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Abstract: Immunogenicity is the ability of substances to evoke an immune response such as a 

therapeutic protein drug that is considered as a foreign object in the human body. The rise of the 

immune response results in the production of Anti-Drug Antibody (ADA) that requires a certain 

period to be activated since it is influenced by the number of injected doses of the drug. The entry of 

ADA from the depot into the plasma also requires a certain period since the ADA must pass through 

a series of compartments, hence rises a delay. Both processes are considered as a natural process 

where the system experiences delay with different delay periods. Immunogenicity on therapeutic 

protein pharmacokinetics is modelled as a nonlinear delay differential system. From the formulated 

model, one positive equilibrium solution is obtained under some conditions. Qualitative analysis 

gives a pair of critical delays in terms of a time delay of the accumulation of protein drug injection 

and a time required by the ADA to enter the plasma and binding the drug in the plasma. Numerical 

simulations show that the critical delays result in the appearance of oscillatory behavior in the system. 

For the system to remain stable, the entering process of ADA into the plasma is delayed in 

accordance with the obtained critical delay. It is intended such that the injected therapeutic protein 

drugs provide an optimal effect. 
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1. Introduction 

One of the challenges in biotherapy study is the pharmacokinetics of drug therapy due to the 

existence of an immune response of the host such as human body against the therapeutic protein. It is 

an interesting study when the novel protein therapeutics should be predicted its immunogenic 

potential. Some cases of immunogenicity occur in patients where the immune response to protein 

therapy has devastating effects for that patient [1–8]. This unwanted immunogenicity is the clinical 

impact of the appearance of anti-drug antibodies (ADA) where it is known that the severity of the 

antibody-mediated toxicity depends not only on the affinity but on the functionality of the antibody 

[9–11]. Production of anti-drug-antibodies (ADA) will be inactivating the therapeutic effects of the 

treatment and anti-drug antibodies (ADA) may lead to allergic reactions, altered pharmacokinetics, 

and reduced efficacy [1,12–13]. Therefore, in practice, study the pharmacokinetics of drug therapy is 

conducted through the assessment of immunogenicity where antibodies that directed against the 

therapeutic protein are measured. 

The principal role of ADA in immunogenicity has been extensively studied, including research 

that characterized the nature of ADA, such as the magnitude of the ADA response, bond affinity, and 

neutralization capacity [14]. Based on the right assumptions and simplified rational mechanism of 

the immune system, mathematical modeling can be applied as an approach tool that complements 

experimentation and research. This approach can be used to estimate or even be able to predict ADA 

responses to the therapeutic proteins. Several mathematical models of immune response have been 

developed [15–19]. For example, Bell [17] developed a mathematical model to predict the production 

of polyclonal antibodies based on the proliferation of relevant B cell species. Lee et al. [18] simulated 

and predicted the adaptive immune response to influenza A virus infection, where the virus triggers 

an antibody response and cytotoxic T cell proliferation. Xu et al. [19] considered immunogenicity as 

a covariate in pharmacokinetic modeling of therapeutic proteins. The study was conducted by 

analyzing the golimumab (a human monoclonal antibody) pharmacokinetic population in ankylosing 

spondylitis patients, and finding anti-golimumab antibodies that were significantly affected by 

golimumab release. Bonate et al. [20] also used a statistical approach to characterize immunogenicity. 

The approach was to model antibody titers using the zero-inflated Poisson random effect model. This 

model was able to identify patient specific factors that can influence antibody titers. Similar research 

was also carried out by Chen et al. [21] where a pharmacokinetic/ADA mathematical model was 

studied to estimate the ADA response quantitatively. This model was based on observing the impact 

of ADA on the release of protein drugs. It was assumed that the pharmacokinetic drug changes 

contain information about the level and time of ADA generation. This model provided an approach to 

the characterization of ADA generation, including maximum ADA response, sensitivity of ADA 

response to drug dose levels, affinity maturation rates, time lags to observe ADA responses, and 

elimination rates for ADA-drug complexes. Expanding their mathematical study, here, we are 

interested to develop model of Chen et al. by adding two natural assumptions. The first assumption 

comes from the fact that times are needed by the drugs to accumulate to trigger the production of 

ADA. There is no ADA response before the second dose and starting from the second dose, ADA is 

produced, and injected as a bolus dose into a depot compartment at the time of drug dosing [21]. This 

process can be considered as a delay factor in injecting therapeutic protein drug doses and a delay 

response of the ADA production. The second assumption is the natural delay factor that occurs on the 

ADA entry process from the depot into the plasma. It also can be considered as a delay process due 
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to ADA having to go through a certain series of compartments before it enters the plasma. Instead of 

considering a series of compartments, in this study, the series of compartment are considered as a 

lumped process with a discrete-time delay. We believe that the mathematical model development will 

present another mathematical point of view regarding the study of the level of immunogenicity in the 

system.  

This paper is organized as follows. In Section 2, we present several assumptions underlying the 

development of the mathematical model. In Section 3, we discuss the qualitative analysis of the 

model including the existence of a positive steady-state solution and its local stability conditions. 

The analysis of the appearance of a Hopf bifurcation is also presented in this section. Some 

numerical simulations are also provided in Section 4 to validate our analytical results and to study 

numerically effect of the existence of delay factor in the system to the level of immunogenicity of 

therapeutic protein. A summary and some concluding remarks are presented in the last section. 

2. Model formulation 

Mathematical model of the pharmacokinetic of the therapeutic protein and ADA is formulated 

based on the schematic diagram of protein drug-ADA interaction that is depicted in Figure 1 with 

appropriate assumptions and reasonable simplifications of the immune system mechanisms. The 

model follows the line of Chen et al. [21] with development on the delay compartments. The delay of 

entering process of ADA from the depot to the plasma is considered as a lumped process with a 

discreet time delay on the ADA variable. 

 

Figure 1. Schematic diagram represents the effect of immunogenicity on the 

pharmacokinetics of therapeutic proteins with delay factors Compartment    shows the 

amount of ADA in the depot,    shows the amount of ADA in the plasma,    shows the 

amount of therapeutic proteins in the plasma,    shows the amount of complex of 

ADA-drugs in the plasma, and    shows the amount of therapeutic proteins in the tissues. 

The solid-arrow line denotes the distribution of ADA and drugs between compartments, the 

dot-arrow line denotes the effect of the accumulation of the drug that triggers the 

production of ADA, and the dashed-arrow line denotes the part of compartment that is 

experiencing delay (the process of ADA enters the plasma from the depot). 
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2.1. Non-autonomous model 

Let   ,   ,   ,   , and    respectively denote the amount of ADA in the depot, ADA in 

plasma, protein therapeutic in the plasma, and complex of ADA-drug. Modeling the rate change of 

  ,   ,   ,     and    is formulated based on the following assumptions. Therapeutic protein 

drugs are injected into the body at a rate    through the subcutaneous pathway (under the skin). 

With repeated doses of the drug, the amount of ADA in the depot (  ) will be stimulated to enter the 

central compartment to bind the therapeutic protein drugs. The accumulated dose of the drug that 

affects the ADA production is illustrated by the dashed arrow in Figure 1. It is assumed that the dose 

of ADA is injected as a bolus into the    compartment. 

Bolus ADA starts to produce when the drug (protein therapy) was injected (at the second 

injection [21]). The dose of ADA is modeled as a saturated function that depends on the exposure to 

therapeutic protein drugs (cumulative drug doses) that experience delays because it requires a certain 

accumulated dose to stimulate ADA generation. No ADA is stimulated during the first drug dose 

interval, due to the delay needed to increase the body's immune response. The production of ADA is 

increased as the cumulative drug dose is also increased until the production saturated and reached the 

maximum production. Thus, the ADA dose rate that enters to the ADA depot is modeled as the 

following saturated function: 

      
             

           
  

where          is the amount of drug dose in the plasma that triggers the production of ADA. 

This function depends on   , the length of time needed for injection reaches a cumulative drug dose 

for stimulating ADA generation. The production of ADA reaches maximum production at      and 

the half-maximum production is reached when the amount of cumulative drug dose is equal   . 

ADA at the depot then passes through a series of compartments before entering the central 

compartment with a rate constant of   . The series of compartments resulted in a delay for entering 

ADA to the central compartment. If the series of compartments are assumed as a lumped process 

then the entering process of ADA can be modeled in the form of a delay function with respect to   , 

namely         . The variable    represents the length of time for    to pass through a series 

of compartments before entering the central compartment to bind the therapeutic protein drug. In the 

central compartment (in the plasma), ADA can reversely bind the therapeutic protein drugs. As a 

result, the binding process will reduce the amount of ADA and drugs in the plasma by 
   

  
     

with    representing the distribution volume for ADA and the ADA-drug complex and     

representing the rate constant of the ADA-drug binding process. With repeated dose, the bond 

between ADA and the drug to form a complex will be strengthened such that an affinity maturation 

achieved and the opportunity to break down the complex bond into ADA and free drug becomes 

smaller or almost zero. Therefore,      will decrease as the time increase. The decreasing of      is 

modeled as an exponential function, 

                       (1) 

where    represents the initial value of      and a represents the rate constant for      to change 

with time [21]. In addition, the complex bond of ADA-drug is naturally eliminated by the body at a 

constant rate   . As well as the drugs and ADA in the plasma which are eliminated at constant rate 
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   and   , respectively. Besides the drug is binding to ADA to form a complex, therapeutic protein 

drugs in the plasma are also can be distributed to the tissues with a constant rate of    . Vice versa, 

the protein drug in the tissues can be distributed back to the plasma with a rate constant of    . By 

following these assumptions, we then have a nonlinear differential equation in term of a 

non-autonomous system that describes the dynamics of the pharmacokinetic of ADA and therapeutic 

protein drug, 

   

  
 

         

    
   

        
 

   

  
        

       
   

  
                 

   

  
                       

   

  
                   (2) 

   

  
 

   

  
                     

   

  
                

with              , initial conditions          
            

            
 

   and the historical functions:                                         , for        
  . Throughout the next sections, we define         and          as     

 and     
, 

respectively.  

2.2. Autonomous model 

Consider the rate constant of decomposition of ADA and drug complex in (1). From the 

previous studies [21,22], it suggested that the      of antibodies is more variable during affinity 

maturation. If we assume that a, i.e. the rate constant for      to change with time, is a varying 

parameter then a can be considered as a perturbation parameter. Let      decreases as a increases. 

Then as    , for any time    , the      will converge to the zero-disassociation rate meaning 

that the complexes are binding tightly, and affinity maturation quickly achieved. This fact can occur 

for some cases of high-affinity antibodies which bind quickly to the antigen [23,24]. As a result, the 

non-autonomous system (2) becomes an autonomous system as follows 

   

  
 

         

    
   

        
   

   

  
        

       
   

  
        

   

  
                       

   

  
          (3) 
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Obviously, the complex with tight-binding rate (affinity maturation) is the limiting case of the 

immunogenicity system as the rate constant     for some    . This case will be analytically 

analyzed in the further section. On the other hand, the non-autonomous system (2a) can become 

equivalent to a six-dimensional autonomous system by introducing an additional differential 

equation as follows 

     

  
    

where        . This six-dimensional autonomous system will be numerically analyzed to 

calculate the numerical solutions of the system and to study effects of varying of rate constant a to 

the response immune system with or without delays. 

3. Results and discussions 

3.1. The qualitative analysis of the autonomous model 

In this section, we study the qualitative behavior of the system (3) by considering different cases 

of delay. The qualitative analysis consists of the study of steady-state solutions, their local stability, 

and the existence of local bifurcations of the fixed point. Some discussions and interpretations are 

included along with the analysis of the model. 

3.1.1. Steady-state analysis 

The steady-states of the model are obtained by setting the system (3) equals to zero such that we 

have a solution       
    

    
    

    
 
   where 

  
  

       
 

     
     

   

  
  

       
 

   
     

 
     

                   
  

   

  
  

       
 

   
     

 
      

 

                  
    

  
  

   

   
   

   

The solution of   
 
is the positive roots of a cubic polynomial,  

    
      

         =0,        (4) 

with 
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      . 

Since      and     , possible sign changes for coefficients (4) are given as follow 

   
    

            

We can observe that there exists at most three changes of sign and at least one change of sign for the 

coefficients of the polynomial (4). Using Descartes’ rule of sign [27], we get that a unique positive 

steady-state exists if one of the following conditions is satisfied, i.e. 

(H1)      
      

           
   or        . 

So, the condition H1 ensures that Eq (3) has only one positive root for   , the amount of free 

protein drugs in the plasma. Therefore system (3) has only one steady-state solution, namely     if 

it fulfills condition H1. 

3.1.2. Local stability and bifurcation analysis 

By linearizing system (3) using Taylor expansion around   , we get the linearized system as 

follows,  

                                       (5) 

with 

      

 
 
 
 
 
 
  

    

  
    

  
    

  
    

  
     

 
 
 
 
 

      

 
 
 
 
 
     

     

     

     

      
 
 
 
 

         

 
 
 
 
 
        

        

        

        

         
 
 
 
 

         

 
 
 
 
 
        

        
        
        
         

 
 
 
 

  

and the Jacobian matrices, 
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System (5) has a characteristic equation in term of implicit function that contains an exponential 

form that depends on λ (see for instance [25,26] for the references of this method), i.e. 

           
     

     
          

     
     

          
       (6) 

      
            

             

with 

                          

                                                  

                         

                                      

                                            

                                    

                                               

                                                                           

                                                                          

Note that        for all            . Solution of the implicit function (6) is difficult to find 

explicitly. Therefore, the local stability of    will be studied by considering the following three 

cases based on the value of   ,      .  

Case 1:         

Suppose        , then Eq (   becomes 

           
          

              
                           (7) 

Let                                                             

Based on the Routh-Hurwitz stability criteria [22], Eq (   will produce roots with negative real parts 

if it fulfills the following conditions (H2), 

1)             

2)     
    

   
               

3)     

      

     

     

                
    

        



7184 

AIMS Mathematics  Volume 5, Issue 6, 7176–7198. 

4)     

       
      
       

      

                             
   

    
      

  

    
         

5)     
 

        
       
        
       
        

 
 
                

                    
   

  

  
      

      
         

Therefore in the absence of delay, the steady-state       
    

    
    

    
 
  will be stable if it 

fulfills H1 and H2 conditions.  

Case 2:           

If we consider      and      then Eq (   becomes, 

      
     

     
      

    
     

           
                      

        (8) 

Like Eq (6), Eq (8) forms a transcendental equation in   and    that has infinitely many 

solutions. Routh-Hurwitz stability criteria are not applicable to determine the solutions of Eq (8). 

Since the locally asymptotically stability of    is determined by the sign of the real part of  , 

therefore investigating the stability of    is similar to investigating the sign of the real part of the 

roots of (8) in the presence   . It is interesting to investigate whether the stability of   loss if the 

root crosses the imaginary part from left to the right (a purely complex root exists). For that purpose, 

we can assume that Eq (8) has an imaginary root,      with    . By substituting      into 

Eq (8), we have the following equation, 

                                                                    
                       

                  (9) 

Consider that 

                                  (10) 

If we substitute (10) into Eq (9) then we get  

                                                                      

                                                                    

                                                        (11) 

Equation (11) is fulfilled iff 

                                                        

                                          (12) 

and 
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                              (13) 

If Eqs (    and      are eliminated, we get the following two solutions, 
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with  

    
       

                          
                           

 

                               
          

   

By squaring and adding both Eqs (    and (   , we have 
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with 

     
    

        

                        
    

        

            
                

                      

                        
                

    

            
   

Let     , then Eq (    can be rewritten as 

      
     

     
                 (17) 

Suppose            (H3). Since      then according to Descartes’ rule of sign, 

Equation (    has only one positive root, namely    such that       .  

Let      . Notice that the unique solution          of (14) and (15) is  
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if         , and   

            
             

                                  
  

 

 
                                            

  

 

 
                         

 
   

if         . If we define two sequences    
       and    

       for           then we have 

solutions for    corresponding to      as follow 
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Suppose that   
            

     
   

     
    then   

  becomes the minimum critical time delay 

that will generate purely imaginer solutions for Eq (8). Since for     ,    is asymptotically 

stable under some Routh-Hurwitz conditions then for     <  
 , the steady-state    remains 

stable. To study the existence of Hopf bifurcation in model (3), it is interesting to investigate the 

direction of motion of   when    is varied. It means that we must investigate the transversality 

condition        

   
 
      

 

. If the transversality condition is positive, then there exists at least one 

eigenvalue with positive real part for      
  and preserving the conditions for the existence of a 

periodic solution. Now suppose that                    is the solution of Eq (8). So, 

    
     and     

       Next, we will investigate      
      

   
       

    where the      is 

a signum function and       stands for the real part of eigenvalue  . Let us consider Eq (8). 

Differentiating (8) with respect to   , we have  

         
      

          

      
      

                     

       
     

           
                       

     
  

   

           
     

           
                       

(20) 

which gives 

 
  

   
 

  

 
        

      
         

                                               

 
    

      
                     

                                           
 

  

 
   

(21) 

From Eq (8), we have 

       
                     

                                       
        (22) 

By substituting (22) into (21) we have 

 
  

   
 

  

  
                       

                       
 

                               

                                           
 

  

 
   (23) 

Evaluate  
  

   
 
  

at      
  and take the real part, we have 
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Evaluate Eq (15) at     , we have 
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Substitute (25) into (24) gives 
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From Eq (16), for        let  
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Then Eq (26) can be rewritten as 

    
  

   
 

  

      
   

       

    
            

            
 

      
            

  
 
   

Since  
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Based on the assumptions applied for Descartes’ rule of sign in Eq (16), condition H2, we have 

       . Then we get      
      

   
       

      This result implies that the transversality 

condition holds, hence the model (2) undergo Hopf bifurcation at     ,      
   Summarizing 

our results for the second case of analysis, we have the following theorem. 

Theorem A. Under the conditions H1–H3, system (2) experiences Hopf bifurcation around the 

positive steady-state       
    

    
    

    
 
  at      and      

 . Moreover, if      

and      
 ,    is locally asymptotically stable; otherwise,    is unstable. 

Case 3:         

In this case, we assume that the delays exist both in the injection of therapeutic protein and the 

distribution of ADA from the depot to the plasma. If      and      then we have 

      
     

     
          

     
     

          
    

      
            

             

(27) 

a transcendental equation which depends on  ,   , and   . In the same way, as we have done in 

case 2, we assume           Then we have  

                                    

                                     
     

                        
              

(28) 

Since 
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and 

                                       

                                    

                                        

then Eq (28) becomes 

                                                      

                                                     

                                                            

                              
                                                               

                          

                                        

                                                                 

    
(29) 

Equation (29) is fulfilled iff 

                                                     

                                                     

                                                            

                               
(30) 

and 

                                                                          

                                                     

                                                                    

(31) 

By eliminating Eqs (30) and (31), we have 
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By dividing Eqs (32) and (33), we have 

                                                    
 

                                                       
 

                                             
 

                                                        

       
                                

 

                               

                                                    
 

                                           
 

                             

                                  
 

                                             
 

                                                 
 

                           

(34) 

Equation (34) shows the relation between    and   . Solutions of the transcendental function (34) 

are a pair of critical time delay   
  and   

  that will generate a periodic solution with purely 

imaginary eigenvalues. Suppose Eq (34) is written as an implicit function           . We get the 

zeros of G numerically as presented in Figure 2. The red line in Figure 2 represents a collection of 

        that satisfies Eq (34).  

 

Figure 2. Level curve of transcendental function           . 
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3.2. Numerical simulations 

In this section, numerical solutions of the system (2) are studied by solving the nonlinear delay 

differential Eq (2) using dde23 function in Matlab (Runge-Kutta for delay differential equation, see [28] 

for detail about the method). The set of parameter values used in this simulation is taken from [21] 

that estimated from pharmacokinetic of Interferon-Fc Fusion which is a type of therapeutic protein 

(see Table 1). Some parameter values are assumed such as the number of drug doses injected into the 

body via subcutaneous (ID), the constant rate of koff (a), and the rate constant of binding ADA-drug 

complex (kon). The initial amount of ADA free in plasma is        mol/kg, the initial amount of 

free therapeutic protein drug in tissue is          mol/kg, and the initial amount of ADA-drug 

complexes in plasma is        mol/kg. Whereas, the historical functions used for compartments 

that experience delay is        mol/kg for free therapeutic protein drug in plasma, and        

mol/kg for ADA in the depot. 

Table 1. Summary of parameter values taken from [21]. 

Parameter Value Unit Parameter Value Unit 

           h
−1           h

−1 

          h
−1           h

−1 

            h
−1          h

−1 

         h
−1                 mol/kg 

         h
−1                mol/kg 

Figure 3 shows the dynamic of ADA in the depot and the plasma in the absence of delay on the 

distribution of ADA from depot to the plasma. We can observe that the amount of ADA in the depot 

is declining over time as ADA in the plasma is increasing. This occurs because the ADA in the depot 

enters the plasma directly without delay, which then forms a complex to bind drugs that are 

considered foreign to the body. Similar behavior occurs for the amount of drug wherein the absence 

of delay in the drug accumulation causes the amount of the drug in plasma increases, and the amount 

is higher than the amount in the tissue since when the injection occurs plasma is the first 

compartment that is entered by the drug. When the binding rate of ADA-drug complex in plasma is 

enlarged, the amount of ADA in plasma decreases along with the increasing of ADA-drug complex 

(see Figure 4). We can also observe that the increasing binding rate of ADA-drug complex only 

affects the amount of ADA and ADA-drug complex. High binding rate is not affect the amount of 

drug in the plasma due to the injection occurs directly without delay. Furthermore, when the 

disassociation rate constant of ADA-drug complex is variated, we can observe in Figure 5 that the 

perturbation is almost does not affects the change of drug amount in the plasma for long time 

observation. The perturbation only affects the amount of ADA and ADA-drug complexes in the 

plasma. The amount of ADA in the plasma decreses as the disassociation rate constant is also 

decrease (i.e. as    ). It means that the affinity maturation was achieved as the saturation of 

ADA-drug complex occured.  
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Figure 3. Time evolution of drug and ADA in the absence of delays with          

    per hour. 

 

Figure 4. Time evolution of drug, ADA, and ADA-drug complex in the absence of 

delays for different binding rate of ADA-drug complex: (a)              per hour 

and (b)              per hour. 
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Figure 5. Time evolution of drug and ADA in the absence of delays with              

per hour and different koff as a function of (a, t). 

Next, assume that there exists effect of delay on the drug acumulation that affects the 

production of ADA bolus in the depot and assume that delay also occurs at the distribution of ADA 

from the depot to the plasma. Based on the previous analysis (see Figure 1) and by using parameter 

values in Table 1, we have                      . In Figure 6 we can observe that existence of 

delays affects directly the amount of ADA, drug, and ADA-drug complex in the plasma compartment. 

There exists ossilatory pattern in the transient behaviour of the system that clearly describes the 

apperance of Hopf bifurcation on the system. As we can see on Figure 6 that high binding rate of 

ADA-drug complexes indicates high immunogenicity on therapeutic protein pharmacokinetics with 

oscillatory behaviour eventhough the oscillatory occurs at a small time interval. When the time 

observation is increased (see Figure 7), the ocsillatory pattern almost unseen due to a small of 

amplitude and a high of frecuency of the solutions. It means that for a large time observation, the 

delays have a small effect to the immunogenicity system on the therapeutic protein 

pharmacokinetics.  

Now let us observe the time evolution of the system in a small-time observation. For studying 

the effect of delay on the pharmacokinetics of therapeutic protein, in Figure 8, we show the dynamic 

of ADA-drug complex in which the amount of the complexes represents the inactivity of the protein 

drug due to the appearance of immune response through the production of ADA that binds the drugs 

to form a complex of ADA-drug. We can observe that the existence of delays on the drug 

accumulation and the distribution of ADA from depot to the plasma causes the amount of the 

complexes in the plasma to go ups and downs. The amount of ADA-drug complex oscillates around 

its steady-state. There exists a certain time in which the number of complexes is high indicating high 

immunogenicity of a therapeutic protein, vice versa, low immunogenicity is observed at a certain 

time of observation. It indicates that the time lag can be adjusted especially the lag that refers to the 

drug accumulation that triggers the production of ADA such that the complex formation between ADA 

and the protein drug due to immunogenicity on the therapeutic protein pharmacokinetic can be delayed. 
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Figure 6. Time evolution of drug, ADA, and ADA-drug complex when delays occur with 

                      for different binding rate of ADA-drug complex: (a) 

             per hour and (b)              per hour. 

Figure 7. Time evolution of drug, ADA, and ADA-drug complex when delays occur in a 

long-time observation. 
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Figure 8. Effect of delay on the evolutionary time of the ADA-drug complex which 

shows the level of immunogenicity due to the injection of therapeutic protein drugs. 

4. Conclusions 

We studied a mathematical model of immunogenicity on therapeutic protein pharmacokinetics 

by considering the interaction of ADA and the protein drug with delay on the response of the ADA 

production due to drug accumulation (injected therapeutic protein drug doses) and natural delay on 

the ADA entry process from the depot into the plasma. Effects of the delays on the system caused a 

change in the stability behavior and the growth rate of each compartment. With delay factor, 

compartments experienced slower growth or faster decline. In addition, the delay also affected the 

behavior of the model solutions. It was initially evolved exponentially to oscillate, and Hopf 

bifurcation appeared in certain compartments. The delay factor also influenced the number of ADA 

in the depot to be greater than in the plasma. This was a good effect on the host body because the 

amount of ADA in the plasma that would deactivate the drug performance was quite small, so the 

drug could have more optimal effects on the host body. An appropriate critical delay could be chosen 

based on the critical time delay obtained on the analysis results. 
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