}\right)\right) x+x+\lambda_{i}\left(G_{1}\right) x-\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right] .\right.\right.
\end{gathered}
$$

The following corollary describes the complete spectrum of $G_{1} \underline{\vee} G_{2}$ when G_{1} and G_{2} are regular graphs.

Corollary 4.6. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2$. Then the adjacency spectrum of $G_{1} \underline{\vee} G_{2}$ consists of

1. 0 with multiplicity $m_{1}-n_{1}-1$.
2. $\lambda_{j}\left(G_{2}\right)$ for $j=2,3, \ldots, n_{2}$.
3. Two roots of the equation $x^{2}+x+\lambda_{i}\left(G_{1}\right) x-\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)=0$ for $i=2, \ldots, n_{1}$.
4. Four roots of the equation $\left(x^{2}+\left(-n_{1}+1+r_{1}\right) x-2 r_{1}\right)\left(x^{2}-r_{2} x-m_{1} n_{2}\right)-n_{1} n_{2} r_{1}^{2}=0$.

Corollary 4.7. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges. Then the adjacency spectrum of $G_{1} \bigvee K_{p, q}$ consists of

1. 0 with multiplicity $m_{1}-n_{1}+p+q-2$.
2. Two roots of the equation $x^{2}+x+\lambda_{i}(G) x-\left(r_{1}+\lambda_{i}(G)\right)=0$ for $i=2, \ldots, n_{1}$.
3. Four roots of the equation $x^{4}+\left(-m_{1}(p+q)-p q\right) x^{2}-2 p q x-(p+q) n_{1} r_{1}^{2}=0$.

The following corollary is useful to construct non-isomorphic A-cospectral graphs.
Corollary 4.8. (a) Let G_{1} and G_{2} be A-cospectral regular graphs and H is a regular graph. Then $H \bigvee G_{1}$ and $H \underline{\vee} G_{2}$ are A-cospectral.
(b) Let G_{1} and G_{2} be A-cospectral regular graphs and H is a regular graph. Then $G_{1} \underline{\vee} H$ and $G_{2} \underline{\vee} H$ are A-cospectral.
(c) Let G_{1} and G_{2} be A-cospectral regular graphs, H_{1} and H_{2} are another A-cospectral regular graphs. Then $G_{1} \underline{\vee} H_{1}$ and $G_{2} \underline{\vee} H_{2}$ are A-cospectral.

Theorem 4.9. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges and G_{2} be an arbitrary graph with n_{2} vertices and m_{2} edges. Then the Laplacian characteristic polynomial of $G_{1} \dot{\vee} G_{2}$ is

$$
\begin{aligned}
f\left(L\left(G_{1} \dot{\vee} G_{2}\right), x\right)= & (x-2)^{m_{1}-n_{1}}\left[\left(x-n_{1}\right)\left(x^{2}-\left(n_{2}+r_{1}+2\right) x+2 n_{2}\right)-n_{2} n_{1}(x-2)\right] \\
& \prod_{j=2}^{n_{2}}\left(x-n_{1}-\mu_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left[(x-2)\left(x-n_{1}-n_{2}-\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}\left(G_{1}\right)-r_{1}\right] .
\end{aligned}
$$

Proof. Let $L\left(G_{2}\right)$ be the Laplacian matrix of G_{2}. Then by a proper labeling of vertices, the Laplacian matrix of $G_{1} \dot{\vee} G_{2}$ can be written as

$$
L\left(G_{1} \dot{\vee} G_{2}\right)=\left[\begin{array}{ccc}
\left(n_{1}+n_{2}-1\right) I_{n_{1}}-A\left(\bar{G}_{1}\right) & -I\left(G_{1}\right) & -J_{n_{1} \times n_{2}} \\
-I\left(G_{1}\right)^{T} & 2 I_{m_{1}} & O_{m_{1} \times n_{2}} \\
-J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}} & n_{1} I_{n_{2}}+L\left(G_{2}\right)
\end{array}\right] .
$$

The characteristic polynomial of $G_{1} \dot{V} G_{2}$ is

$$
f\left(L\left(G_{1} \dot{\vee} G_{2}\right), x\right)=\operatorname{det}\left(\begin{array}{ccc}
\left(x-n_{1}-n_{2}+1\right) I_{n_{1}}+A\left(\bar{G}_{1}\right) & I\left(G_{1}\right) & J_{n_{1} \times n_{2}} \\
I\left(G_{1}\right)^{T} & (x-2) I_{m_{1}} & O_{m_{1} \times n_{2}} \\
J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}} & \left(x-n_{1}\right) I_{n_{2}}-L\left(G_{2}\right)
\end{array}\right) .
$$

By Lemma 2.1 and Definition 2.1, we have

$$
\begin{aligned}
f\left(L\left(G_{1} \dot{\vee} G_{2}\right), x\right)= & \operatorname{det}\left(\left(x-n_{1}\right) I_{n_{2}}-L\left(G_{2}\right)\right) \operatorname{det} S, \\
\text { where } \mathrm{S}= & {\left[\begin{array}{cc}
\left(x-n_{1}-n_{2}+1\right) I_{n_{1}}+A\left(\bar{G}_{1}\right) & I\left(G_{1}\right) \\
I\left(G_{1}\right)^{T} & (x-2) I_{m 1}
\end{array}\right] } \\
& -\left[\begin{array}{c}
J_{n_{1} \times n_{2}} \\
O_{m_{1} \times n_{2}}
\end{array}\right]\left(\left(x-n_{1}\right) I_{n_{2}}-L\left(G_{2}\right)\right)^{-1}\left[\begin{array}{ll}
J_{n_{2} \times n_{1}} & \left.O_{n_{2} \times m_{1}}\right]
\end{array}\right. \\
= & {\left[\begin{array}{cc}
\left(x-n_{1}-n_{2}+1\right) I_{n_{1}}+A\left(\bar{G}_{1}\right)-\chi_{L\left(G_{2}\right)}\left(x-n_{1}\right) J_{n_{1}} & I\left(G_{1}\right) \\
I\left(G_{1}\right)^{T} & (x-2) I_{m_{1}}
\end{array}\right] . }
\end{aligned}
$$

Using Definition 2.1, Lemma 2.1 and Corollary 2.6, we have

$$
\begin{aligned}
& \operatorname{det} S= \operatorname{det}\left(\begin{array}{cc}
\left(x-n_{1}-n_{2}+1\right) I_{n_{1}}+A\left(\bar{G}_{1}\right)-\chi_{L\left(G_{2}\right)}\left(x-n_{1}\right) J_{n_{1}} & I\left(G_{1}\right) \\
I\left(G_{1}\right)^{T} & (x-2) I_{m 1}
\end{array}\right) \\
&=(x-2)^{m_{1}} \operatorname{det}\left(\left(x-n_{1}-n_{2}+1\right) I_{n_{1}}+A\left(\bar{G}_{1}\right)-\chi_{L\left(G_{2}\right)}\left(x-n_{1}\right) J_{n_{1}}-\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x-2}\right) \\
&=(x-2)^{m_{1}\left(1-\left(\chi_{L\left(G_{2}\right)}\left(x-n_{1}\right) \chi_{A\left(G_{1}\right)-J_{n_{1}}+\frac{\left.I\left(G_{1}\right)\right)\left(G_{1}\right)^{T}}{x-2}}\left(x-n_{1}-n_{2}\right)\right)\right)} \\
& \operatorname{det}\left(\left(x-n_{1}-n_{2}+1\right) I_{n_{1}}+J_{n_{1}}-I_{n_{1}}-A\left(G_{1}\right)-\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x-2}\right) .
\end{aligned}
$$

Again using Definition 2.1, we have

$$
\begin{aligned}
\operatorname{det} S= & (x-2)^{m_{1}}\left(1-\frac{n_{2} n_{1}(x-2)}{\left(x-n_{1}\right)\left(x^{2}-\left(n_{2}+r_{1}+2\right) x+2 n_{2}\right)}\right) \\
& \operatorname{det}\left(\left(x-n_{1}-n_{2}\right) I_{n_{1}}+J_{n_{1}}-A\left(G_{1}\right)-\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x-2}\right) \\
= & (x-2)^{m_{1}-n_{1}}\left(1-\frac{n_{2} n_{1}(x-2)}{\left(x-n_{1}\right)\left(x^{2}-\left(n_{2}+r_{1}+2\right) x+2 n_{2}\right)}\right) \\
& \prod_{i=1}^{n_{1}}\left((x-2)\left(x-n_{1}-n_{2}+P\left(\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}\left(G_{1}\right)-r_{1}\right)
\end{aligned}
$$

Note that $\mu_{1}\left(G_{2}\right)=0$ and $\lambda_{i}\left(G_{1}\right)=r_{i}-\mu_{i}\left(G_{1}\right), i=1,2, \ldots, n$. Thus the characteristic polynomial of $L\left(G_{1} \dot{\vee} G_{2}\right)$

$$
\begin{aligned}
f\left(L\left(G_{1} \dot{\vee} G_{2}\right), x\right)= & (x-2)^{m_{1}-n_{1}}\left[\left(x-n_{1}\right)\left(x^{2}-\left(n_{2}+r_{1}+2\right) x+2 n_{2}\right)-n_{2} n_{1}(x-2)\right] \\
& \prod_{j=2}^{n_{2}}\left(x-n_{1}-\mu_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left[(x-2)\left(x-n_{1}-n_{2}-\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}\left(G_{1}\right)-r_{1}\right] .
\end{aligned}
$$

The following corollary describes the complete Laplacian spectrum of $G_{1} \dot{\vee} G_{2}$ when G_{1} is a regular graph and G_{2} is an arbitrary graph.

Corollary 4.10. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges and G_{2} be an arbitrary graph with n_{2} vertices and m_{2} edges. Then the Laplacian spectrum of $G_{1} \dot{\vee} G_{2}$ consists of

1. 2 with multiplicity $m_{1}-n_{1}$.
2. $n_{1}+\mu_{j}\left(G_{2}\right)$ for $j=2,3, \ldots, n_{2}$.
3. Three roots of the equation $x^{3}-\left(n_{2}+r_{1}+n_{1}+2\right) x^{2}+\left(2 n_{1}+2 n_{2}+n_{1} r_{1}\right) x=0$.
4. Two roots of the equation $x^{2}-x\left(n_{1}+n_{2}+\lambda_{i}\left(G_{1}\right)+2\right)+2 n_{1}+2 n_{2}+\lambda_{i}\left(G_{1}\right)-r_{1}=0$ for $i=2, \ldots, n_{1}$.

As an application for Theorem 4.9 we give the expression for the number of spanning trees and Kirchhoff index of $G_{1} \dot{\vee} G_{2}$, for an r_{1}-regular graph G_{1} and an arbitrary graph G_{2}.

Corollary 4.11. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges and G_{2} be an arbitrary graph with n_{2} vertices and m_{2} edges. Then the number of spanning trees of $G_{1} \dot{\vee} G_{2}$ is
$t\left(G_{1} \dot{\vee} G_{2}\right)=\frac{2^{m_{1}-n_{1}\left(2 n_{1}+2 n_{2}+n_{1} r_{1}\right)} \prod_{j=2}^{n_{2}}\left(n_{1}+\mu_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left(2 n_{1}+2 n_{2}+\lambda_{i}\left(G_{1}\right)-r_{1}\right)}{n_{1}+n_{2}+m_{1}}$.
Corollary 4.12. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges and G_{2} be an arbitrary graph with n_{2} vertices and m_{2} edges. Then the Kirchhoff index of $G_{1} \dot{\vee} G_{2}$ is

$$
K f\left(G_{1} \dot{\vee} G_{2}\right)=\left(n_{1}+n_{2}+m_{1}\right)\left[\frac{m_{1}-n_{1}}{2}+\frac{n_{2}+r_{1}+n_{1}+2}{2 n_{1}+2 n_{2}+n_{1} r_{1}}+\sum_{j=2}^{n_{2}} \frac{1}{n_{1}+\mu_{j}\left(G_{2}\right)}+\sum_{i=2}^{n_{1}} \frac{n_{1}+n_{2}+\lambda_{i}\left(G_{1}\right)+2}{2 n_{1}+2 n_{2}+\lambda_{i}\left(G_{1}\right)-r_{1}}\right] .
$$

The following corollary describes a construction of L-cospectral graphs.
Corollary 4.13. (a) Let G_{1} and G_{2} be L-cospectral regular graphs and H is an arbitarary graph. Then $H \dot{\vee} G_{1}$ and $H \dot{\vee} G_{2}$ are L-cospectral.
(b) Let G_{1} and G_{2} be L-cospectral regular graphs and H is an arbitrary graph. Then $G_{1} \dot{\vee} H$ and $G_{2} \dot{\vee} H$ are L-cospectral.
(c) Let G_{1} and G_{2} be L-cospectral regular graphs, H_{1} and H_{2} are another L-cospectral regular graphs. Then $G_{1} \dot{\vee} H_{1}$ and $G_{2} \dot{\vee} H_{2}$ are L-cospectral.
Theorem 4.14. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges and G_{2} be an arbitrary graph with n_{2} vertices and m_{2} edges. Then the Laplacian characteristic polynomial of $G_{1} \underline{\vee} G_{2}$ is

$$
\begin{aligned}
f\left(L\left(G_{1} \underline{\vee} G_{2}\right), x\right)= & \left(x-2-n_{2}\right)^{m_{1}-n_{1}-1} \\
& {\left[\left(\left(x-2-n_{2}\right)\left(x-r_{1}\right)-2 r_{1}\right)\left(x^{2}-\left(2+n_{2}+m_{1}\right) x+2 m_{1}\right)-r_{1}^{2} n_{1} n_{2}\right] } \\
& \prod_{j=2}^{n_{2}}\left(x-m_{1}-\mu_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left[\left(x-2-n_{2}\right)\left(x-n_{1}-\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}\left(G_{1}\right)-r_{1}\right] .
\end{aligned}
$$

Proof. Let $L\left(G_{2}\right)$ be the Laplacian matrix of G_{2}. Then by a suitable labeling of the vertices, the Laplacian matrix of $G_{1} \underline{\vee} G_{2}$ can be written as

$$
L\left(G_{1} \vee G_{2}\right)=\left[\begin{array}{ccc}
\left(n_{1}-1\right) I_{n_{1}}-A\left(\bar{G}_{1}\right) & -I\left(G_{1}\right) & O_{n_{1} \times n_{2}} \\
-I\left(G_{1}\right)^{T} & \left(n_{2}+2\right) I_{m_{1}} & -J_{m_{1} \times n_{2}} \\
O_{n_{2} \times n_{1}} & -J_{n_{2} \times m_{1}} & m_{1} I_{n_{2}}+L\left(G_{2}\right)
\end{array}\right] .
$$

The Laplacian characteristic polynomial of $G_{1} \underline{\vee} G_{2}$ is
By Lemma 2.1, we have

$$
\begin{aligned}
& f\left(L\left(G_{1} \underline{\vee} G_{2}\right), x\right)=\operatorname{det}\left(\left(x-m_{1}\right) I_{n_{2}}-L\left(G_{2}\right)\right) \operatorname{det} S, \\
\text { where } S= & {\left[\begin{array}{cc}
\left(x-n_{1}+1\right) I_{n_{1}}+A\left(\bar{G}_{1}\right) & I\left(G_{1}\right) \\
I\left(G_{1}\right)^{T} & \left(x-2-n_{2}\right) I_{m_{1}}
\end{array}\right] } \\
& -\left[\begin{array}{cc}
O_{n_{1} \times n_{2}} \\
J_{m_{1} \times n_{2}}
\end{array}\right]\left(\left(x-m_{1}\right) I_{n_{2}}-L\left(G_{2}\right)\right)^{-1}\left[O_{n_{2} \times n_{1}} J_{n_{2} \times m_{1}}\right] \\
= & {\left[\begin{array}{cc}
\left(x-n_{1}+1\right) I_{n_{1}}+A\left(\bar{G}_{1}\right) & I\left(G_{1}\right) \\
I\left(G_{1}\right)^{T} & \left(x-2-n_{2}\right) I_{m 1}-\chi_{L\left(G_{2}\right)}\left(x-m_{1}\right) J_{m_{1}}
\end{array}\right] . }
\end{aligned}
$$

From Definition 2.1, Lemmas 2.1, 2.7 and Corollary 2.6, we have

$$
\begin{aligned}
\operatorname{det} S= & \operatorname{det}\left[\left(x-2-n_{2}\right) I_{m_{1}}-\chi_{L\left(G_{2}\right)}\left(x-m_{1}\right) J_{m_{1}}\right] \\
& \operatorname{det}\left[\left(x-n_{1}+1\right) I_{n_{1}}+A(\bar{G})-I\left(G_{1}\right)\left(\left(x-2-n_{2}\right) I_{m_{1}}-\chi_{L\left(G_{2}\right)}\left(x-m_{1}\right) J_{m_{1}}\right)^{-1} I\left(G_{1}\right)^{T}\right] \\
= & \left(x-2-n_{2}\right)^{m_{1}}\left[1-\chi_{L\left(G_{2}\right)}\left(x-m_{1}\right) \frac{m_{1}}{x-2-n_{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left[\left(x-n_{1}+1\right) I_{n_{1}}+A(\bar{G})-I\left(G_{1}\right)\left(\left(x-2-n_{2}\right) I_{m_{1}}-\chi_{L\left(G_{2}\right)}\left(x-m_{1}\right) J_{m_{1}}\right)^{-1} I\left(G_{1}\right)^{T}\right] \\
& =\left(x-2-n_{2}\right)^{m_{1}}\left[1-\frac{n_{2}}{x-m_{1}} \frac{m_{1}}{x-2-n_{2}}\right] \\
& \operatorname{det}\left[\left(x-n_{1}\right) I_{n_{1}}+J_{n_{1}}-A\left(G_{1}\right)-I\left(G_{1}\right)\left(\frac{1}{x-2-n_{2}} I_{m_{1}}\right.\right. \\
& \left.\left.+\frac{\chi_{L\left(G_{2}\right)}\left(x-m_{1}\right)}{\left(x-2-n_{2}\right)\left(x-2-n_{2}-m_{1} \chi_{L\left(G_{2}\right)}\left(x-m_{1}\right)\right)} J_{m_{1}}\right) I\left(G_{1}\right)^{T}\right] \\
& =\left(x-2-n_{2}\right)^{m_{1}}\left[1-\frac{n_{2}}{x-m_{1}} \frac{m_{1}}{x-2-n_{2}}\right] \\
& \operatorname{det}\left[\left(x-n_{1}\right) I_{n_{1}}+J_{n_{1}}-A\left(G_{1}\right)-\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x-2-n_{2}}\right. \\
& \left.-\frac{\chi_{L\left(G_{2}\right)}\left(x-m_{1}\right)}{\left(x-2-n_{2}\right)\left(x-2-n_{2}-m_{1} \chi_{L\left(G_{2}\right)}\left(x-m_{1}\right)\right)} I\left(G_{1}\right) J_{m_{1}} I\left(G_{1}\right)^{T}\right] \\
& =\left(x-2-n_{2}\right)^{m_{1}}\left[\frac{x^{2}-\left(2+n_{2}+m_{1}\right) x+2 m_{1}}{\left(x-m_{1}\right)\left(x-2-n_{2}\right)}\right] \\
& \operatorname{det}\left[\left(x-n_{1}\right) I_{n_{1}}+J_{n_{1}}-A\left(G_{1}\right)-\frac{I\left(G_{1}\right) I\left(G_{2}\right)^{T}}{x-2-n_{2}} I_{n_{1}}\right. \\
& \left.-\frac{\chi_{L\left(G_{2}\right)}\left(x-m_{1}\right)}{\left(x-2-n_{2}\right)\left(x-2-n_{2}-m_{1} \chi_{L\left(G_{2}\right)}\left(x-m_{1}\right)\right)} I\left(G_{1}\right) J_{m_{1}} I\left(G_{1}\right)^{T}\right] \\
& =\left(x-2-n_{2}\right)^{m_{1}}\left[\frac{x^{2}-\left(2+n_{2}+m_{1}\right) x+2 m_{1}}{\left(x-m_{1}\right)\left(x-2-n_{2}\right)}\right] \\
& \operatorname{det}\left[\left(x-n_{1}\right) I_{n_{1}}+J_{n_{1}}-A\left(G_{1}\right)-\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x-2-n_{2}}\right. \\
& \left.-\frac{\chi_{L\left(G_{2}\right)}\left(x-m_{1}\right)}{\left(x-2-n_{2}\right)\left(x-2-n_{2}-m_{1} \chi_{L\left(G_{2}\right)}\left(x-m_{1}\right)\right)} r_{1}^{2} J_{n_{1}}\right] \\
& =\left(x-2-n_{2}\right)^{m_{1}}\left[\frac{x^{2}-\left(2+n_{2}+m_{1}\right) x+2 m_{1}}{\left(x-m_{1}\right)\left(x-2-n_{2}\right)}\right] \\
& {\left[1-\frac{\frac{n_{2}}{x-m_{1}}}{\left(x-2-n_{2}\right)\left(x-2-n_{2}-m_{1} \frac{n_{2}}{x-m_{1}}\right)} r_{1}^{2} \chi_{A\left(G_{1}\right)-J_{n_{1}}+\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x-2-n_{2}}}\left(x-n_{1}\right)\right]} \\
& \operatorname{det}\left[\left(x-n_{1}\right) I_{n_{1}}+J_{n_{1}}-A\left(G_{1}\right)-\frac{I\left(G_{1}\right) I\left(G_{1}\right)^{T}}{x-2-n_{2}} I_{n_{1}}\right] \\
& =\left(x-2-n_{2}\right)^{m_{1}-n_{1}}\left[\frac{x^{2}-\left(2+n_{2}+m_{1}\right) x+2 m_{1}}{\left(x-m_{1}\right)\left(x-2-n_{2}\right)}\right] \\
& {\left[1-\frac{\frac{n_{2}}{x-m_{1}} \frac{r_{1}^{2} n_{1}}{\left(\left(x-2-n_{2}\right)\left(x-n_{1}-r_{1}+n_{1}\right)-2 r_{1}\right)}}{\left(x-2-n_{2}-m_{1} \frac{n_{2}}{x-m_{1}}\right)}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& \prod_{i=1}^{n_{1}}\left[\left(x-2-n_{2}\right)\left(x-n_{1}+P\left(\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}\left(G_{1}\right)-r_{1}\right] \\
= & \left(x-2-n_{2}\right)^{m_{1}-n_{1}}\left[\frac{x^{2}-\left(2+n_{2}+m_{1}\right) x+2 m_{1}}{\left(x-m_{1}\right)\left(x-2-n_{2}\right)}\right] \\
& {\left[\left(\left(x-2-n_{2}\right)\left(x-n_{1}-r_{1}+n_{1}\right)-2 r_{1}\right)\left(x^{2}-\left(2+n_{2}+m_{1}\right) x+2 m_{1}\right)-r_{1}^{2} n_{1} n_{2}\right.} \\
\left(\left(x-2-n_{2}\right)\left(x-n_{1}-r_{1}+n_{1}\right)-2 r_{1}\right)\left(x^{2}-\left(2+n_{2}+m_{1}\right) x+2 m_{1}\right)
\end{array}\right] .
$$

After simplifying we get

$$
\begin{aligned}
f\left(L\left(G_{1} \bigvee G_{2}\right), x\right)= & \left(x-2-n_{2}\right)^{m_{1}-n_{1}-1} \\
& {\left[\left(\left(x-2-n_{2}\right)\left(x-r_{1}\right)-2 r_{1}\right)\left(x^{2}-\left(2+n_{2}+m_{1}\right) x+2 m_{1}\right)-r_{1}^{2} n_{1} n_{2}\right] } \\
& \prod_{j=2}^{n_{2}}\left(x-m_{1}-\mu_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left[\left(x-2-n_{2}\right)\left(x-n_{1}-\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}\left(G_{1}\right)-r_{1}\right] .
\end{aligned}
$$

The following corollary describes the complete Laplacian spectrum of $G_{1} \underline{\vee} G_{2}$ when G_{1} is a regular graph and G_{2} is an arbitrary graph.
Corollary 4.15. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges and G_{2} be an arbitrary graph with n_{2} vertices and m_{2} edges. Then the Laplacian spectrum of $G_{1} \underline{\vee} G_{2}$ consists of

1. $2+n_{2}$ with multiplicity $m_{1}-n_{1}-1$.
2. $m_{1}+\mu_{j}\left(G_{2}\right)$ for $j=2,3, \ldots, n_{2}$.
3. Two roots of the equation $x^{2}-\left(n_{1}+\lambda_{i}\left(G_{1}\right)+2+n_{2}\right) x+2 n_{1}+\lambda_{i}\left(G_{1}\right)+n_{1} n_{2}+n_{2} \lambda_{i}\left(G_{1}\right)-r_{1}=$ 0 for $i=2, \ldots, n_{1}$.
4. Four roots of the equation $\left(\left(x-2-n_{2}\right)\left(x-r_{1}\right)-2 r_{1}\right)\left(x^{2}-\left(2+n_{2}+m_{1}\right) x+2 m_{1}\right)-r_{1}^{2} n_{1} n_{2}=0$.

Corollary 4.16. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges and G_{2} be an arbitrary graph with n_{2} vertices and m_{2} edges. Then the number of spanning trees of $G_{1} \underline{\vee} G_{2}$ is

$$
\begin{aligned}
& t\left(G_{1} \underline{\vee} G_{2}\right)=\frac{1}{n_{1}+n_{2}+m_{1}}\left[\left(2+n_{2}\right)^{m_{1}-n_{1}-1} n_{2} r_{1}\left(2 m_{1}-r_{1} n_{1}\right) \prod_{j=2}^{n_{2}}\left(m_{1}+\mu_{j}\left(G_{2}\right)\right)+\right. \\
&\left.\prod_{i=2}^{n_{1}}\left(2 n_{1}+\lambda_{i}\left(G_{1}\right)+n_{1} n_{2}+n_{2} \lambda_{i}\left(G_{1}\right)-r_{1}\right)\right] .
\end{aligned}
$$

Corollary 4.17. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges and G_{2} an arbitrary graph with n_{2} vertices and m_{2} edges. Then the Kirchhoff index of $G_{1} \underline{\vee} G_{2}$ is

$$
K f\left(G_{1} \underline{\vee} G_{2}\right)=\left(n_{1}+n_{2}+m_{1}\right)\left[\frac{m_{1}-n_{1}-1}{2+n_{2}}+\sum_{j=2}^{n_{2}} \frac{1}{m_{1}+\mu_{j}\left(G_{2}\right)}+\right.
$$

$$
\left.\sum_{i=2}^{n_{1}} \frac{n_{1}+\lambda_{i}+2+n_{2}}{2 n_{1}+\lambda_{i}+n_{1} n_{2}+n_{2} \lambda_{i}\left(G_{1}\right)-r_{1}}+\frac{4 m_{1}+2 n_{2} m_{1}+2 m_{1} r_{1}+2 n_{2} r_{1}+n_{2}^{2} r_{1}+m_{1} n_{2} r_{1}}{n_{2} r_{1}\left(2 m_{1}-n_{1} r_{1}\right)}\right]
$$

The following corollary describes a construction of L-cospectral graphs.
Corollary 4.18. (a) Let G_{1} and G_{2} be L-cospectral regular graphs and H is a regular graph. Then $H \bigvee G_{1}$ and $H \bigvee G_{2}$ are L-cospectral.
(b) Let G_{1} and G_{2} be L-cospectral regular graphs and H is an arbitrary graph. Then $G_{1} \underline{\vee} H$ and $G_{2} \underline{\vee} H$ are L-cospectral.
(c) Let G_{1} and G_{2} be L-cospectral regular graphs, H_{1} and H_{2} are another L-cospectral regular graphs.

Then $G_{1} \underline{\vee} H_{1}$ and $G_{2} \underline{\vee} H_{2}$ are L-cospectral.
Theorem 4.19. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2$. Then the signless Laplacian characteristic polynomial of $G_{1} \dot{\vee} G_{2}$ is

$$
\begin{aligned}
f\left(Q\left(G_{1} \dot{\vee} G_{2}\right), x\right)= & (x-2)^{m_{1}-n_{1}} \\
& \left(\left(x-n_{1}-2 r_{1}\right)\left(x^{2}-\left(2 n_{1}+n_{2}-r_{1}\right) x+4 n_{1}+2 n_{2}-4-4 r_{1}\right)-n_{1}^{2}(x-2)\right) \\
& \prod_{j=2}^{n_{2}}\left(x-n_{1}-v_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left[(x-2)\left(x-n_{1}-n_{2}+2+\lambda_{i}\left(G_{1}\right)\right)+v_{i}\left(G_{1}\right)\right] .
\end{aligned}
$$

Proof. Let $Q\left(G_{2}\right)$ be the signless Laplacian matrix of G_{2}. Then by a proper labeling of vertices, the Laplacian matrix of $G_{1} \dot{\vee} G_{2}$ can be written as

$$
Q\left(G_{1} \dot{\vee} G_{2}\right)=\left[\begin{array}{ccc}
\left(n_{1}+n_{2}-1\right) I_{n_{1}}+A\left(\bar{G}_{1}\right) & I\left(G_{1}\right) & J_{n_{1} \times n_{2}} \\
I\left(G_{1}\right)^{T} & 2 I_{m_{1}} & O_{m_{1} \times n_{2}} \\
J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}} & n_{1} I_{n_{2}}+Q\left(G_{2}\right)
\end{array}\right] .
$$

The signless Laplacian characteristic polynomial of $G_{1} \dot{\vee} G_{2}$ is

$$
f\left(Q\left(G_{1} \dot{\vee} G_{2}\right), x\right)=\operatorname{det}\left(\begin{array}{ccc}
\left(x-n_{1}-n_{2}+1\right) I_{n_{1}}-A\left(\bar{G}_{1}\right) & -I\left(G_{1}\right) & -J_{n_{1} \times n_{2}} \\
-I\left(G_{1}\right)^{T} & (x-2) I_{m_{1}} & O_{m_{1} \times n_{2}} \\
-J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}} & \left(x-n_{1}\right) I_{n_{2}}-Q\left(G_{2}\right)
\end{array}\right) .
$$

By using the same arguments as in the proof of Theorem 4.9, we get the desired result.
Corollary 4.20. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2$. Then the signless Laplacian spectrum of $G_{1} \dot{\vee} G_{2}$ consists of

1. 2 with multiplicity $m_{1}-n_{1}$.
2. $n_{1}+v_{j}\left(G_{2}\right)$ for $j=2,3, \ldots, n_{2}$.
3. Three roots of the equation $\left(x-n_{1}-2 r_{1}\right)\left(x^{2}-\left(2 n_{1}+n_{2}-r_{1}\right) x+4 n_{1}+2 n_{2}-4-4 r_{1}\right)-n_{1}^{2}(x-2)=0$.
4. Two roots of the equation $(x-2)\left(x-n_{1}-n_{2}+2+\lambda_{i}\left(G_{1}\right)\right)+v_{i}\left(G_{1}\right)=0$. for $i=2, \ldots, n_{1}$.

The following corollary describes a construction of Q-cospectral graphs.

Corollary 4.21. (a) Let G_{1} and G_{2} be Q-cospectral regular graphs and H is a regular graph. Then $H \dot{\vee} G_{1}$ and $H \dot{\vee} G_{2}$ are Q-cospectral.
(b) Let G_{1} and G_{2} be Q-cospectral regular graphs and H is a regular graph. Then $G_{1} \dot{\vee} H$ and $G_{2} \dot{\vee} H$ are Q-cospectral.
(c) Let G_{1} and G_{2} be Q-cospectral regular graphs, H_{1} and H_{2} are another Q-cospectral regular graphs. Then $G_{1} \dot{\vee} H_{1}$ and $G_{2} \dot{\vee} H_{2}$ are Q-cospectral.

Theorem 4.22. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2$. Then the signless Laplacian characteristic polynomial of $G_{1} \underline{\vee} G_{2}$ is

$$
\begin{aligned}
f\left(Q\left(G_{1} \underline{\vee} G_{2}\right), x\right)= & \left(x-2-n_{2}\right)^{m_{1}-n_{1}-1} \\
& {\left[\left(x^{2}-x\left(2 n_{1}-2-r_{1}+2+n_{2}\right)+4 n_{1}-4-4 r_{1}+2 n_{1} n_{2}-2 n_{2}-n_{2} r_{1}-2 r_{1}\right)\right.} \\
& \left.\left(x^{2}-\left(2 r_{1}+2+n_{2}+m_{1}\right) x+2 m_{1}+4 r_{1}+2 r_{1} n_{2}\right)-n_{1} n_{2} r_{1}^{2}\right] \\
& \prod_{j=2}^{n_{2}}\left(x-m_{1}-v_{j}\left(G_{2}\right)\right) \prod_{i=2}^{n_{1}}\left[\left(x-2-n_{2}\right)\left(x-n_{1}+2+\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}\left(G_{1}\right)-r_{1}\right] .
\end{aligned}
$$

Proof. Let $Q\left(G_{2}\right)$ be the signless Laplacian matrix of G_{2}. Then by a suitable labeling of the vertices, the signless Laplacian matrix of $G_{1} \underline{\vee} G_{2}$ can be written as

$$
Q\left(G_{1} \vee G_{2}\right)=\left[\begin{array}{ccc}
\left(n_{1}-1\right) I_{n_{1}}+A\left(\bar{G}_{1}\right) & I\left(G_{1}\right) & O_{n_{1} \times n_{2}} \\
I\left(G_{1}\right)^{T} & \left(n_{2}+2\right) I_{m_{1}} & J_{m_{1} \times n_{2}} \\
O_{n_{2} \times n_{1}} & J_{n_{2} \times m_{1}} & m_{1} I_{n_{2}}+Q\left(G_{2}\right)
\end{array}\right] .
$$

The signless Laplacian characteristic polynomial of $G_{1} \underline{\vee} G_{2}$ is

$$
f\left(Q\left(G_{1} \vee G_{2}\right), x\right)=\operatorname{det}\left(\begin{array}{ccc}
\left(x-n_{1}+1\right) I_{n_{1}}-A\left(\bar{G}_{1}\right) & -I\left(G_{1}\right) & O_{n_{1} \times n_{2}} \\
-I\left(G_{1}\right)^{T} & \left(x-2-n_{2}\right) I_{m_{1}} & -J_{m_{1} \times n_{2}} \\
O_{n_{2} \times n_{1}} & -J_{n_{2} \times m_{1}} & \left(x-m_{1}\right) I_{n_{2}}-Q\left(G_{2}\right)
\end{array}\right) .
$$

By using the same arguments as in the proof of Theorem 4.14, we get the desired result.
Corollary 4.23. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2$. Then the signless Laplacian spectrum of $G_{1} \bigvee G_{2}$ consists of

1. $2+n_{2}$ with multiplicity $m_{1}-n_{1}-1$.
2. $m_{1}+v_{j}\left(G_{2}\right)$ for $j=2,3, \ldots, n_{2}$.
3. Two roots of the equation $\left(x-2-n_{2}\right)\left(x-n_{1}+2+\lambda_{i}\left(G_{1}\right)\right)-\lambda_{i}\left(G_{1}\right)-r_{1}=0$ for $i=2, \ldots, n_{1}$.
4. Four roots of the equation $\left(\left(x^{2}-x\left(2 n_{1}-2-r_{1}+2+n_{2}\right)+4 n_{1}-4-4 r_{1}+2 n_{1} n_{2}-2 n_{2}-n_{2} r_{1}-\right.\right.$ $\left.\left.2 r_{1}\right)\left(x^{2}-\left(2 r_{1}+2+n_{2}+m_{1}\right) x+2 m_{1}+4 r_{1}+2 r_{1} n_{2}\right)-n_{1} n_{2} r_{1}^{2}\right)=0$.

By Theorem 4.22 enables us to construct infinitely many pairs of Q-cospectral graphs.

Corollary 4.24. (a) Let G_{1} and G_{2} be Q-cospectral regular graphs and H is a regular graph. Then $H \bigvee G_{1}$ and $H \bigvee G_{2}$ are Q-cospectral.
(b) Let G_{1} and G_{2} be Q-cospectral regular graphs and H is a regular graph. Then $G_{1} \underline{\vee} H$ and $G_{2} \underline{\vee} H$ are Q-cospectral.
(c) Let G_{1} and G_{2} be Q-cospectral regular graphs, H_{1} and H_{2} are another Q-cospectral regular graphs. Then $G_{1} \underline{\vee} H_{1}$ and $G_{2} \underline{\vee} H_{2}$ are Q-cospectral.

Construction of integral graphs are very difficult . Here we present an infinite family of integral graphs.

5. Some new integral graphs

The following propositions give the necessary and sufficient condition for the $G_{1} \dot{\vee} G_{2}$ and $G_{1} \underline{\vee} G_{2}$ are A -integral graphs.

Proposition 5.1. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and G_{2} be an r_{2}-regular graph with n_{2} vertices. Then $G_{1} \dot{\vee} G_{2}$ is A-integral graph if and only if G_{2} is A-integral and the roots of the equations $x^{2}+x+\lambda_{i}\left(G_{1}\right) x-\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)=0$ for $i=2, \ldots, n_{1}$ and $x^{3}+\left(-n_{1}+r_{1}+1-r_{2}\right) x^{2}+\left(-2 r_{1}+r_{2} n_{1}-r_{2}-\right.$ $\left.r_{1} r_{2}\right) x-2 r_{1} r_{2}-n_{1} n_{2}=0$ are integers.

Proposition 5.2. Let G_{1} be an r_{1}-regular graph with n_{1} vertices and G_{2} be an r_{2}-regular graph with n_{2} vertices. Then $G_{1} \underline{\vee} G_{2}$ is A-integral graph if and only if G_{2} is A-integral and the roots of the equations $x^{2}+x+\lambda_{i}\left(G_{1}\right) x-\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)=0$ for $i=2, \ldots, n_{1}$ and $\left(x^{2}+x\left(-n_{1}+1+r_{1}\right)-2 r_{1}\right)\left(x^{2}-r_{2} x-n_{1} n_{2} r_{1}^{2}\right)=0$ are integers.

The following are integral graphs.

1. From Corollary 3.3, we have $C\left(K_{n}\right)$ is A-integral if and only if $2 n-2$ and $n-2$ are perfect squares. For example $C\left(K_{3}\right), C\left(K_{51}\right), C\left(K_{1683}\right), C\left(K_{57123}\right)$ are A-integral graphs.
2. $C\left(K_{n, n}\right)$ is A-integral if and only if $1+8 n$ and $1+4 n$ are perfect squares. For example $C\left(K_{6,6}\right)$ and $C\left(K_{210,210}\right), C\left(K_{242556,242556}\right)$ are A-integral graphs.
3. Let G be an r-regular A-integral graph with n vertices and l is a non negative integer. Then $l K_{1} \dot{\vee} G$ is A-integral if and only if the roots of the equation $x^{3}+(-l+1-r) x^{2}+r(l-1) x-n l=0$ are integers.
4. Let G be an r-regular A-integral graph with n vertices. Then $G \dot{\vee} K_{n^{2}}$ is A-integral if and only if the roots of the equation $x^{3}-r x^{2}-2(n-1) x-2 r(n-1)=0$ are integers.
5. Let G be an r-regular A-integral graph and l is a non negative integer. Then $l K_{1} \underline{\vee} G$ is A-integral if and only if $\frac{l-1-r \pm \sqrt{(l-1-r)^{2}+8 r}}{2}$ is an integer.
6. Let G be an r-regular A-integral graph with n vertices. Then $\bar{K}_{n} \underline{\vee} G$ is A-integral.
7. Let G be a complete graph on n vertices. Then $C\left(K_{n}\right)$ is Laplacian and signless Laplacian integral for every n.

6. Conclusion

In this paper, we determine the different spectra of central graphs. Also, we define two new joins of graphs namely central vertex join and central edge join and obtain their spectra. As applications,
these results enable us to construct infinitely many pairs of A-cospectral, L-cospectral and Q-cospectral graphs. In addition, we discussed the number of spanning trees and Kirchhoff index of central graphs, central vertex join and central edge join of graphs. Using the spectra of central graphs, central vertex join and central edge join of regular graphs, a new infinite family of A-integral (L-integral,Q-integral) graphs is obtained.

Conflict of interest

Authors declare there is no conflicts of interest in this paper.

References

1. C. Adiga, B. R. Rakshith, K. N. Subba Krishna, Spectra of some new graph operations and some new class of integral graphs, Iranian Journal of Mathematical Sciences and Informatics, 13 (2018), 51-65.
2. D. Cvetkovic, M. Doob, H. Sachs, et al., Spectra of graphs:theory and applications, vol. 10, Academic Press, New York, 1980.
3. D. Cvetkovic, S. Simic, P. Rowlinson, An introduction to the theory of graph spectra, Cambridge University Press, 2009.
4. A. Das and P. Panigrahi, Spectra of R-vertex join and R-edge join of two graphs, Discussiones Mathematicae-General Algebra and Applications, 38 (2018), 19-32.
5. J. Lan and B. Zhou, Spectra of graph operations based on R-graph, Linear and Multilinear Algebra, 63 (2015), 1401-1422.
6. X. Liu and P. Lu, Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae, Linear Algebra Appl., 438 (2013), 3547-3559.
7. X. Liu and Z. Zhang, Spectra of subdivision-vertex and subdivision-edge joins of graphs, Bullettin of the Malaysian Mathematical Sciences Society, 42 (2019), 15-31.
8. C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl., 435 (2011), 9981007.
9. J. V. Vivin, M. M. Akbar Ali, K. Thilagavathi, On harmonious coloring of central graphs, Advances and applications in discrete mathematics, 2 (2008), 17-33.

AIMS Press
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

