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1. Introduction

Many problems arising in diverse applied fields ranging from physics, economics, optimization
to engineering can be formulated as variational inequalities. Actually, the variational inequality
problem achieves its present-day status as a lively and fruitful area of research through the evolution
of three major events [11]. First is the experience of the PIES (Project Independence Evaluation
System) energy model [1] which was developed at the U.S. Department of Energy in the late 1970’s
provided a useful piece of practical evidence demonstrating the inability of the fixed-point methods in
handling real-life applications. The second event is the publication of a paper by Smith [25] which
formulated the traffic assignment problem as a variational inequality. The last event was initiated
by Lars Mathiesen [21, 22] who attempted to solve the Walrasian or general equilibrium model of
economic activities with some of the recent techniques developed for the nonlinear complementarity
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problem, which supports the benefits of the variational inequality problem approach for solving large-
scale equilibrium problems. Historically, variational inequality theory, where the function is a vector-
valued mapping, was introduced by Hartman and Stampacchia [12] in 1965. The most basic result on
the existence of solutions to the variational inequality VI(M, F) requires the set M to be compact and
convex, and the mapping f to be continuous [7], which is given by Brouwer’s fixed-point theorem.
Later, extended conclusions are derived by replacing the compactness of the set M by closed (which
is possibly unbounded) with additional conditions on F (e.g., pseudo-monotone, strongly monotone,
coercive with respect to M) [7, 8, 11].

It is well known that the theory of set-valued mappings, beside being an important mathematical
theory, has become an significant tool in many practical areas, especially in economic analysis [18]. In
1982, Fang [9] extended the variational inequality to the generalized variational inequality, where the
function is a set-valued mapping. The generalized variational inequality, is to find x ∈ M and y ∈ f (x)
such that

yT (x′ − x) ≥ 0, ∀x′ ∈ M, (1.1)

where M ⊆ Rn, and f : M → 2Rn
is a set-valued function. The most fundamental existence theorem

for GVI(M, F) can be proved by Kakutani fixed-point theorem which is for set-valued function. It is
worth noting that there is an equivalence between set-valued mappings and binary relations, and the
more convenient discussion framework system can be chosen between the two according to the actual
needs. Thus, for a given set-valued mapping f on M, the generalized variational inequality (1.1) can
also be represented as follows: the generalized variational inequality, denoted by GVI(M,Γ), is to find
all solutions (x, y) such that

x ∈ M,
〈y, x′ − x〉 ≥ 0, ∀x′ ∈ M,
(x, y) ∈ Γ,

(1.2)

where M ⊆ Rn, and Γ ⊆ Rn × Rn is a relation on Rn.
In the classical set, the nature of the element is required to be explicit, that is, it can be explicitly

indicated that any element has or does not have this property. However, in the objective world, many
phenomena have fuzziness, which are based on numerous fuzzy phenomena and multi-valued logic,
and therefore can not be described by the classical set. For example, the linguistic interpretations
such as “young” and “old”, “long” and “short”, are fuzzy concepts in people’s concepts. In 1965,
Zadeh [30] introduced the fuzzy set theory and enabled us to represent our knowledge under varied
interpretations and axiomatic foundations from linguistic to computational representations. A fuzzy
set u on R is a mapping u : R → [0, 1], and u(x) is the degree of membership of the element x in
the fuzzy set u. The fuzzy set is a generalization of the classical set whose characteristic function is
valued in {0, 1}. By fuzziness, we mean a type of imprecision which is associated with fuzzy sets, that
is, classes in which there is no sharp transition from membership to nonmembership. In fact, in sharp
contrast to the notion of a class or a set in mathematics, most of the classes in the real world do not
have crisp boundaries which separate those objects which belong to a class from those which do not.
For notational purposes, it is convenient to have a device for indicating that a fuzzy set is obtained from
a nonfuzzy set by fuzzifying the boundaries of the latter set. In 1970, Bellman and Zadeh [4] employed
a wavy bar under a symbol which defines the nonfuzzy set.
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Recently, Torra [26] introduced the concept of hesitant fuzzy set (HFS) as an extension of the FS in
which the membership degree of a given element, called the hesitant fuzzy element (HFE), is defined
as a set of possible values. This situation can be found in a group decision making problem. To clarify
the necessity of introducing the HFS, consider a situation in which two decision makers discuss the
membership degree of an element x to a set A, one wants to assign 0.2, but the other 0.4. Accordingly,
the difficulty of establishing a common membership degree is not because there is a margin of error or
some possibility distribution values, but because there is a set of possible values. In 2018, Alcantud
and Torra investigated decomposition theorems and extension principles for the hesitant fuzzy set [2].
In 2019, Xie and Gong [27] proposed a hesitant soft fuzzy rough set model and established an approach
to decision making problem based on this model.

On the other hand, the classical binary relations was also extended to the fuzzy binary relations
on two ordinary sets [16]. For two given ordinary sets A and B, a fuzzy relation is a fuzzy subset
of the set A × B. The uncertainty environment for a variational inequality leads to certain degrees of
fuzziness in the classical relation. In 2001, Hu [13] introduced the fuzzy variational inequality over
a compact set by using the tolerance approach. Subsequently, Hu [14] investigated the generalized
variational inequality with fuzzy relation and showed that such problems can be transformed into
regular optimization problems. In 2009, Hu and Liu [15] discussed mathematical programs with
fuzzy parametric variational inequalities. In 2019, Xie and Gong [28] investigated the generalized
variational-like inequalities for fuzzy-vector-valued functions. In this paper, we further discuss the
generalized variational inequality with hesitant fuzzy relation. In addition, real-time solutions to
theses problems are always needed in engineering applications, and thus they have to be solved in real
time to optimize the performance of dynamical systems. As parallel computational models, recurrent
neural network possess many desirable properties for real-time information processing. In 2003, M.A.
Noor [24] investigated some implicit projected dynamical systems associated with quasi variational
inequalities by using the techniques of the projection and the Wiener-Hopf equations. Indeed, by
means of level sets of the hesitant fuzzy relations, the generalized variational inequality with hesitant
fuzzy relation can be transformed into the classical (nonfuzzy) generalized variational inequality. Thus,
we further propose a projection neural network for solving such problem, which is a dynamical system,
and discuss the stability of the projected dynamical system.

The rest of the paper is organized as follows. In Section 2, we recall some preliminaries related to
hesitant fuzzy sets. In Section 3, we introduce the generalized variational inequality with hesitant fuzzy
relation. In Section 4, the existence theorem and iterative algorithm of solutions to the generalized
variational inequality with hesitant fuzzy relation are given. In Section 5, based on the projection
method, we propose a projection neural network for solving the proposed problem and the stability of
the projected dynamical system is investigated. Section 6 concludes this paper.

2. Preliminaries

For convenience of the reader, the basic properties of hesitant fuzzy sets are presented in this section.

Definition 2.1. [3, 26] Let U be a fixed set, a hesitant fuzzy set (HFS) on U is in terms of a function
hE that when applied to U returns a subset of [0, 1]. To be easily understood, we express the HFS by a
mathematical symbol

E = {〈x, hE(x)〉|x ∈ U},
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where hE(x) is a set of some values in [0, 1], representing the possible membership degrees of the
element x ∈ U to the set E. For convenience, we call h = hE(x) a hesitant fuzzy element (HFE) and
H(U) the set of HFSs on U. In particular, if hE(x) is a non-empty and finite subset of [0, 1], HFS is
called a typical hesitant fuzzy set (THFS).

For each typical hesitant fuzzy set E on U, let

hE(x) = {h1
E(x), · · · , hlM(x)

E (x)},

where h1
E(x) < · · · < hlE(x)

E (x) and lE(x) = |hE(x)| is the cardinality of the HFE hE(x).
Let U be the universe of discourse, ∀F,G ∈ H(U), then [26]
(i) the complement of F is denoted by Fc such that ∀x ∈ U,

hFc(x) =∼ hF(x) = {1 − h : ∀h ∈ hF(x)};

(ii) the intersection of F and G is denoted by F ∩G such that ∀x ∈ U,

hF∩G(x) = hF(x) ∧ hG(x) = {h ∈ hF(x) ∪ hG(x) : h ≤ min{h+
F(x), h+

G(x)}};

(iii) the union of F and G is denoted by F ∪G such that ∀x ∈ U,

hF∪G(x) = hF(x) ∨ hG(x) = {h ∈ hF(x) ∪ hG(x) : h ≥ max{h−F(x), h−G(x)}};

where h+
F(x) is the upper bound of F, i.e., h+

F(x) = max{h : h ∈ hF(x)}, and h−F(x) is the lower bound of
F, i.e., h−F(x) = min{h : h ∈ hF(x)}.

(iv) We say F ⊆ G if and only if hF(x) � hG(x) for any x ∈ U, i.e., h−F(x) ≤ h−G(x) and h+
F(x) ≤ h+

G(x).

Proposition 2.2. [29] Let F,G and H be HFSs on U, then for any x, y, z ∈ U, the following properties
hold:

(1) Idempotent:
hF(x) ∧ hF(x) = hF(x), hF(x) ∨ hF(x) = hF(x).

(2) Commutativity:

hF(x) ∧ hG(y) = hG(y) ∧ hF(x), hF(x) ∨ hG(y) = hG(y) ∨ hF(x).

(3) Associativity:
hF(x) ∧ (hG(y) ∧ hH(z)) = (hF(x) ∧ hG(y)) ∧ hH(z),
hF(x) ∨ (hG(y) ∨ hH(z)) = (hF(x) ∨ hG(y)) ∨ hH(z).

(4) Distributivity:

hF(x) ∧ (hG(y) ∨ hH(z)) =(hF(x) ∧ hG(y)) ∨ (hF(x) ∧ hH(z)),
hF(x) ∨ (hG(y) ∧ hH(z)) =(hF(x) ∨ hG(y)) ∧ (hF(x) ∨ hH(z)).

(5) De Morgan’s laws:

∼ (hF(x) ∧ hG(y)) = (∼ hF(x)) ∨ (∼ hG(y)),
∼ (hF(x) ∨ hG(y)) = (∼ hF(x)) ∧ (∼ hG(y)).

(6) Double negation law:
∼ (∼ hF(x)) = hF(x).
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The (α, k)-level set and strong (α, k)-level set associated with E are defined, respectively, as

α,khE = {x ∈ U : |{h ∈ hE(x) : h ≥ α}| ≥ k}

and
α+,khE = {x ∈ U : |{h ∈ hE(x) : h > α}| ≥ k}

for all α ∈ [0, 1] and for all k ∈ {1, 2, · · · }.

Definition 2.3. [2] Let E = {hE(i)}i∈J be a family of hesitant fuzzy sets on U, indexed by the set of
indices J. Then the HFS associated with E, denoted by either hE or

⋃
i∈J

hE(i), is defined as

hE : U → P([0, 1]),

x 7→
⋃
i∈J

hE(i)(x),

where P([0, 1]) denotes the set of all subsets of [0, 1].

Theorem 2.4. [2] Let hE be a typical hesitant fuzzy set on U. Then hE is the HFS associated with the
family of fuzzy sets f = {kH}k∈N+ , i.e.,

hE =
⋃

k=1,2,···
kH,

where 1H(x) = max{α ∈ [0, 1] : x ∈α,1 hE} = hlE(x)
E (x) for each x ∈ U; if 1H, · · · ,k H are known, then

k+1H(x) = max{α ∈ [0, 1] : x ∈α,k+1 hE}, if x ∈α,k+1 hE some α ∈ [0, 1], and k+1H(x) = kH(x) otherwise.

Theorem 2.4 produces a decomposition of any THFS in terms of the simplest THFSs, which are the
fuzzy sets.

Example 2.5. [27] Let U = {x1, x2}, E = {〈x1, {0.3, 0.6, 0.7}〉, 〈x2, {0.4, 0.5}〉}. Then

α,1hE =


{x1, x2}, α ≤ 0.5,
{x1}, 0.5 < α ≤ 0.7,
∅, otherwise,

α,2hE =


{x1, x2}, α ≤ 0.4,
{x1}, 0.4 < α ≤ 0.6,
∅, otherwise,

α,3hE =

{
{x1}, α ≤ 0.3,
∅, otherwise,

and α,4hE = ∅ for each α ∈ [0, 1]. Thus, we have

1H : U → [0, 1]
x1 7→ 0.7,
x2 7→ 0.5,

2H : U → [0, 1]
x1 7→ 0.6,
x2 7→ 0.4,

3H : U → [0, 1]
x1 7→ 0.3,
x2 7→ 0.4,

and 3H = 4H = 5H = · · · . Therefore, hE =
⋃

k=1,2,···
kH = 1H ∪ 2H ∪ 3H.

Definition 2.6. [29] Given a universe U, a hesitant fuzzy relation on U is a hesitant fuzzy set such
that R ∈ H(U × U), i.e., R = {〈(x, y), hR(x, y)〉 : (x, y) ∈ U × U}, where hR(x, y) is a set of the values in
[0, 1], which is used to denote the possible membership degrees of the relationships between x and y.

R is referred to as serial if and only if ∀x ∈ U, there is a y ∈ U such that hR(x, y) = 1; R is referred
to as reflexive if and only if hR(x, x) = 1 holds for each x ∈ U; R is referred to as symmetric if and
only if hR(x, y) = hR(y, x) (∀x, y ∈ U); R is referred to as transitive if and only if hR(x, y) ∧ hR(y, z) �
hR(x, z) (∀x, y, z ∈ U). If a hesitant fuzzy relation R on U is reflexive, symmetric and transitive, we say
R is a hesitant fuzzy equivalent relation on U.
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Definition 2.7. Let R be a hesitant fuzzy relation on U. Then for any α ∈ [0, 1] and any k ∈ {1, 2, · · · },
the (α, k)-level set and strong (α, k)-level set of R, denoted by α,khR and α+,khR, respectively, are defined
as

α,khR = {(x, y) ∈ U × U : |{h ∈ hR(x, y) : h ≥ α}| ≥ k},

α+,khR = {(x, y) ∈ U × U : |{h ∈ hR(x, y) : h > α}| ≥ k}.

For any x ∈ U, let
[R(x)]k

α = {y ∈ U |(x, y) ∈ α,khR}.

Theorem 2.8. Let R be a hesitant fuzzy relation on U. If R is typical, then R is a hesitant fuzzy relation
associated with the family of fuzzy relations R = {tR}t∈N+ on U, i.e.,

hR =
⋃

t=1,2,···
tR,

where 1R(x, y) = max{α ∈ [0, 1] : (x, y) ∈ α,1hR} = hlR(x,y)
R (x, y) for each (x, y) ∈ U × U. If 1R, · · · , tR

are known, then t+1R(x, y) = max{α ∈ [0, 1] : (x, y) ∈ α,t+1hR} for (x, y) ∈ α,t+1hR some α ∈ [0, 1];
t+1R(x, y) = tR(x, y) otherwise.

Proof. Since R is a typical hesitant fuzzy relation, then according to Theorem 2.4, it is not difficult to
prove the conclusion. �

Example 2.9. Assume that Mr. X wants to buy a car. Let U = {u1, u2, u3, u4, u5, u6} be a set of six
candidate cars. Suppose that the set of candidate cars U can be characterized by a set of parameters
V = {v1, v2, v3, v4}, where v j ( j = 1, 2, 3, 4) stand for “being cheap”, “being beautiful”, “being
safe” and “being comfortable”, respectively. The characteristics of six candidate choices under
four parameters are represented by a hesitant fuzzy relation matrix R(ui, v j)6×4, which describes the
attractiveness of the cars which Mr. X is going to buy, as follows:

R =



0.6, 0.7 0.4, 0.5, 0.6, 0.7 0.5, 0.6, 0.7 0.4, 0.5, 0.6, 0.7
0.4, 0.5, 0.6, 0.7 0.6, 0.7, 0.8 0.6, 0.7, 0.8 0.5, 0.7, 0.8

0.5, 0.6, 0.7 0.6, 0.7, 0.8 0.8, 0.9 0.6, 0.7, 0.8
0.4, 0.5, 0.6, 0.7 0.5, 0.7, 0.8 0.6, 0.7, 0.8 0.7, 0.9

0.5, 0.6 0.4, 0.5, 0.6 0.5, 0.6, 0.7 0.5, 0.6
0.3, 0.4, 0.5, 0.6 0.6, 0.7 0.7 0.6, 0.7


.

By Theorem 2.8, we have hR =
4⋃

t=1
tR, where

1R =



0.7 0.7 0.7 0.7
0.7 0.8 0.8 0.8
0.7 0.8 0.9 0.8
0.7 0.8 0.8 0.9
0.6 0.6 0.7 0.6
0.6 0.7 0.7 0.7


, 2R =



0.6 0.6 0.6 0.6
0.6 0.7 0.7 0.7
0.6 0.7 0.8 0.7
0.6 0.7 0.7 0.7
0.5 0.5 0.6 0.5
0.5 0.6 0.7 0.6


,
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3R =



0.6 0.5 0.5 0.5
0.5 0.6 0.6 0.5
0.5 0.6 0.8 0.6
0.5 0.5 0.6 0.7
0.5 0.4 0.5 0.5
0.4 0.6 0.7 0.6


, 4R =



0.6 0.4 0.5 0.4
0.4 0.5 0.6 0.5
0.5 0.5 0.8 0.6
0.4 0.5 0.5 0.7
0.5 0.4 0.5 0.5
0.3 0.6 0.7 0.6


.

3. The generalized variational inequality with hesitant fuzzy relation

Definition 3.1. Let M ⊆ Rn, f : M → 2Rn
be a set-valued mapping, and R is a hesitant fuzzy relation on

M×Rn. Then the generalized variational inequality with hesitant fuzzy relation, denoted by GVI(M,R),
is defined as

find (x, y)
s.t. x ∈ M,

〈y, x′ − x〉 ≥ 0, ∀x′ ∈ M,
〈(x, y), hR(x, y)〉 ∈ R,

(3.1)

where R = {〈(x, y), hR(x, y)〉 : y =
∼

f (x)} ⊆ H(Rm × Rm), here the wavy bar under a symbol plays the role
of a fuzzifier, that is, a transformation which takes a nonfuzzy set into a fuzzy set which is approximately
equal to it. In other words, y =

∼
f (x) is a fuzzy equality and “=

∼
” denotes the fuzzified version of “=”

with the linguistic interpretation “approximately equal to”.

Remark 3.2. For y, f (x) ∈ Rn, since y =
∼

f (x), then y j =
∼

f j(x), j = 1, 2, · · · , n, which actually determines
a hesitant fuzzy set, whose membership function denoted by hR j , j = 1, 2, · · · , n. The membership grade
hR j(x, y) can be interpreted as the degree to which the regular equality y j = f j(x), j = 1, 2, · · · , n, is
satisfied. It is commonly assumed that hR j(x, y) should be 0 if the regular equality y j = f j(x) is strongly
violated, and 1 if it is satisfied. In this sense, for j = 1, 2, · · · , n, we can obtain a membership function
hR j in the following forms

hR j(x, y) =


1, y j − f j(x) = 0,
hl j(y j − f j(x)), −c j ≤ y j − f j(x) < 0,
hr j(y j − f j(x)), 0 < y j − f j(x) ≤ d j,

0, otherwise,

where c j, d j ≥ 0, are the tolerance levels which a decision maker can tolerate in the accomplishment
of the fuzzy equality y j =

∼
f j(x).

Remark 3.3. If R is a fuzzy relation on M × Rn, then (3.1) reduces to the generalized variational
inequality with fuzzy relation proposed by Hu [14].

Remark 3.4. Since all the components of y =
∼

f (x) have to be satisfied, for the hesitant fuzzy relation
R, we define its membership function as

hR(x, y) =
⋃

j=1,2,··· ,n

{hR j(x, y)}.
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Definition 3.5. We say (x, y) is a (α, k)-level solution to the problem GVI(M,R) if (x, y) solves the
problem, denoted by GVI(M, α,khR),

find (x, y)
s.t. x ∈ M,

〈y, x′ − x〉 ≥ 0, ∀x′ ∈ M,
〈(x, y), hR(x, y)〉 ∈ α,khR,

(3.2)

where α ∈ [0, 1], k ∈ N+, α,khR = {(x, y) ∈ M × Rm : |{h ∈ hR(x, y) : h ≥ α}| ≥ k}.

4. The existence theorem and iterative algorithm of solutions to the generalized variational
inequality with hesitant fuzzy relation

Definition 4.1. Let M ⊆ Rn, and R be a hesitant fuzzy relation on M × Rn. For all x1, x2 ∈ M, R is said
to be

(1) monotone, if for all y1 ∈ [R(x1)]k
α, y2 ∈ [R(x2)]k

α,

〈y1 − y2, x1 − x2〉 ≥ 0.

(2) strongly monotone, if there exists a constant δ ∈ (0, 1) such that

〈y1 − y2, x1 − x2〉 ≥ δ‖x1 − x2‖

for all y1 ∈ [R(x1)]k
α, y2 ∈ [R(x2)]k

α, where ‖·‖ and 〈·〉 denote norm and inner product on Rn, respectively.
(3) pseudo-monotone, if for all y1 ∈ [R(x1)]k

α, y2 ∈ [R(x2)]k
α,

〈y1, x2 − x1〉 ≥ 0⇒ 〈y2, x2 − x1〉 ≥ 0.

(4) Lipschitz continuous, if there exists a constant L ∈ (0, 1) such that

D([R(x1)]k
α, [R(x2)]k

α) ≤ L‖x1 − x2‖,

where D is the Hausdorff metric on Rn.

Definition 4.2. [5] The distance of a point x0 ∈ Rn to a closed set C ⊆ Rn, in the norm ‖ · ‖, is defined
as

dist(x0,C) = inf{‖x0 − x‖ : x ∈ C}.

The infimum here is always achieved. We refer to any point z ∈ C which is closest to x0, i.e., satisfies
‖z − x0‖ =dist(x0,C), as a projection of x0 on C, denoted by PC(x0).

In other words, PC : Rn → C, and PC(x0) = argmin{‖x0 − x‖ : x ∈ C}, we refer to PC as projection
on C.

Lemma 4.3. [17] Let M ⊆ Rn be a closed and convex set. Then

(x − PM(x))T (y − PM(x)) ≤ 0, ∀x ∈ Rn,∀y ∈ M, (4.1)
‖PM(x) − PM(y)‖ ≤ ‖x − y‖, ∀x, y ∈ Rn. (4.2)
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Theorem 4.4. Let M ⊆ Rn, R be a hesitant fuzzy relation on M×Rn. If R is Lipschitz continuous. Then
there exists a point x ∈ M such that x ∈ [R(x)]k

α, where α ∈ [0, 1], k ∈ N+, that is, x is a fixed point of
R.

Proof. Let x0 ∈ M and x1 ∈ [R(x0)]k
α. Then there exists x2 ∈ [R(x1)]k

α and

‖x2 − x1‖ ≤ L‖x1 − x0‖,

where L ∈ (0, 1). Since R and x2 ∈ [R(x1)]k
α, there is a point x3 ∈ [R(x2)]k

α such that

‖x3 − x2‖ ≤ L‖x2 − x1‖ ≤ L2‖x1 − x0‖.

Then we can obtain a sequence {xn} of points of M satifying xn+1 ∈ [R(xn)]k
α and

‖xn+1 − xn‖ ≤ L‖xn − xn−1‖ ≤ Ln‖x1 − x0‖

for all n ≥ 1. Therefore, we have

‖xn+m − xn‖ ≤‖xn+m − xn+m−1‖ + ‖xn+m−1 − xn+m−2‖ + · · · + ‖xn+1 − xn‖

≤(Ln+m−1 + · · · + Ln)‖x1 − x0‖

≤
Ln

1 − L
‖x1 − x0‖

for all n,m ≥ 1, thus, the sequence {xn+1} is a Cauchy sequence, which implies that xn → x ∈ Rn.
Therefore, the sequence [R(xn)]k

α converges to xn+1 ∈ [R(x)]k
α weakly, and since xn+1 ∈ [R(xn)]k

α for all
n, then x ∈ [R(x)]k

α, therefore, x is a fixed point of R. �

Theorem 4.5. Let M ⊆ Rn be a closed and convex set, R be a hesitant fuzzy relation on M × Rn. Then
(x, y) is a solution of GVI(M,R) if and only if

x = PM[x − ρy], (4.3)

where y ∈ [R(x)]k
α for α ∈ [0, 1], k ∈ N+, ρ > 0 is a constant, and PM is the projection of Rn on to M.

Proof. If (x, y) is a solution to GVI(M,R), then x ∈ M, y ∈ [R(x)]k
α, and

〈y, x′ − x〉 ≥ 0, ∀x′ ∈ M.

Thus, for a constant ρ > 0, we have 〈ρy, x′ − x〉 ≥ 0, ∀x′ ∈ M. Then for all v ∈ M,

‖v − (x − ρy)‖2 =‖v − x‖2 + 2〈v − x, ρy〉 + ‖ρy‖2

≥‖ρy‖2

=‖x − (x − ρy)‖2.

Therefore, x = min
x∈M

1
2‖v − (x − ρy)‖2, that is, x = PM[x − ρy], where ρ > 0.

Conversely, if x = PM[x − ρy], and y ∈ [R(x)]k
α, where ρ > 0, then x ∈ M. By (4.1) of Lemma 4.3,

we obtain
〈PM[x − ρy] − (x − ρy), v − PM[x − ρy]〉 ≥ 0, ∀v ∈ M,

that is,
〈x − (x − ρy), v − x〉 ≥ 0, ∀v ∈ M,

thus, we have 〈ρy, v − x)〉 ≥ 0, ∀v ∈ M. Since ρ > 0 is a constant, then 〈y, v − x)〉 ≥ 0, ∀v ∈ M, where
y ∈ [R(x)]k

α. Therefore, (x, y) is a solution of GVI(M,R). �
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Theorem 4.5 indicates that GVI(M,R) is equivalent to the following fuzzy fixed point problem

H(x) = PM[x − ρy], (4.4)

where y ∈ [R(x)]k
α. Accordingly, we can give the following iterative algorithm.

Algorithm 1 For a given x0 ∈ M such that y0 ∈ [R(x0)]k
α, where α ∈ [0, 1], k ∈ N+.

Step 1. Let
x1 = PM[x0 − ρy0],

where ρ > 0 is a constant.
Step 2. Since y0 ∈ [R(x0)]k

α, there exists y0 ∈ [R(x0)]k
α such that ‖y0 − y1‖ ≤ D([R(x0)]k

α, [R(x1)]k
α).

Let
x2 = PM[x1 − ρy1].

Step 3. Find xn and yn by the following iterative methods

‖yn+1 − yn‖ ≤ D([R(xn+1)]k
α, [R(xn)]k

α),
xn+1 = PM[xn − ρyn], n = 1, 2, · · · .

(4.5)

Remark 4.6. Let R be a fuzzy relation on M × Rn, (xn, yn) and (x, y) be the solutions to (4.5) and (3.1),
respectively. If R is strongly monotone and Lipschitz continuous, then xn → x strongly, and yn → y
strongly (see Theorem 3.1 in [23]).

Remark 4.7. Let R be a hesitant fuzzy relation on M ×Rn. If R is Lipschitz continuous, then according
to Theorem 3.1 proved by L.W. Liu and Y.Q. Li in [20], the set-valued operator R cannot be monotone.

5. Stability of the dynamical system for generalized variational inequality with hesitant fuzzy
relation

Let M ⊆ Rn be a closed and convex set, R be a hesitant fuzzy relation on M × Rn. Consider the
following projected neural network associated with the generalized variational inequality with hesitant
fuzzy relation (3.1):

dx(t)
dt

= λ{PM[x − ρy] − x}, x(t0) = x0, (5.1)

where ρ > 0, λ are constants, and y ∈ [R(x)]k
α, α ∈ [0, 1], k ∈ N+. x(t) = (x1(t), x2(t), · · · , xm(t))T

denotes the state vector of neurons, m is the number of neurons, and the initial value x0 is given
randomly. It is a dynamical system.

Without loss of generality, consider the following nonlinear dynamical system [6]{ dx
dt = f (t, x),
x(t0) = x0,

(5.2)

where t ∈ R, x ∈ M ⊆ Rn, x0 is the initial state. If there exists a state x? in the state space satisfying

f (t, x?) = 0, ∀t ≥ t0,
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then we say x? is an equilibrium state or an equilibrium point of the system (5.2). The equilibrium
point x? is said to be stable in the sense of Lyapunov, if for any ε > 0, there exists δ > 0, when
‖x(t0) − x?‖ < δ, we have ‖x(t0) − x?‖ < ε(t ≥ t0); x? is said to be asymptotically stable, if x? is stable
and satisfies x(t) → x?(t → ∞); x? is said to be globally asymptotically stable, if for any initial point,
x? is asymptotically stable; x? is said to be globally exponentially stable, if for any solution of the
system x(t), there exist k > 0, η > 0, such that

‖x(t) − x?‖ ≤ k‖x(t0) − x?‖exp(−η(t − t0)), ∀t ≥ t0.

The system (5.2) is said to globally converges to the set M′ ⊆ Rn, if for any initial point, the solution
of the system x(t) satisfies

lim
t→∞

dist(x(t),M′) = 0,

where dist(x(t),M′) = inf
y∈M′
‖x − y‖.

Lemma 5.1. (LaSalle’s invariance principle) [19] Let f (t, x) be continuous in the system (5.2). If there
exists a continuously differentiable function V : Rn → R1 satisfying the following conditions

(i) there exists a constant r > 0, such that the set Mr = {x ∈ Rn : V(x) ≤ r} is bounded,
(ii) for all x ∈ Mr,

dV(x)
dt ≤ 0,

then for all x0 ∈ Mr, when t → ∞, x(t) converges to the largest invariant subset of the set {x ∈ Rn :
dV(x)

dt ≤ 0}.

Lemma 5.2. (Gronwall’s inequality) [10] Let x(x), y(t) be real-valued nonnegative continuous
functions with domain {t : t ≥ t0}, and let a(t) = a0(|t − t0|), where a0 is a monotone increasing
function. If for t ≥ t0,

x(t) ≤ a(t) +

∫ t

t0
x(s)y(s)ds,

then

x(t) ≤ a(t)exp
( ∫ t

t0
y(s)ds

)
.

Theorem 5.3. Let M ⊆ Rn be a closed and convex set, R be a hesitant fuzzy relation on M×Rn. (x?, y?)
is a solution of GVI(M,R) if and only if x? is an equilibrium point of the dynamical system (5.1).

Proof. According to Theorem 4.5, (x?, y?) is a solution of GVI(M,R) if and only if

x? = PM[x? − ρy?],

where y? ∈ [R(x?)]k
α, ρ > 0 is a constant, that is,

PM[x? − ρy?] − x? = 0,

namely, x? is an equilibrium point of the dynamical system (5.1). �

Theorem 5.4. Let M ⊆ Rn be a closed and convex set, R be a hesitant fuzzy relation on M × Rn. If R is
Lipschitz continuous, then for any x0 ∈ Rn, there exists a unique continuous solution x(t) of dynamical
system (5.1) with x(t0) = x0, where t ∈ [t0,∞).
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Proof. Let
G(x) = λ{PM[x − ρy] − x}, y ∈ [R(x)]k

α, α ∈ [0, 1], k ∈ N+.

Then for any x1, x2 ∈ Rn, since R is Lipschitz continuous, and by (4.2), we have

‖G(x1) −G(x2)‖ ≤λ{‖PM[x1 − ρy1] − PM[x2 − ρy2]‖ + ‖x1 − x2‖}

≤λ{‖x1 − x2‖ + ‖(x1 − ρy1) − (x2 − ρy2)‖}
≤λ{2 + ρL}‖x1 − x2‖,

where y1 ∈ [R(x1)]k
α, y2 ∈ [R(x2)]k

α, ρ > 0, L > 0. Thus, G(x) is Lipschitz continuous. Then by the
existence and uniqueness theorem of solutions for an ordinary differential equation, for any x0 ∈ Rn,
there exists a unique continuous solution x(t) of dynamical system (5.1) with x(t0) = x0 over [t0,T ].

On the other hand, since for any x ∈ Rn,

‖G(x)‖ =λ{‖PM[x − ρy] − x‖}

≤λ{‖PM[x − ρy] − PM[x]‖ + ‖PM(x) − PM[x?]‖ + ‖PM[x?] − x‖}

≤λρ‖y‖ + λ‖x − x?‖ + λ‖PM[x?]‖ + λ‖x‖

≤λ(2 + ρL)‖x‖ + λ{‖x?‖ + ‖PM[x?]‖},

then

‖x(t)‖ ≤ ‖x0‖ +

∫ t

t0
‖G(x(s))‖ds ≤ (‖x0‖ + k1(t − t0)) + k2

∫ t

t0
‖x(s)‖ds,

where k1 = λ{‖x?‖ + ‖PM[x?]‖}, k2 = λ(2 + ρL). Therefore, by Lemma 5.2, we have

‖x(t)‖ ≤ {‖x0‖ + k1(t − t0)}exp(k2(t − t0)), t ∈ [t0,T).

It implies that x(t) is bounded on [t0,T ), then by the extension theorem of solutions for an ordinary
differential equation, we have T = ∞. �

Theorem 5.5. Let M ⊆ Rn be a closed and convex set, R be a hesitant fuzzy relation on M × Rn. If R
is pseudo-monotone and Lipschitz continuous, then the dynamical system (5.1) is stable in the sense of
Lyapunov and globally converges to the solution set S of GVI(M,R).

Proof. Since R is Lipschitz continuous, by Theorem 5.4, the dynamical system (5.1) has a unique
continuous solution x(t). Suppose that x? ∈ M is an equilibrium point of the dynamical system (5.1),
then x? is a solution of GVI(M,R), it follows that (y?)T (x − x?) ≥ 0, ∀x ∈ M, where y? ∈ [R(x?)]k

α,
and since R is pseudo-monotone, then we have yT (x − x?) ≥ 0, ∀x ∈ M, where y ∈ [R(x)]k

α. Setting
x = PM[x − ρy], then

〈y, PM[x − ρy] − x?〉 ≥ 0.

On the other hand, for x? ∈ M, by (4.1) of Lemma 4.3, we have

〈PM[x − ρy] − (x − ρy), x? − PM[x − ρy]〉 ≥ 0,

that is,
〈PM[x − ρy] − x, x? − PM[x − ρy]〉 + 〈ρy, x? − PM[x − ρy]〉 ≥ 0,
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therefore, we obtain
〈PM[x − ρy] − x, x? − x + (x − PM[x − ρy])〉 ≥ 0,

thus, we have
〈x − x?, x − PM[x − ρy]〉 ≥ ‖x − PM[x − ρy]‖2.

Hence, for the following Lyapunov function

V(x) = λ‖x − x?‖2, x ∈ Rn,

we have
dV(x)

dt
=

dV
dx

dx
dt

= 2λ〈x − x?, PM[x − ρy] − x〉 ≤ 0,

where x ∈ M0 = {x ∈ M : V(x) ≤ V(x0)}. Therefore, the dynamical system (5.1) is stable in the sense
of Lyapunov.

Furthermore, since V(x) is continuously differentiable on the bounded set M0, by LaSalle’s
invariance principle, x(t) converges to the largest invariant subset of the set {x ∈ M : dV

dt = 0}. Since
dV
dt = 0⇔ dx

dt = 0, then {x ∈ M : dV
dt = 0} = {x ∈ M : dx

dt = 0} = M0 ∩ S , therefore, lim
t→∞

dist(x(t), S ) = 0,
that is, the dynamical system (5.1) globally converges to the solution set S of GVI(M,R). �

Theorem 5.6. Let M ⊆ Rn be a closed and convex set, R be a hesitant fuzzy relation on M × Rn. If R
is Lipschitz continuous, then for λ < 0, the dynamical system (5.1) globally exponentially converges to
the solution of GVI(M,R).

Proof. Since R is Lipschitz continuous, by Theorem 5.4, the dynamical system (5.1) has a unique
continuous solution x(t). Let x? ∈ M is an equilibrium point of the dynamical system (5.1), and
consider the following Lyapunov function

V(x) = λ‖x − x?‖2, x ∈ Rn,

we have
dV
dt

= 2λ〈x(t) − x?, PM[x(t) − ρy] − x(t)〉

= −2λ‖x(t) − x?‖2 + 2λ〈x(t) − x?, PM[x(t) − ρy] − x?〉.

On the other hand, for the equilibrium point x? ∈ M, by Theorem 5.3, we have x? is a solution of
GVI(M,R)), that is, x? = PM[x? − ρy?], thus, by (4.1) of Lemma 4.3 and R is Lipschitz continuous,
we obtain

‖PM[x(t) − ρy] − x?‖ =‖PM[x(t) − ρy] − PM[x? − ρy?]‖
≤‖x − x? − ρ(y − y?)‖
≤‖x − x?‖ + ρL‖x − x?‖

≤(1 + ρL)‖x − x?‖,

where ρ > 0, L > 0, y ∈ [R(x)]k
α, y? ∈ [R(x?)]k

α, α ∈ [0, 1], k ∈ N+. Therefore, we have

dV
dt

=
d
dt

(λ‖x(t) − x?‖2) ≤ 2αλ‖x(t) − x?‖2,

where α = ρL. Setting λ1 = −λ, then λ1 > 0, and we have

‖x(t) − x?‖ ≤ ‖x(t0) − x?‖exp(−αλ1(t − t0)),

that is, the dynamical system (5.1) globally exponentially converges to the solution of GVI(M,R). �
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6. Conclusion

As a generalization of fuzzy relation, hesitant fuzzy relation is a very useful tool in situations
where there are some difficulties in determining the membership of an element to a set caused by a
doubt between a few different values. In this paper, we obtained the existence theorem and iterative
algorithm of solutions to the generalized inequality with hesitant fuzzy relation. Furthermore, we
proposed a projected neural network model for solving this type variational inequality by using the
projection method. Compared with classical optimization approaches, the prominent advantage of
neural computing is that it can converge to the equilibrium point (optimal solution) rapidly, and
this advantage motivates us to propose an efficient algorithm, which is based on the neural network
approach, for the variational inequality problem. The proposed projected dynamical system is shown
to be stable in the sense of Lyapunov, globally convergent and globally exponentially convergent under
various conditions.
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