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1. Introduction

Consider the classical nonparametric regression model

Yni = g(xni) + εni, 1 ≤ i ≤ n, (1.1)

where {εni, 1 ≤ i ≤ n} are random errors and {xni, 1 ≤ i ≤ n} are known fixed design points, g(·) is an
unknown bounded real valued function on [0, 1]. It is well known that the model (1.1) has been widely
studied by many authors in the literature. The uniformly asymptotic normality for a general weighted
regression estimator of g(·), which was proposed by Georgiev [1], had got extensive investigated. One
can refer to Georgiev [2] under independent random errors, Roussas et al. [3] under strong mixing
random errors, Yang [4] under negatively associated errors, and so on. Under the assumption that the
errors case is a weakly stationary linear process based on a martingale difference sequence, Tran et
al. [5] studied the asymptotic normality. Liang and Li [6] obtained the Berry-Esséen bound based on
linear process errors under negatively associated random variables.

In recent years, wavelets techniques, owing to their ability to adapt to local features of curves, have
been widely used in statistics, engineering and technological fields. Many authors have considered
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employing wavelet methods to estimate nonparametric and semiparametric models. For instance, one
can refer to the papers [7–13].

The problem we face here is to derive a Berry-Esséen bound of wavelet estimator of g(·) proposed
by Antoniadis et al. [7]

ĝn(t) =

n∑
i=1

Yni

∫
Ai

Em(t, s)ds, (1.2)

where the wavelet kernel Em(t, s) can be defined by Em(t, s) = 2m ∑
k∈Z φ(2mt − k)φ(2ms − k), φ(·) is a

scaling function, m = m(n) > 0 is an integer depending only on n, Ai = [si−1, si), i = 1, 2, · · · , n are
intervals that partition [0, 1] .

We recall the concepts of negative associated (NA, in short), negative quadrant dependent (NQD, in
short) and linearly negative quadrant dependent (LNQD, in short) sequences.
Definition 1.1. [14] A finite collection of random variables {Xi}1≤i≤n are said to be NA, if for every
disjoint subsets A, B ⊂ {1, 2, · · · , n}

Cov( f (Xi, i ∈ A), g(X j, j ∈ B)) ≤ 0,

where f and g are real coordinate-wise nondecreasing functions such that this covariance exists. An
infinite sequence of random variables {Xn}n≥1 are said to be NA, if for every n ≥ 2, X1, X2, · · · , Xn are
NA.
Definition 1.2. [15] Two random variables X,Y are said to be NQD, if for any x, y ∈ R,

P(X < x,Y < y) ≤ P(X < x)P(Y < y).

A sequence of random variables {Xn}n≥1 are said to be pairwise negative quadrant dependent (PNQD,
in short), if every pair of random variables in the sequence are NQD.
Definition 1.3. [16] A sequence {Xi}1≤i≤n of random variables are said to be LNQD, if for any disjoint
subsets A, B ⊂ Z+ and positive r′js,

∑
i∈A riXi and

∑
j∈B r jX j are NQD.

Remark 1.1. It easily follows that if {Xn}n≥1 is a sequence LNQD random variables, then {aXn + b}n≥1

is still a sequence of LNQD, where a and b are real numbers. Furthermore, NA implies LNQD from
the definitions, LNQD random variables are NQD random variables, but the converse is not true.

The concept of LNQD sequence was introduced by Newman [16], some applications can be found in
many monographs. For example, Newman investigated the central limit theorem for a strictly stationary
LNQD process. Wang et al. [17] established the exponential inequalities and complete convergence
for a LNQD sequence. Li et al. [18] obtained some inequalities and gave some applications for a fixed-
design regression model. Ding et al. [19] derived the Berry-Esséen bound of weighted kernel estimator
for model (1.1) based on linear process errors under a LNQD sequence.

In this paper, we shall consider the above wavelet estimator of nonparametric regression problem
with linear process errors generated by a LNQD sequence. Our main purpose is to derive the Berry-
Esséen bound of the wavelet estimator (1.2).

The layout of the rest is as follows. In Section 2, we present some basic assumptions and main
results. In Section 3, some preliminary lemmas are stated and proof of Theorem 2.1 is provided. In
Section 4, proofs of some preliminary lemmas are given. The Appendix contains some known results.

Throughout the paper, C,C1,C2, · · · denote some positive constants not depending on n, which may
be different in various places. bxc denotes the largest integer not exceeding x. All limits are taken as
the sample size n tends to∞, unless specified otherwise.
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2. Some basic assumptions and main results

To obtain our results, the following basic assumptions are sufficient:
Assumption (A1) For each n, {εni, 1 ≤ i ≤ n} have the same joint distribution as {ξ1, · · · , ξn}, where
ξt =

∑∞
j=−∞ |a j|et− j and {a j} is a sequence of real numbers with

∑∞
j=−∞ |a j| < ∞. Here {e j} are identically

distribution, LNQD random variables with Ee0 = 0, E|e0|
2+δ < ∞, 0 < δ ≤ 1.

Assumption (A2) The spectral density function f (ω) of {ξi} is bounded away from zero and infinity,
i.e., for ω ∈ (−π, π], 0 < C1 ≤ f (ω) ≤ C2 < ∞.
Assumption (A3) (i)φ(·) is r− regular (r is a positive integer), and satisfies the Lipschitz condition
with order 1 with a compact support. Furthermore, |φ̂(ξ) − 1| = O(ξ) as ξ → ∞, where φ̂ denotes the
Fourier transform of φ. (ii) max1≤i≤n |si − si−1| = O(n−1).
Assumption (A4) (i) g(·) ∈ Hv, v > 1/2, where Hv presents Sobolev space of order v, i.e., if h ∈ Hv

then
∫
|ĥ(ω)|2(1+ω2)vdω < ∞with ĥ denoting the Fourier transform of h. (ii) g(·) satisfies the Lipschitz

condition of order 1.
Assumption (A5) There exist positive integers p := pn, q := qn and k := kn = b 3n

p+qc, such that,
for p + q ≤ 3n, qp−1 → 0, and let γin → 0, i = 1, 2, 3, where γ1n = qp−12m, γ2n = pn−12m, γ3n =

n(
∑
| j|>n |a j|)2.

Remark 2.1. Assumption (A1) is the general condition of the LNQD sequence, Assumptions (A2–A4)
are mild regularity conditions for wavelet estimate in the recent literature, such as Sun and Chai [10],
Li et al. [11,12], Liang and Qi [8]. In Assumption (A5) γin → 0, i = 1, 2, 3 are easily satisfied if p, q,m
are chosen reasonable, see e.g., Li et al. [11, 12] and Liang et al. [6, 8].

In order to formulate our main results, let σ2
n := σ2

n(t) = Var(ĝn(t)) > 0, S n := S n(t) = σ−1
n {ĝn(t) −

Eĝn(t)}, u(q) = sup j≥1
∑

j:| j−i|≥q |Cov(ei, e j)|.
Theorem 2.1. Assume that Assumptions (A1)–(A5) are satisfied, then for each t ∈ [0, 1], we have

sup
x
|P(S n(t) ≤ x) − Φ(x)| ≤ C(γ1/3

1n + γ1/3
2n + γδ/22n + γ1/3

3n + u1/3(q)), (2.1)

where Φ(x) is the distribution function of N(0, 1).
Remark 2.2. Theorem 2.1 extends the results of Li et al. [11] from associated samples to linear process
errors generated by a LNQD sequence.
Corollary 2.1. Assume that conditions of Theorem 2.1 hold and u(1) < ∞, for each t ∈ [0, 1], then

sup
x
|P(S n(t) ≤ x) − Φ(x)| = o(1). (2.2)

Corollary 2.2. Under the conditions of Theorem 2.1, let δ = 2
3 , n−12m = O(n−θ), u(n) = O(n−

θ−ρ
2ρ−1 ) and

sup
n≥1

(
n
θ−ρ+1

2

) ∑
| j|>n
|a j| < ∞, where 1

2 < ρ ≤ θ < 1, for each t ∈ [0, 1], then

sup
x
|P(S n(t) ≤ x) − Φ(x)| = O(n−

θ−ρ
3 ). (2.3)

Remark 2.3. From Corollary 2.2, taking θ ≈ 1 and ρ ≈ 1
2 , the rate of convergence is near O(n−1/6).

3. Some preliminary lemmas

In order to prove our main results we introduce the following preliminary lemmas. At first, some
notations are introduced for the sake of convenience and brevity.
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According to the Eq (1.1) and (1.2), we have

S n = σ−1
n

n∑
i=1

ξi

∫
Ai

Em(t, s)ds

= σ−1
n

n∑
i=1

∫
Ai

Em(t, s)ds
n∑

j=−n

|a j|ei− j + σ−1
n

n∑
i=1

∫
Ai

Em(t, s)ds
∑
| j|>n

|a j|ei− j

: = S 1n + S 2n.

Note that

S 1n =

2n∑
l=1−n

σ−1
n

 min{n,l+n}∑
i=max{1,l−n}

|ai−l|

∫
Ai

Em(t, s)ds

 el :=
2n∑

l=1−n

Znl.

Set S 1n = S ′1n + S ′′1n + S ′′′1n , where S ′1n =
∑k

m=1 ynm, S ′′1n =
∑k

m=1 y′nm, S
′′′
1n = y′nk+1, ynm =

∑km+p−1
i=km

Zni, y′nm =∑lm+q−1
i=lm

Zni, y′nk+1 =
∑2n

i=k(p+q)−n+1 Zni, km = (m − 1)(p + q) + 1 − n, lm = (m − 1)(p + q) + p + 1 − n,m =

1, 2, · · · , k. Then we have S n = S ′1n + S ′′1n + S ′′′1n + S 2n.

Lemma 3.1. Assume that (A1)–(A5) are satisfied, then
(i)E(S ′′1n)2 ≤ Cγ1n, E(S ′′′1n)2 ≤ Cγ2n, E(S 2n)2 ≤ Cγ3n;
(ii)P(|S ′′1n| ≥ γ

1/3
1n ) ≤ Cγ1/3

1n , P(|S ′′′1n | ≥ γ
1/3
2n ) ≤ Cγ1/3

2n , P(|S 2n| ≥ γ
1/3
3n ) ≤ Cγ1/3

3n .

Lemma 3.2. Suppose that (A1)–(A5) hold, let s2
n =

∑k
m=1 Var(ynm), then

|s2
n − 1| ≤ C(γ1/2

1n + γ1/2
2n + γ1/2

3n + u(q)).

Let {ηnm : m = 1, 2, · · · , k} be independent random variables and ηnm have the same distribution as
ynm,m = 1, 2, · · · , k. Set Hn =

∑k
m=1 ηnm.

Lemma 3.3. Under Assumptions (A1)–(A5), we have

sup
x
|P(Hn/sn ≤ x) − Φ(x)| ≤ Cγδ/22n .

Lemma 3.4. Under the Assumptions of Theorem 2.1, we have

sup
x
|P(S ′1n ≤ x) − P(Hn ≤ x)| ≤ C(γδ/22n + u1/3(q)).

Lemma 3.5. Assume that (A1)–(A5) are true, then

σ2
n(t) ≥ C2mn−1, σ−2

n (t)

∣∣∣∣∣∣
∫

Ai

Em(t, s)ds

∣∣∣∣∣∣ ≤ C.

Proof of Theorem 2.1. Similar to the proof of Theorem 2.1 in [6], it is easily seen that

sup
t
|P(S ′1n ≤ t) − Φ(t)| ≤ sup

t
|P(S ′1n ≤ t) − P(Hn ≤ t)|

+ sup
t
|P(Hn ≤ t) − Φ(t/sn)| + sup

t
|Φ(t/sn) − Φ(t)|

: = D1 + D2 + D3.
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From Lemma 3.2 and Lemma 5.2 in Petrov [20], it follows that

D3 ≤(2πe)−1/2(sn − 1)I(sn ≥ 1) + (2πe)−1/2(s−1
n − 1)I(0 < sn < 1)

≤C|s2
n − 1| ≤ C[γ1/2

1n + γ1/2
2n + γ1/2

3n + u(q)].

Consequently, by means of Lemmas 3.2–3.4, we can get

sup
x
|P(S ′1n ≤ x) − Φ(x)| ≤ C(γ1/2

1n + γ1/2
2n + γδ/22n + γ1/2

3n + u1/3(q)). (3.1)

According to Lemma A.1 in the Appendix, Lemma 3.1(ii) and the Eq (3.1), we obtain

sup
x
|P(S n ≤ x) − Φ(x)|

≤ C

sup
x
|P(S ′1n ≤ x) − Φ(x)| +

3∑
i=1

γ1/3
in + P(|S ′′1n| ≥ γ

1/3
1n ) + P(|S ′′′1n | ≥ γ

1/3
2n ) + P(|S 2n| ≥ γ

1/3
3n )


≤ C(γ1/3

1n + γ1/3
2n + γδ/22n + γ1/3

3n + u1/3(q)).

This completes the proof of Theorem 2.1.
Proof of Corollary 2.1. According to u(1) < ∞ it easily follows that u(q) → 0, hence Corollary 2.1
holds by Theorem 2.1.
Proof of Corollary 2.2. Taking p = bnρc, q = bn2ρ−1c in Theorem 2.1, for δ = 2/3, 1/2 < ρ ≤ θ < 1, we
obtain

γ1/3
1n = γ1/3

2n = O(n−
θ−ρ

3 ), u1/3(q) = O
(
q−

θ−ρ
2ρ−1

)1/3
= O(n−

θ−ρ
3 ),

γ1/3
3n = n−

θ−ρ
3

n θ−ρ+1
2

∑
| j|>n

|a j|


2/3

= O(n−
θ−ρ

3 ).

Therefore, the conclusion follows from Theorem 2.1.

4. Proofs of some preliminary lemmas

Proof of Lemma 3.1. According to Lemma 3.5, Lemmas A.2, A.4 in the Appendix and Assumptions
(A1), (A5), we have

E(S ′′1n)2 = E

 k∑
m=1

lm+q−1∑
i=lm

σ−1
n

 min{n,i+n}∑
j=max{1,i−n}

|a j−i|

∫
A j

Em(t, s)ds

 ei


2

≤ Ckq
2m

n

 min{n,i+n}∑
j=max{1,i−n}

|a j−i|


2

≤ Ckq
2m

n

 ∞∑
j=−∞

|a j|


2

≤ Cqp−12m = Cγ1n.
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E(S ′′′1n)2 = E

 2n∑
i=k(p+q)+1−n

σ−1
n

 min{n,i+n}∑
j=max{1,i−n}

|a j−i|

∫
A j

Em(t, s)ds

 ei


2

≤ C[3n − k(p + q)]
2m

n

 min{n,i+n}∑
j=max{1,i−n}

|a j−i|


2

≤ Cp
2m

n

 ∞∑
j=−∞

|a j|


2

≤ Cp(2m/n) = Cγ2n.

As to S 2n, by Lemma A.4 in the Appendix

E(S 2n)2 = E

σ−1
n

n∑
i=1

∫
Ai

Em(t, s)ds
∑
| j|>n

|a j|ei− j


2

= E

∣∣∣∣∣∣∣∣σ−1
n

n∑
i1=1

∫
Ai1

Em(t, s)ds
∑
| j1 |>n

|a j1 |ei1− j1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣σ−1

n

n∑
i2=1

∫
Ai2

Em(t, s)ds
∑
| j2 |>n

|a j2 |ei2− j2

∣∣∣∣∣∣∣∣
≤ CE


n∑

i1=1

∣∣∣∣∣∣∣
∫

Ai1

Em(t, s)ds

∣∣∣∣∣∣∣
n∑

i2=1

∣∣∣∣∣∣∣∣
∑
| j1 |>n

|a j1 |ei1− j1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
| j2 |>n

|a j2 |ei2− j2

∣∣∣∣∣∣∣∣


≤ Cn

∑
| j|>n

|a j|


2

= Cγ3n.

Therefore the proof of Lemma 3.1(i) is completed. In addition, by Markov inequality and Lemma
3.1(i) it easily follows that Lemma 3.1(ii) is true.
Proof of Lemma 3.2. Set Γn =

∑
1≤i< j≤n

Cov(yni, yn j), then s2
n = E(S ′1n)2 − 2Γn. Note that ES 2

n = 1 and

applying Lemma 3.1(i), we can get

|E(S ′1n)2 − 1| = |E(S ′′1n + S ′′′1n + S 2n)2 − 2E[S n(S ′′1n + S ′′′1n + S 2n)]| ≤ C(γ1/2
1n + γ1/2

2n + γ1/2
3n ). (4.1)

On the other hand, by Lemma 3.1, Lemma 3.5, Assumptions (A1), (A5), and Lemma A.4 in the
Appendix, it follows that

|Γn| =|
∑

1≤i< j≤k

Cov(yni, yn j)|

≤
∑

1≤i< j≤k

ki+p−1∑
s1=ki

k j+p−1∑
t1=k j

|Cov(Zns1 ,Znt1)|

≤
∑

1≤i< j≤k

ki+p−1∑
s1=ki

k j+p−1∑
t1=k j

min{n,s1+n}∑
u=max{1,s1−n}

min{n,t1+n}∑
v=max{1,t1−n}

σ−2
n |au−s1av−t1 |
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×

∣∣∣∣∣∣
∫

Au

Em(t, s)ds
∫

Av

Em(t, s)ds

∣∣∣∣∣∣ |Cov(es1 , et1)|

≤C
k−1∑
i=1

ki+p−1∑
s1=ki

min{n,s1+n}∑
u=max{1,s1−n}

|au−s1 |

∣∣∣∣∣∣
∫

Au

Em(t, s)ds

∣∣∣∣∣∣
×

k∑
j=i+1

k j+p−1∑
t1=k j

|Cov(es1 , et1)|
min{n,t1+n}∑

v=max{1,t1−n}

|av−t1 |

≤C
k−1∑
i=1

ki+p−1∑
s1=ki

min{n,s1+n}∑
u=max{1,s1−n}

|au−s1 |

∣∣∣∣∣∣
∫

Au

Em(t, s)ds

∣∣∣∣∣∣ sup
t1≥1

∑
t1:|t1−s1 |≥q

|Cov(es1 , et1)|

≤Cu(q)
n∑

u=1

∣∣∣∣∣∣
∫

Au

Em(t, s)ds

∣∣∣∣∣∣
 k−1∑

i=1

ki+p−1∑
s1=ki

|au−s1 |

 ≤ Cu(q).

(4.2)

Thus, (4.1) and (4.2) follow that |s2
n − 1| ≤ C(γ1/2

1n + γ1/2
2n + γ1/2

3n + u(q)).
Proof of Lemma 3.3. Applying the Berry-Esséen inequality (cf.Petrov [20], Theorem 5.7), we get

sup
x
|P(Hn/sn ≤ x) − Φ(x)| ≤ C

k∑
m=1

(E|ynm|
2+δ/s2+δ

n ). (4.3)

By Lemma 3.5, from Assumption(A1), (A5) and A.2 in the Appendix it follows that

k∑
m=1

E|ynm|
2+δ =

k∑
m=1

E

∣∣∣∣∣∣∣∣
km+p−1∑

j=km

 min{n, j+n}∑
i=max{1, j−n}

σ−1
n |ai− j|

∫
Ai

Em(t, s)ds

 e j

∣∣∣∣∣∣∣∣
2+δ

≤ Cp
δ
2

k∑
m=1

km+p−1∑
j=km

sup
j

∣∣∣∣∣∣∣∣
min{n, j+n}∑

i=max{1, j−n}

σ−1
n |ai− j|

∫
Ai

Em(t, s)ds

∣∣∣∣∣∣∣∣


2+δ

≤ Cp
δ
2 (

2m

n
)
δ
2

k∑
m=1

km+p−1∑
j=km

 min{n, j+n}∑
i=max{1, j−n}

|ai− j|


1+δ min{n, j+n}∑

i=max{1, j−n}

|ai− j|

∣∣∣∣∣∣
∫

Ai

Em(t, s)ds

∣∣∣∣∣∣
≤ C

(
p2m

n

) δ
2
 k∑

m=1

km+p−1∑
j=km

|ai− j|

 n∑
i=1

∣∣∣∣∣∣
∫

Ai

Em(t, s)ds

∣∣∣∣∣∣
≤ C

(
p2m

n

) δ
2

= Cγδ/22n .

(4.4)

Since sn → 1 by Lemma 3.2. From (4.3) and (4.4) we can get Lemma 3.3.
Proof of Lemma 3.4. Let ψ(t) and ϕ(t) be the characteristic functions of S ′1n and Hn, respectively. Thus
applying the Esséen inequality( Petrov [20], Theorem 5.3), for any T > 0,

sup
t
|P(S ′1n ≤ t) − P(Hn ≤ t)| ≤

∫ T

−T

∣∣∣∣∣ψ(t) − ϕ(t)
t

∣∣∣∣∣ dt

+ T sup
t

∫
|u|≤C/T

|P(Hn ≤ u + t) − P(Hn ≤ t)|du

: = D1n + D2n.

(4.5)
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Similar to (4.2), it follows from Lemma 3.5, A.3 and A.4 in the Appendix that

|ψ(t) − ϕ(t)| =

∣∣∣∣∣∣∣E exp

it k∑
m=1

ynm

 − k∏
m=1

E exp (itynm)

∣∣∣∣∣∣∣
≤ 4t2

∑
1≤i< j≤k

ki+p−1∑
s1=ki

k j+p−1∑
t1=k j

|Cov(Zns1 ,Znt1)|

≤ 4Ct2u(q),

which implies that

D1n =

∫ T

−T

∣∣∣∣∣ψ(t) − ϕ(t)
t

∣∣∣∣∣ dt ≤ Cu(q)T 2. (4.6)

Therefore, by Lemma 3.3, we have

sup
t
|P(Hn ≤ t + u) − P(Hn ≤ t)| ≤ sup

t

∣∣∣∣∣∣P
(

Hn

sn
≤

t + u
sn

)
− Φ

(
t + u

sn

)∣∣∣∣∣∣
+ sup

t

∣∣∣∣∣∣P
(

Hn

sn
≤

t
sn

)
− Φ

(
t
sn

)∣∣∣∣∣∣ + sup
t

∣∣∣∣∣∣Φ
(
t + u

sn

)
− Φ

(
t
sn

)∣∣∣∣∣∣
≤ 2 sup

t

∣∣∣∣∣∣P
(

Hn

sn
≤ t

)
− Φ(t)

∣∣∣∣∣∣ + sup
t

∣∣∣∣∣∣Φ
(
t + u

sn

)
− Φ

(
t
sn

)∣∣∣∣∣∣
≤ C

(
γδ/22n + |

u
sn
|

)
≤ C

(
γδ/22n + |u|

)
.

(4.7)

Hence, from (4.7) it follows that

D2n = T sup
t

∫
|u|≤C/T

|P(Hn ≤ t + u) − P(Hn ≤ t)| du ≤ C(γδ/22n + 1/T ) (4.8)

Combining (4.5), (4.6) with (4.8), and choosing T = u−1/3(q), we can easily see that

|P(S ′1n ≤ t) − P(Hn ≤ t)| ≤ C(u1/3(q) + γδ/22n ). �

Proof of Lemma 3.5. By Assumption (A1) and Lemma A.5 in the Appendix, it follows that

σ2
n(t) ≤ C

n∑
i=1

E
(
εni

∫
Ai

Em(t, s)ds
)2

≤ O(2m/n).

In addition, according to Assumptions (A2)–(A4) and referring to Liang and Qi [8], it is easy to
follow Lemma 3.5.
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5. Appendix

Lemma A.1 [4] Suppose that {ςn, n ≥ 1}, {ηn, n ≥ 1} and {ξn, n ≥ 1} are three random variable
sequences,{γn, n ≥ 1} is a positive constant sequence, and γn → 0. If sup

x
|Fςn(x) − Φ(x)| ≤ Cγn, then

for any ε1 > 0, ε2 > 0

sup
x
|Fςn+ηn+ξn(x) − Φ(x)| ≤ C{γn + ε1 + ε2 + P(|ηn| ≥ ε1) + P(|ξn| ≥ ε2)}.

Lemma A.2 [18] Let {X j} j≥1 be a LNQD random variable sequence with zero mean and finite second
moment, sup j≥1 EXr

j < ∞. Assume that {a j} j≥1 be a real constant sequence, a := sup
j
|a j| < ∞. Then for

any r > 1, there exists a constant C not depending on n such that

E

∣∣∣∣∣∣∣
n∑

j=1

a jX j

∣∣∣∣∣∣∣
r

≤ Carnr/2.

Lemma A.3 [18] If X1, · · · , Xm are LNQD random variables with finite second moments, let ϕ j(t j) and
ϕ(t1, · · · , tm) be c.f.’s of X j and (X1, · · · , Xm), respectively, then for all nonnegative(or non positive) real
numbers t1, · · · , tm, ∣∣∣∣∣∣∣ϕ(t1, · · · , tm) −

m∏
j=1

ϕ j(t j)

∣∣∣∣∣∣∣ ≤ 4
∑

1≤l<k≤m

|tltk||Cov(Xl, Xk)|.

Lemma A.4 [11] Assume that Assumptions (A3) and (A4) hold, then
(i) supm

∫ 1

0
|Em(t, s)|ds ≤ C; (ii)

∑n
i=1 |

∫
Ai

Em(t, s)ds| ≤ C;
(iii)|

∫
Ai

Em(t, s)ds| = O( 2m

n ), i = 1, 2, · · · , n; (iv)
∑n

i=1(
∫

Ai
Em(t, s)ds)2 = O( 2m

n ).
Lemma A.5 [21] Suppose that {Xn; n ≥ 1} is a LNQD sequence of random variables with EXn = 0.
Then for any p > 1, there exists a positive constant C such that

E

∣∣∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣∣∣
p

≤ CE

 n∑
i=1

X2
i

p/2

, n ≥ 1.
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