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1. Introduction

Let r € [0,1). Then the Legendre’s complete elliptic integrals [1-6] of the first and second kinds
are defined by

K(0) = g H(17) = +oo, (1.1)

/2 de
K = K(r) = f S
0 1-r2sin®@
/2
&=8&(r) = f V1= r2sineds, &0)=2Z, &1°) =1, (1.2)
0

>
respectively. It is well known that the complete elliptic integrals and integral inequalities [7-20] have
wide applications in mathematics and physics, including the formula of the arc length of an ellipse,
the evaluation of the circumferences ratio 7, the computations of electromagnetic fields and related
quantities, the study of simple pendulum period, and so on. Convexity and monotonicity are the
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indispensable tools in the study of inequality theory [21-28], the generalizations and variants for the
convexity have attracted the attention of many researchers [29-38] in recent decades, and many
inequalities have been established via the convexity and monotonicity theory [39-44].

The recent interest of the complete elliptic integrals is motivated by their applications in geometric
function theory due to many conformal invariants and distortion functions in the theory of
quasi-conformal mappings can be expressed by the complete elliptic integrals.

Alzer and Qiu [45] proved that the double inequality

7—2r—10g2+a(1— \/l—r2)+10g(l+ 2)<7((r)
1-r
< g—log2+,8(1 ~ V1 —r2)+1og(1 + 2) (1.3)
1-r

holds for all r € (0, 1) with the best constant @« = 7/4 — 1/2 and 8 = 3log2 — /2.
Wang et al. [46] proved that the function r — r[x/2 — E(r)]/[r — (1 — r?)arctanh(r)] is strictly
decreasing from (0, 1) onto (n/2 — 1,3r/16), and the double inequality

Vg
2716 p <dn<3-(3-1
holds for all r € (0, 1). Here and in what follows we denote arctanh(-) the inverse hyperbolic tangent
function.
In 2018, Yang et al. [47] proved that the function r - X — ¢/ V1 — #2 is strictly decreasing on
(0, 1) if and only if ¢ > 4, strictly increasing on (0, 1) if and only if ¢ < 7e™/?/4 = 3.77 - - -, the double
inequality

n  m r—(1-r?arctanh(r) n ( (1.4)

) r — (1 — rarctanh(r)
r

4 4
log < K(r) < log (e”/2 — 4+ ) (1.5)
Vi-r2 Vi-r2
holds for all r € (0, 1), and the two-sided inequality
S t
log (e”/2 — 5+ ) < K(r) < log (e”/z -1+ ) (1.6)
Vi-r2 Vi-r2

takes place for all r € (0, 1) if and only if s < e™?/4 and t > 4.

Takeuchi [48] introduced a new form of the generalized elliptic integrals with one real parameter p,
called the complete p-elliptic integrals. For p € (1, +o0) and r € [0, 1), the complete p-elliptic integrals
of the first and second kinds are respectively defined by

Ty /2
K, = K,(r) = f a0 K, (0) = L, K,(17) = +oo (1.7)
NG 2

— rPsin? 9)1-1/p’
rP sin, 6)

and p
" . 7 —
&, =8E)(r) = L (1-rsin?6)"/7d6,  E,(0) = ?" &,(17) =1, (1.8)

where sin,, 6 is the generalized sine function, defined by the inverse function of

9
dt
sinp_lezf—, 0<0<1,
o (1—=p)lip
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and r,, is the generalized circumference ratio defined by

fl dt 2

m,=2 = — .

o (L=)!P  psin(n/p)

Note that sin, § = sinf and 7, = . From (1.1), (1.2), (1.7) and (1.8) we know that % (r) = K(r)

and &,(r) = &(r).
Takeuchi [48, 49] provided the derivative formulas and identity for K}, and &, as follows

AK,(r) &, ~1'"K, dE(r) &,-K,

b

dr rr'’? ’ dr r
d(K, - &) 718, (1) dE,-T"K,) .
dr - r'P ’ dr - (p - 1)1’ 7(p(r)
and i
Ko (r)Ep(r) + Kp(r)E,(r') = K (r)Kp(r') = Ep.

where and in what follows, we denote ' = V1 — r? for r € [0, 1]. Using (1.5), Takeuchi [48, 50] found
the formulas for 73 and 4. Moreover, the following formulas for the complete p-elliptic integrals in
terms of the Gaussian hypergeometric function can be found in the literature [48]:

T 11 m 11
7((’,):_1’}7(1__,_;1;’,17)’ S(F):_pF(__a_;l;rp)’ (1'9)
g 2 p'p g 2\ p'p
where
- n b n "
F(a,b;c; x) =2F(a,b;c; x) = Z (@n(B)s X (Ixl < 1)
= (¢)y n!
is the Gaussian hypergeometric function [51, 52] for real parameters a, b, c with ¢ # 0,—1,-2,---, and
(a)y = 1 for a # 0 and (a), denotes the Pochhammer function (@), = a(a+ 1)(a+2)(a+3)---(a+n—1)
forn = 1,2,---. If a+ b = c, then F(a,b;c; x) is called zero-balanced, which has the following

asymptotic formula [53]:
B(a,b)F(a, b;a + b; x) + log(1 — x) = R(a, b) + O((1 — x)log(1 — x)), (1.10)
where B(z, w) = T(@)I'(w)/[T'(z + w)] is the classical Beta function for Re(z) > 0 and Re(w) > 0,
R(a,b) = —y(a) —y(b) -2y, R(a) =R(a,1-a),

W(z) =T"(2)/T(z) for Re(z) > 0 and v is the Euler-Mascheroni constant.
The main purpose of this paper is to extend inequalities (1.4)—(1.6) to the case of the complete
p-elliptic integrals. Our main results are the following Theorems 1.1-1.3.

Theorem 1.1. Let p € (1,+00), pg = 2.523 - -+ be the unique solution of the equation 2p*— p*n,+4 = 0
and the function f be defined on (0, 1) by

7,/2 = E,(r)
— r’Plarctanh(rP/2)]/rP/2

fp(r) = 1
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Then the following statements are true:
(O Ifp e, V5], then fp(r) is strictly decreasing from (0, 1) onto (37rp/(4p2),7rp/2 — 1), and the
double inequality
n, 3m, ,parctanh(r?/?) T, (T ,parctanh(r?/?)
7—@1—r7<8p(r)<7—(?—1)1—r T (111)

holds for all r € (0, 1),
Q) Ifpe( V3, Do), then there exists unique ry € (0, 1) such that f,(r) is strictly increasing on (0, ry),
and strictly decreasing on (ry, 1). Consequently, for r € (0, 1), one has

3 tanh(r?/?
E)(r) <= - min{@ -1, ﬂ} [1 - r'PM] : (1.12)

rP/2

(3) If p € [po, +o0), then f,(r) is strictly increasing from (0, 1) onto (n,/2 — 1, 37r,,/(4p2)), and the
reverse inequality of (1.11) holds for all r € (0, 1).
Theorem 1.2. Let p € [2,+0), @, € R and the function F be defined on (0, 1) by
K,(r') = (m,/2 = log2) — log(1 + 1/r)

1-r '

Then F(r) is strictly decreasing from (0, 1) onto ((p — Dn,/(2p) —1/2,R(1/p)/p — (n,/2 —log 2)), and
the double inequality

F(r) =

ﬂ-l’ 1 ’ ﬂl’ 1 ’
?—log2+log 1+ — +a(1—r)<7(p(r)<?—10g2+log L+ —=[+B(1-7) (1.13)
r r

holds for all r € (0, 1) with the best possible constants « = (p — 1)n,/(2p) — 1/2 and B = R(1/p)/p —
(r,/2 —log 2).

Theorem 1.3. Let p € [2, +0), ¢ € R and the function G be defined on (0, 1) by
G = -2 re(,1).
r

Then the following statements are true:

(1) The function G.(r) is strictly increasing on (0, 1) if and only if ¢ < €™/*(p — Dr,/(2p), in this
case the range of G.. is (€™/* — ¢, +0);

(2) The function G.(r) is strictly decreasing (0, 1) if and only if ¢ > eRY/P/P_in this case the range of
G. is (oo, e™/? — ¢) if ¢ > eRV/PIP hile the range of G. is (0, €™/* — ¢) if ¢ = eRV/P/P_ Furthermore,
forall r € (0,1), we have

eR4/p)/p eRU/p)/p
log( ) <K, (r) < log( + ™ - eR(]/p)/p) : (1.14)
T

/ /

(3) If €¥'*(p — Dm,/(2p) < ¢ < e*VPIP then there exists 1}, € (0,1) such that G.(r) is strictly
decreasing on (0, r;) and strictly increasing on (r, 1);
(4) The double inequality

*

t*
log (e”/2 -5+ S—/) < K, (r) < log (e”/2 — 1+ —/) (1.15)
r r
holds for all r € (0,1) if and only if s* < €'*(p — Dn,/(2p) and 1* > */P/P,
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2. Lemmas

In order to prove our main results, we need several lemmas, which we present in this section.

Lemma 2.1. (See [54, Theorem 1.25])Let —00o < a < b < oo, f,g : [a,b] — R be continuous on
la, b] and be differentiable on (a,b) such that g’(x) # 0 on (a,b). Then both the functions [f(x) —
fa)]/[g(x) — gla)] and [f(x) — f(b)]/[g(x) — g(b)] are (strictly) increasing (decreasing) on (a, b) if
f'(x)/g'(x) is (strictly) increasing (decreasing) on (a, b).

Lemma 2.2. (See [55, Theorem 2.1])Suppose that the power series f(x) = Y, a,x" and g(x) =
Yo bux" have the radius of convergence r > 0 with b, > 0 for all n € {0,1,2,---}. Let h(x) =
fx)/g(x)and Hry = (f'/8')g — [, then the following statements are true:

(1) If the non-constant sequence {a,/b,}", is increasing (decreasing), then h(x) is strictly increasing
(decreasing) on (0, r);

(2) If the non-constant sequence {a,/b,} is increasing (decreasing) for 0 < n < ny and decreasing
(increasing) for n > ny, then the function h is strictly increasing (decreasing) on (0, r) if and only if
Hyo(r7) > (2)0. While if Hy4(r™) < (>)0, then there exists 6 € (0, r) such that h(x) is strictly increasing
(decreasing) on (0, 6) and strictly decreasing (increasing) on (9, r).

The following Lemma can be found in the literature [56, 57].

Lemma 2.3. Let p € (1, +00). Then we have the following five conclusions:

(1) The function r = (&, — r'*K,)/r? is strictly increasing from (0, 1) onto ((p — ),/ (2p), 1);

(2) The function r — K, (r) + log r’ is strictly decreasing from (0, 1) onto (R(1/p)/p,m,/2);

(3) The function r — r'“K,, is strictly decreasing on (0, 1) if and only if ¢ > (p — 1)/ p with the range
(0,7,/2);

(4) The function r — 1r'“&, is strictly increasing on (0, 1) if and only if ¢ < —1/p with the range
(7,/2, 00);

(5) The function r — &, + [ (K, — 8p)2]/(r1’8p) is strictly decreasing from (0, 1) onto (1,7,/2).
Lemma 2.4. Let

11 2
f) = — ———ﬂ—f, x € (0, 1)

sinx Xx
Then there exists unique xy = 1.244--- € (0, ), such that f(x) < 0 for x € (0, xy), and f(x) > O for
x € (xg, 7).

Proof. Since

2% — 2k-1
-— - = E B o, <m,
sinx (2k)! | 2l Al <7

where B, are the Bernoulli numbers, one has

2x ) 1 2 )
= - +|ByJx + Bylx* ' ={=--=|x+ B! 2.1
f@) === +|Bilx kz; o 1B (6 ﬂz)x IE |Bayx 2.1)
Differentiating f leas to
12\ S2*-2 s
() = (— - ;)+ 20! (2k = D)|Byylx (2.2)
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It is easy to check that f(x) is strictly increasing on (0,7), f/(0) = 1/6 —2/n* < 0 and f’(7) = +oo.
Hence there exists unique x;, such that f(x) is strictly decreasing on (0, x;) and strictly increasing on
(x5, ). This, together with the limiting values

f(0") =0, f(r7)=+0co, (2.3)

implies that there exists a unique zero point xy € (0, ), such that f(xy) = 0, f(x) is negative on (0, xo),
and f(x) is positive on (xy, 7). By the mathematical software Maple 13, we compute that x, = 1.244 - - -.
This completes the proof. O

Corollary 2.5. Let p € (1,+00) and A(p) = 1 —nt,/2 +2/p*. Then there exists unique py = 2.523 - €
(1, +00) such that A(py) =0, A(p) < 0 for p € (1, py) and A(p) > O for p € (py, +0).

Proof. Let x = n/p € (0, 7). Then

Therefore, Corollary 2.5 follows from Lemma 2.4. O

Lemma 2.6. Let p € [2, +00). Then one has
(1) The function

Qp+2) +2p—-4 mm(p> = 1D2p-12p*-Tp+6—1/p)
8(r) = (1 + r)4p2r—2 - 2 24p3
is strictly increasing and positive on (0, 1).
(2) The inequality
1 (A-1/p)p-5+5/p-1/p°)m,
i 12 >0

holds for each p € [2, +c0).

Proof. 1t is clear to see that

Qp+2)r +2p-4 7 (p* = D2p-1D2p*=Tp+6-1/p)
g(r) = +

(1 4 r)4p2r=2 2 24p3
__w+2 . 2p-4 m(@-D@p-DEp-Tp+6-1/p)
(L+ 4?23 A+ )2 2 24p3

is strictly increasing on (0, 1). Since 7, = 27/[p sin(rr/p)] > 2 for p € [2, +00), one has

4p-2 7 (P’ - DH2p - D(p-DH2p* ~5p+1)

r—0° 16 2 24p*
JAr-2 (P> = DQ2p-D(p-DQ2p*-5p+1)
16 24p*
_(2p- DQRp’ —4p* +4p*> +6p> —6p + 1)
B 24p*

AIMS Mathematics Volume 5, Issue 6, 7071-7086.



7077

_Cp-DR2p(p? -2p+2) +6p(p-D+11

0.
24p*

Therefore, part (1) follows.
For part (2), employing inequality 7, = 2n/[p sin(r/p)] > 2 for p € [2, +o0) again, we derive that

L, A=Upp-5+5/p-1/pIm, 1 (A-1pp=5+5/p=1/p°)

12 4 6
_Qp-D@P-4p’+8p-2) _ (2p-DIp(p’-4p+8-21
12p3 12p3
immediately. o
Lemma 2.7. Let p € [2,+0). Then the function
1 PP, — prPNK, - 8,)
h(r) = p P~ ©p
=Gy * 720
is strictly increasing and convex on (0, 1).
Proof. Differentiating h gives
W = 2rP1 P [=(p? + 2p + Dr? + 217 + 2p1K, — [2p* — (p* + DrP1E,
O = rr
_rl"l 2 [=(p* +2p + DrP +2r?" + 2p2]7(p - [2p* - (p* + Drr1&,
o (1 +r)3pr2 r3p
pP!
=7[h1(r) + ha ()], (2.4)
where , )
2 7, (p~— D2p—-1D(2p~—7p+6-1/p)
hr)y= ————+— P 2.5
= T T 24p* g &)
and
[=(p*> +2p+ Dr” +2r¥ + 2p2]7(p - [2p* - (p* + Drr1&,
ha(r) = =
-1DR2p-1DR2p*-Tp+6-1
T (- D@2p—1D2p~—Tp + /P) 2.6)

2 24p*

Simple computations lead to
. 1 .
b =g, Jmh) =
and

K (r) =2

—[(p =20+ r)’r"= +3(1 + r)r'??] (_ 7! )

(1 + ’,./)6’,./217—4 7/p-1
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L@ - DH2p-D2p* ~Tp+6-1/p)
2 24p°

=r""g(r),
where g(r) is defined as in Lemma 2.6(1). By Lemma 2.6(1) we conclude that 4, (r) is strictly increasing

from (0, 1) onto (1/4, +0).
Expanding the right side of (2.6) into power series, we have

n!(n + 3)!

LA =1pp=5+5/p-1/p")
2 6 '

ho(r) :% {i (I-1/p,n+1D)A/p,n+D(p—1D*n+p*-5p+5— 1/p]r””}
n=2

Note that
(1-1/p,n+D)(1/p,n+ DI(p—1)*n+p*-5p+5-1/p] .
nl(n + 3)!

for n > 2, h, is strictly increasing on (0, 1), and the range is (1 = 1/p)(p =5+ 5/p — 1/p*)n,/12, c0).
Combining Lemma 2.6(2) and monotonicity properties together with the ranges of /; and h,, we
know that the sum function h;(r) + h,(r) is strictly increasing and positive on (0, 1),
Finally, according to equations (2.4)—(2.6) we obtain that A(r) is strictly increasing and convex on
(0, 1). |

0

Lemma 2.8. Let p € [2, +00). Then the function

7(11(”) - Sp(r)
[gp(r) - r,pq(p(r)](](p(r)

@(r) =

is strictly increasing from (0, 1) onto (2/[(p — Dm,], 1).

Proof. Let ¢(r) = K,(r) — E,(r) and ¢o(r) = [E,(r) — r'?K,(N]K,(r). Then o(r) = ¢1(r)/ea(r),
¢1(0) = ¢»(0) =0 and

90,1(’.) _ rpap I’p8p

) (p— Drerr K3 + (8, — rPK)? (p =2 PK, + 8, + (K, — E,)?
- 2 1 : (2.7)
(p = 2D(PK,"1Ep) + [E) + 1P (K, — Ep)?/(rPE))]

Since p > 2, the function r — 7% p2 /&y 1s strictly decreasing on from (0, 1) onto (0, x,/2). This
together with Lemma 2.3(5) leads to the conclusion that the function ¢|(r)/¢}(r) is strictly increasing
from (0, 1) onto (2/[(p — 1)m,,], 1). Applying Lemma 2.1, we obtain that ¢(r) is also strictly increasing
on (0, 1). Moreover, lim,_,;- ¢(r) = 1, and

’ r 2
lim ¢ () = Tim 21 = .
r—0+ r—0* 902(r) (p - 1)7Tp

O
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Lemma 2.9. Let p € [2, +00). Then the function

Ep(r) = r'PK,(r) = (p = DrP[K,(r) = E,(1)]
(&, —r'*K,)?

¢(r) =

is strictly increasing from (0, 1) onto ((p + 1)/[(p — Dm,], 1).

Proof. Let ¢1(r) = E,(r) — rPK,(r) — (p — Dr'P(K, — &,) and ¢»(r) = (E, — r'’K,)*. Then ¢(r) =
d1(r)/do(r), $1(0) = ¢(0 = 0 and

¢/1(r) _ (P2 - l)rp_l(%p - 8p) _ (P + 1)(7<p - 8p)
Py(r)  2(p— D K,(E, — PPK,)  2K,(E, - r'PK,)

(2.8)

Eq (2.8) and Lemma 2.8 show that ¢}(r)/¢/(r) is strictly increasing on (0, 1). By application of
Lemma 2.1, the monotonicity of ¢(r) follows. Clearly ¢(17) = 1, and by I’Hdpital’s rule we get

. L ¢'1(”)_p+1. 2 _ p+1
e = o™ 2 p-br, (-Dn,

o
Lemma 2.10. Let p € [2, +00). Then the function
w(r) = o Er =%
rP
is strictly increasing from (0, 1) onto (¢"'*(p — )r,/(2p), X/P)IP),
Proof. By differentiation, we have
(7 PP YE, = P + (p = DK | 7 = 1 (8, — K )pr!
(L)I(r) :e‘Kp(r)
rp
+ %™ Ep — r/pwp r'(&), - r’”?{p)
rr’'?P 24
%) ) , / , / 2
=t [ = ) + (p = DK, = prf(E, = 1K) + (8, = 1K)
eWp(r) o ) y .,
= (€= 179 - 16, = K - (p = i (K, = 6,))
67(17(”)(8 _ r'Pq(‘ )2
Sy LG 2.9)

/=1 pp+l

where ¢(r) is defined as in Lemma 2.9.
The monotonicity of w(r) on (0, 1) directly follows from (2.9) and Lemma 2.9. By Lemma 2.3(1)
and (3), one has w(0*) = ™/*(p — 1)xr,/(2p) and w(17) = */P/P, o

AIMS Mathematics Volume 5, Issue 6, 7071-7086.



7080

3. Proofs of theorems 1.1-1.3

Proof of Theorem 1.1. Let A(r) = 7,/2 — E,(r) and B(r) = 1 — r’Parctanh(r?/?)/r?/?. Then using the
series expansion (1.9) we get

1w (Upn) p) xS ()= 1po)
AN =75"3 Z; (Lmy  nl 2p; Wy

- 1 = 1
B(r)=1-(1 —r”)Zzn+ lr”" :224n2— 1r"’”.
n=0 n=1

Thus
A(I") _ p Z;O:I Rnrpn

Jp(r) = B0y~ ap S, S (3.1)

where

_{/pmd-1/p.n) 1

R, s n = .
17 a7 =1

3.2)
LetT,=R,/S,. Then

T, _ (1= 1p)n+ 1/plAm+ 12— 1) _
T, (n+ 12(@4n2 - 1)
_ @3- 1p) | @n+3)/p -]
(n+ D22n - 1) (n+ 12Q2n—1)

1

(3.3)

Next, we divide the proof into two cases.
Case 1. p € (1, \/5]. Then from (3.3) we obtain that 7,,,/7T, < 1 for n > 1, and thereby {7} is
decreasing with respect to n. With an application of Lemma 2.2 and Eqs (3.1) and (3.2), the
monotonicity of f, on (0, 1) in this case follows. Moreover, clearly f,(17) = x,/2 — 1, and by

I’Hospital’s rule, one has

7, Ry 3w
lim f,(r) = 2 = =2,
r—0* 4p S, 4p

Therefore, inequality (1.11) takes place. O

Case 2. p € (V5, +00). Then Eq (3.3) implies that there exists ny > 1 such that sequence {R,/S .}
is increasing for 1 < n < ny and decreasing for n > ny. For the limiting value of Hy 5(r) at 1, by
differentiation we get

v = 020,

[—prp‘larctanh(rf’/z) + prp/2‘1/2] — prP/2=yParctanh(r?/?) /2

B’(r) = — s
—£ /2 -p/2 /2y E
=5 (rP +r? )arctanh(rp ) 5
so that
A m, 2(K, - E)r’'* — r’Parctanh(r/?)]
Hyp(r) = )B(r) -A(r)=8, - LA P

B'(r) 2 p  (1+rp)arctanh(rP/?) — rr/2
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It is not difficult to verify that

lim [,,p/2 _ r’parctanh(l’pﬂ)] =1,

r—1-
log(1/r") ) PPl P o)
s gy 2
r—1- arctanh(rP/2) 1= pre/21/(2rP)  p
K, - E, . rlg, P

m——2— = lim —2 =1,
r—1-log(1/r)  ro1= pP=l/pP

thus

mp 2K, - E,)rP’? — r'Parctanh(rr/?)]

HA,B(l_) = lim Sp -

it 2 " p  (1+rP)arctanh(r/2) — pr/2
2 1 1/¢
“1-2 4 lim = og(1/r')
2 =1 p(1+ rP)arctanh(r?/2) — rv/2
T, 2
B (3.4)

It follows from (3.4) and Corollary 2.4 that H4 5(17) < 0 for p € (\/5, Do), and Hy g(17) > O for
p € [po, o). Applying Lemma 2.2(2), f,(r) is strictly increasing from (0, 1) onto (x,/2 — 1,37, /(4p*))
if and only if p > po, so that the reverse inequality of (1.11) holds. While p € (V/3, po), fp(r) is
piecewise monotone on (0, 1), and therefore the inequality

7,2 = &Ep(r)
1 — r’P[arctanh(rP/2)

LS 137r1, 35
]/rp/2>m1n ?— ,4—pz ()

takes place for each r € (0, 1). Finally, by exchanging the terms of inequality (3.5), we obtain (1.12).

Proof of Theorem 1.2. Let
Fi(r) = K,(r') = (m,/2 —log2) —log(1 + 1/r), Fa(r)=1-r,

Ep(r') = rPK,(r") _ 1
r'P 1+r

Then F(17) = F»(17) =0, F5(0%) = F4(0*) =0, and

Fi) _Fyr) B0

Fi(r)  Fur)" Fi(r)

Fs(r) =

, Fir)=mr.

h(r'),

where h(r) is defined as in Lemma 2.7, is a increasing function on (0, 1). Applying Lemma 2.1 twice,
the monotonicity of F follows.  Moreover, by Lemma 2.3(2) and Lemma 2.7 we have
FO")=R(/p)/p - (n,/2 —log2) and

Fi(r F -1 1
lim F(r) = lim -2 = fj 20 _ @D 1
A= RS T RO T 2

Inequality (1.13) can be derived from the monotonicity of F(r) on (0, 1) and the above limiting values
immediately. The proof of Theorem 1.2 is completed. O
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Proof of Theorem 1.3. Clearly,
G.(0%) =™ —c. (3.6)

Substituting 1 — 1/p and 1/p respectively for @ and b in (1.10), we get

R(1
5 () = ROD)

1
+log— + O((1 = rM)log(1 - r"), r—1.
r

Thus
+oo, ¢ < eRAPIP,

G.(17)=1¢0, c = eR/pir, (3.7)

—oo, RAIDIP,

Differentiating G, yields

E —rPK p—1 p—1
w0 G TP ey - el (3.8)

rr'P r/p+1 r;p+l

G.(r)=e

where w(r) is defined as in Lemma 2.10. According to Lemma 2.10 and (3.8), the assertion of the
monotonicity of G.(r) for any ¢ € R follows. Combining with (3.6) and (3.7), parts (1)—(3) hold.

For part (4), it follows from parts (1)-(3) that inequality G.(r) > G.(0") = €™/> — ¢ holds for all
r € (0, 1) if and only if ¢ < €™/*(p — )m,/(2p), and G(r) < G(0") = €™/* — ¢ holds for all r € (0, 1)
if and only if ¢ > (/PP Therefore, the inequality

g D < TN el g t—,
r/ r/
namely,
k t*
log (e””/2 -5+ S—/) <K, (r) < log (e”"/2 -1+ —,) )
r r
holds for all r € (0, 1) if and only if s* < e™/*(p — 1)xr,/(2p) and 1* > *1/P)/P, o

4. Conclusions

In the article, we have found some new monotonicity properties for the functions involving the
complete p-elliptic integrals of the first and second kinds, and provided several optimal upper and
lower bounds for the p-elliptic integrals. Our ideas and approach may lead to a lot of follow-up
research.
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