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We present new exact solutions in the form of solitary waves for the conformable

Klein-Gordon equation with quintic nonlinearity. We use functional variable method which converts

a

conformable PDE to a second-order ordinary differential equation through a traveling wave

transformation. We obtain periodic wave and solitary wave solutions including particularly kink-
profile and bell-profile type solutions. The present method is a direct and concise technique which
has the potential to be applicable to many other conformable PDEs arising in physics and engineering.
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1. Introduction

Nonlinear conformable evolution equations (NLCEEs) became significantly useful tools in the
modeling of many problems in sciences and technology. Exact wave solutions of these models are
very important and active research area. NLCEEs are getting the attention of researchers and
becoming phenomenal subject in the contemporary science. Many systems in mathematical physics
and fluid dynamics are modeled via fractional differential equations. Exact wave solutions of these
models are quite active and important research area in science. For the numerical and exact solutions
of NLCEEs, there are some efficient techniques in the literature such as method of (G’ /G)—expansion,
extended sinh-Gordon equation expansion, Kudryashov, exp-function, exponential rational function,
modified Khater, functional variable, improved Bernoulli sub-equation function, sub-equation, tanh,
Jacobi elliptic function expansion, auxiliary equation, extended direct algebraic, etc., see [1-27]. The
functional variable (FV) method was introduced in [28] and was further developed in the
studies [29-33]. FV method treats nonlinear PDEs with linear techniques and constructs interesting
type of soliton solutions (kink, black, white, pattern, etc). The conformable fractional derivatives
don’t have a physical meaning as the Caputo or Riemann-Liouville derivatives. This situation is a
general open problem for fractional calculus. Despite this many physical applications of conformable
fractional derivative appear in the literature. Dazhi Zhao and Maokang Luo generalized the
conformable fractional derivative and give the physical interpretation of generalized conformable
derivative. In addition, with the help of this fractional derivative and some important formulas, one
can convert conformable fractional partial differential equations into integer-order differential
equations by travelling wave transformation [39].

The aim of the present paper is present new exact solutions to conformable Klein-Gordon (KG)
equation with quintic nonlinearity by employing FV method. Nonlinear conformable Klein-Gordon
equation has the form (for @ = 1, see [34])

D,zau — Ky +yu — A"+ ou? =0, (1.1)

in which u represents wave profile, and &, y, 4,0 # 0 are real valued constants. KG equation arises in
theoretical physics, particularly in the area of relativistic quantum mechanics and it is used in modeling
of dislocations in crystals.
For n = 3, Eq (1.1) is known as conformable Klein-Gordon equation with quintic nonlinearity [24]
alwu ) azu

pwr —kﬁ+yu—/lu3+0'u5:0, o #0. (1.2)

In particular, if o = 0, then Eq (1.2) reduces to some other PDEs including the ones in [35, 36].
(i) Conformable Klein-Gordon equation
a2au azu 3

570 _W-FKM + Bu” = 0. (1.3)

(ii) Conformable Landau-Ginzburg-Higgs equation

0*u 0*u
e Pae

—m*u+ g’ = 0. (1.4)
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(iii) Conformable ®-four equation

#u  0u 3
g g U =0
(iv) Conformable Duffing equation
62(1

(v) Conformable Sine-Gordon equation

P'u 1
()

ore 92 6

Next, we overview method of functional variable.

2. Method of functional variable

Consider the NLCEE:

F(u,Dfu,ux,Df“u,uxx,...):0, t>0, O<ac<l,

(1.5)

(1.6)

(1.7)

2.1)

in which F is a polynomial function in terms of unknown function u, and D{u is defined as [37]

Coulx t+ et —u(x, t
Diu(x,t) = hr% ( ) —ul ),
£ &

where 0 < ¢, a € (0, 1].
Now, let us define the wave variable [38]

102

u(x,t) =U¢), &= x—w%,
in which w is a parameter which will be determined later. Hence, we can write that
Diu=-wU' &), u,=U'§), Dfu=w’U"Q),
By writing Eq (2.3) in Eq (2.1), we get ordinary differential equations:

GUE©),U'©),U"(&),U"(&),..) =0.

Now, define a transformation:
U = F(U),

from which, we obtain
1
U: = — F2 /’
e =5

1 ”
Ué:é:é: = E(Fz) \/ﬁ,

1
Uffff — 5[(}72)///1_72 + (FZ)N(FZ)/]’
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in which ””” stands for -&.
Using Eq (2.6) in Eq (2.3), ordinary differential Eq (2.3) can be reduced to:

G(U,F,F',F",F",..)=0. (2.7)
Now, let us consider the equation
(UE)e)* = aU(&) + bU"(§) + cUP™(é), 0 < n, (2.8)

in which a, b, ¢ are parameters.
Next, we present a set of exact wave solutions of (2.8), see e.g., [39]:
Case 1. If a > 0, then (2.8) admits hyperbolic function solution:

—absec K*(Meg) |
U\(é) = [ ZM : (2.9)
b* — ac(1 - tanh(—-§))?
Case 2. If a, ¢ > 0, then (2.8) admits the following hyperbolic function solution
1
acsc h2("g) !
Ux(¢) = —— . (2.10)
b + 2 ~Jac coth(5=¢)
1
4a (cosh(n Vaé) + sinh(n yaé)) |’
Us(é) = 1 2.11)
4ac — (b + cosh(n v/a&) + sinh(n \/Eg))
1
8a® sec h(n a "
UAo) = [ (n yab) ] . e
b? + 4a(a — c¢) — 4ab sec h(n Vaé) + (b* — 4a(a + ¢)) tanh(n a&)
_ 1
acsc h(Mf) !
Us() = | ——— - — - (2.13)
| bsinh(5°€) + 2 vac cosh(57¢) |
1
asec h("YLag) !
Us(é) = IZ = (2.14)
| 2 Vac sinh(5¢) — b cosh(57¢) |
Case 3. If a > 0 and b* — 4ac > 0, then (2.8) admits the following hyperbolic function solution
2a sec h(n+a g
Us(é) = l (n Va&) l . (2.15)
—bsec h(n+aé) + Vb? — 4ac
Case 4. If a > 0 and b* — 4ac < 0, then (2.8) admits the following hyperbolic function solution
2a csc h(n \ag) g
Us(§) =l l : (2.16)
+ Vdac — b* — b csc h(n+aé)
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Case 5. If a > 0 and b* — 4ac = 0, then (2.8) admits the following hyperbolic function solution

1
n
2

Us(® = |2 1+ tanh(§ vae))

U@ = |-2 (1 cotn(s \/56))]'11 .

Case 6. If a < 0 and ¢ > 0, then (2.8) admits the following triangular function solution

2a I’
—b + Vb? — dac sin(n V—aéf) |

Ull(é:):[

J
S =

2a
—b + Vb2 — 4ac cos(n V—aé) |

Uia(€) :[

a sec?(

| —b + 2 V=actan("Y=4¢) |

ny=a 1"
Uis(é) = 9

1
2 — 1n
acsc*(2E)

| —b + 2 vV=ac cot("=¢) |

—a (1 + (tan(n V—aé) + sec(n \/—_af))z) '
b — 2 v—ac tan(n V—a&) + sec(n V—a&) |

1

) I

U14(§) =

)

Uis(é) =

—a csc(

Uis(é) =
: | bsin("Y2£) + 2 V=ac cos("4é) |

a sec(%qg) 1"
| 2 vV—ac sin(@f) -b cos(@f) ]

Case 7. If a > Oand b = 0, then (2.8) admits the following hyperbolic function solution

U17(¢f) =

Uss(&) = [i \/g s hin \/55)] L (e>o),

Uso() = [i S sechin vaa]" . (<0,

Case 8. If a < Oand b = 0, then (2.8) admits the following triangular function solution

Un(@) = [i N \/Ef)] L (>0

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Uni(€) = [i |- sectn \/—_af)] (<o),

Case 9. If a > 0 and ¢ = 0, then (2.8) admits the following hyperbolic function solution

1
a nva _|"
Un(é) = |—7 csc h( \/_f) ,
b 2
1
a nva _|"
Un@) = |2 secrt (e[
b 2
Case 10. If a < 0 and ¢ = 0, then (2.8) admits the following triangular function solution
[a nv-a I’
Un) =y ese*(— o -

J
==

Uns(&) = | = secX(

3. Conformable Klein-Gordon with quintic nonlinearity

Using transformation of traveling wave; u(x, t) = U(£), € = x — w%, Eq (1.1) is written as:

W = k)Ug +yU = AU? + U’ = 0,

or

U = =0 |-yU + 0% - U7

Writing Eq (2.5) in Eq (3.2), we get:

1 A 3 5
SFY = —— [ U+ - o],

where the prime denotes differentiation for £&. From the integrating of Eq (3.3), we obtain:

2 _
FUY = ——5

24 o
—yU* + ==U* - =U°|.
o -5

Using the traveling wave transformation (2.5), we have
(Ue)* = aU? + bU* + cU®,

where
0% A o

b= - .
w2 T 2w k2 T T3 =k

a=—

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

3.1

(3.2)

(3.3)

(3.4)

(3.5)

By using the relations (16—40), we obtain exact solutions of conformable KG equation with quintic

nonlinearity (1.2).
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Case 1. If ﬁ < 0, then (1.2) admits the following hyperbolic function solution

Bsechi(J-ar—wt) |
ui(x,t) = . (3.6)

£~ 20(1 - tanh( |- X5 (x — w5)))?

Case 2. If ' <0

) 3 (Wf_ 7 < 0, then (1.2) admits the following hyperbolic function solution

—yese (|- =a(x - wh)
ul(x’ t) = ) (37)
112 [ coth( -1 (x - wt))

—4y(cosh(2 (-0t ))+smh(2 ——I(x - wh )))

U3(.x, t) = | | (38)
4 /l 12
s = (4 + cosh2 (= w8) + sinh 2 = (- w5)
8y~ sech(2 /- kz(x 0 ))
u x,[ =
4(x, 1) [‘f+4y(y—§)+2wlsech(2 kz(x w,(t))+
3 (3.9)
(%—M’()’—%))tanh(z _wzikz(x—w’:))] s
21
© )
—y csch( \J-= = (x — wh)
- A ’ (3.10)
1 Y o
|3 sinh( =5zt (v = 05)) + 25 cosh( | —tp(r = 05))

J
NI—

—y sec h( |- = (x — w-))
ue(x, 1) = ) (3.11)
2 2 sinh( /- =55 (x — wE)) — 4 cosh( (x — a)ﬂ))

2k2

Case 3. If —* < 0 and A% > ‘Syo, then (1.2) admits the following hyperbolic function solution

—2ysech(2 |- = = (x — wh))
ur(x,t) = . (3.12)

—% sech(2 \[— =tz (x — wE)) £ 322 - 16y0

Case 4. If ﬁ <0and A* < %yo’, then (1.2) admits the following hyperbolic function solution

_27/ CsC h(2 \[ —szkz (X - w%))
+/16y0 = 322 — S csc h(2 |- = o (x — wE)

AIMS Mathematics Volume 5, Issue 6, 6972-6984.

ug(x,t) = (3.13)



6979

Case 5. If ﬁ <0Oand A = +4 %, then (1.2) admits the following hyperbolic function solution

uo(x, f) = [—3—7(1 + tanh( | -—2 z(x—wﬁ)))]z, (3.14)
o w? —k a
3y |7 i

upp(x, 1) = [—; (1 + coth( v kz(x - wa)))] . (3.15)

Case 6. If s > 0 and 5L < 0, then (1.2) admits the following triangular function solution
T
=)
e Y , (3.16)
|—4 = \BE - 16y sin2 |2 (x - w2)) |
=)
e y , (3.17)
__/51 + /322 — 16y0 cos(2 ﬁ(x - w’f))_

)
=

—y sec?( | o (x — b))
upi(x, 1) = , (3.18)

)
=

—y ese?( | (x — b))
u14(-x9 t) = P (319)

-2 +2 \/—g cot( \/ﬁ(x - wl))

1

y(1 + (tan(2 ,/#(x—w%)) + 5e0(2 | =z (x — wE)))?
ys(x, 1) = ( ‘ : ) , (3.20)

2 -2 /- Ftan2 |/ (x — wh)) £ sec(2 | Fm(x — wh))

@ 2
yese( [/ =m(x — wh))
ui(x, 1) = , (3.21)

4 sin( (e = 05) + 2 = Fecos( [ p(x - wh)

1

2

—y sec( szkz (x— w%))
up(x,t) = . (3.22)

2 =L sin( [ (x — wD) — 4 cos( | 2 (x — wE))
Case 7. If X5 < 0 and A = 0, then (1.2) admits the following hyperbolic function solution
vk ghyp

[3y [ 0% I : o
ug(x, 1) = [i ; CcsC h(2 —m(x — (x);))} , (m < 0), (3.23)
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[ 3y [ y “ : o
up(x, 1) = [i Y sec h(2 R (x— w;))} , (m > 0). (3.24)

Case 8. If > > 0 and A = 0, then (1.2) admits the following triangular function solution

3 « I

(%, 1) = [i Vo ese2 | 5 wt;))] : (m <0), (3.25)
3 « 1

i (3, ) = [i V- see2 | L5 - w%))] : (ﬁ > 0). (3.26)

Case 9. If > < 0 and o = 0, then (1.2) admits the following hyperbolic function solution

2 a %
(X, 1) = [77 ese h3( /—ﬁ(x - w%))] , (3.27)

1

2 RE
ugg(x,t):[—%sech%,/—ﬁ(x—w%))] . (3.28)

Case 10. If 2> > 0 and o = 0, then ((1.2)) admits the following triangular function solution

1
a 12

[ 2y Y t
Upa(x, 1) = >_7 CSC R (x— 0.);))_ , (3.29)
] 1
2y vy “ ]’
Urs(x, 1) = _—7 sec”( R (x - wa))_ . (3.30)

4. Graphical representations

In this part, some graphical representations of exact wave solutions of conformable KG equation are
presented in three different forms. 3D plots of exact solutions |us|, |us|, |us| are displayed in Figures
1(a), 2(a), 3(a), respectively. Figures 1(b), 2(b), and 3(b) demonstrate the shape of contour plot of exact
wave solutions |us|, |us| and |us|. 2D line plot of exact wave solutions |us|, |us| and |us| are presented in
Figures 1(c), 2(c), and 3(c) with 1= 0.2, t= 04, t=0.6, t =0.8, t = 1.

Solitary wave solutions (3.6)—(3.15), (3.23), (3.24), (3.26) and (3.27) represent bell-profile and kink-
profile solitary wave solutions, and solutions (3.16)—(3.22), (3.25) and (3.28) are triangular periodic
wave solutions. These solutions may be useful to explain some physical phenomena in dynamical
systems that are described by the system of conformable fractional equations for Klein-Gordon with
quantic nonlinearity.

AIMS Mathematics Volume 5, Issue 6, 6972-6984.
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S
-1 s 0 s 10

[ —t02— =04 ——=06— — =08 ——r1

(a) (b) ()

Figure 1. 3D-plot of the modulus (left), the contour plot (middle) and 2D-polar plot (right) parts of the exact wave
solution of |u;| wheno =0.5, o =1,y =1,4= 1,k =1.5,and @ = 0.9.

-10 It

[ =02~ —=04——=06— — =08 ——I

(a) (b) ()

Figure 2. 3D-plot of the modulus (left), the contour plot (middle) and 2D-polar plot (right) parts of the exact wave
solution of |uy| wheno =3, w =1,y =0.75,4= 1.5,k = 2,and @ = 0.9.

B

(@ (b) ()
Figure 3. 3D-plot of the modulus (left), the contour plot (middle) and 2D-polar plot (right) parts of the exact wave
solution of |u;;| wheno = -1, w =2,y =1.5,4=2,k=0.5and @ = 1.

5. Conclusions and outlook
We presented new exact solutions of conformable Klein-Gordon equation with quantic
nonlinearity by using method of functional variable. Solutions were expressed in terms of solitary

waves such as kink-profile and bell-profile. Moreover, we obtain exact periodic solutions of the KG

AIMS Mathematics Volume 5, Issue 6, 6972—6984.



6982

equation. Computational results show that FV method is a highly efficient technique in the solutions
of conformable PDEs. In a future research work, we will investigate the applicability of these results
to some fractional-stochastic differential equations.
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