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Abstract: In this paper, we prove the existence of infinitely many small solutions for the following
fractional Schrödinger-Poisson system{

(−∆)su + V(x)u + φu = f (x, u), x ∈ R3,

(−∆)tφ = u2, x ∈ R3,

where (−∆)α denotes the fractional Laplacian of order α ∈ (0, 1) and V is allowed to be sign-changing.
We obtain infinitely many small solutions via a dual method. Our main tool is a critical point theorem
which was established by Kajikiya.
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1. Introduction and preliminaries

This article deals mainly with the following fractional Schrödinger-Poisson systems{
(−∆)su + V(x)u + φu = f (x, u), x ∈ R3,

(−∆)tφ = u2, x ∈ R3,
(1.1)

where (−∆)α denotes the fractional Laplacian of order α ∈ (0, 1) and V is allowed to be sign-changing.
In (1.1), the first equation is a nonlinear fractional Schrödinger equation in which the potential φ
satisfies a nonlinear fractional Poisson equation. For this reason, system (1.1) is called a fractional
Schrödinger-Poisson system, also known as the fractional Schrödinger-Maxwell system, which is not
only a physically relevant generalization of the classical NLS but also an important model in the study
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of fractional quantum mechanics. For more details about the physical background, we refer the reader
to [3, 4] and the references therein.

It is well known that the fractional Schrödinger-Poisson system was first introduced by Giammetta
in [8] and the diffusion is fractional only in the Poisson equation. Afterwards, in [14], the authors
proved the existence of radial ground state solutions of (1.1) when V(x) ≡ 0 and nonlinearity f (x, u)
is of subcritical or critical growth. Very recently, in [15], the author proved infinitely many solutions
via Fountain Theorem for (1.1) and V(x) is positive. However, to the best of our knowledge, for the
sign-changing potential case, there are not many results for problem (1.1).

In recent years, the following potential function was discussed: (V1) V(x) ∈ C(R3,R) and
infx∈R3 V(x) > −∞, which is called sign-changing potential. It is well known that the Schrödinger
equation has already attracted a great deal of interest in the recent years with the above sign-changing
potential. Many researchers studied infinitely many solutions for Schrödinger equation with the above
sign-changing potential and some different growth conditions on f , see [11, 13]. On the basis of the
previous work, many authors considered infinitely many solutions for different equations with
sign-changing potential and some different growth conditions on f , see [1, 5–7, 10, 11, 13, 18–22] and
the references therein. In particular, Bao [7] and Zhou [13] studied infinitely many small solutions for
Schrödinger-Poisson equation with sign-changing potential. However, we know that there are few
papers which deal with infinitely many small solutions without any growth conditions via dual
methods.

Inspired by [7, 13], we will study infinitely many small solutions for the problem (1.1) under the
following assumptions on V and f :
(V2) There exists a constant d0 > 0 such that

lim
|y|→∞

meas
({

x ∈ R3 : |x − y| ≤ d0,V(x) ≤ M
})

= 0, ∀ M > 0.

( f1) There exists constant δ1 > 0 and 1 < r1 < 2 such that f ∈ C(R3 × [−δ1, δ1],R) and

| f (x, t)| ≤ a(x)|t|r1−1, |t| ≤ δ1, ∀x ∈ R3,

where a(x) ∈ L
2

2−r1 (R3) is a positive continuous function.
( f2) lim

t→0

f (x,t)
t = +∞ uniformly for x ∈ R3.

( f3) There exists a constant δ2 > 0 such that f (x,−t) = − f (x, t) for any |t| ≤ δ2 and all x ∈ R3.
Note that condition (V2) is usually applied to meet the compact embedding.
Next, we are ready to state the main result of this paper.

Theorem 1.1 Suppose that (V1), (V2) and ( f1)–( f3) hold. Then when s ∈ ( 3
4 , 1), t ∈ (0, 1) satisfying

4s + 2t ≥ 3, problem (1.1) has infinitely many solutions {uk} such that

1
2

∫
R3
|(−∆)

α
2 uk|

2dx +
1
2

∫
R3

V(x)u2
kdx +

1
4

∫
R3
φt

uk
u2

kdx −
∫
R3

F(x, uk)dx ≤ 0

and uk → 0 as k → ∞.
Throughout this paper, C > 0 denote various positive constants which are not essential to our

problem and may change from line to line.
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2. Variational framework and main results

Before stating this section, we first notice the following fact: by (V1), we can conclude that there
exists a constant V0 such that Ṽ(x) := V(x) + V0 > 0 for all x ∈ R3. Let f̃ (x, u) = f (x, u) + V0u and
consider the following new equation{

(−∆)su + Ṽ(x)u + φu = f̃ (x, u), x ∈ R3,

(−∆)tφ = u2, x ∈ R3.
(2.1)

It is easy to check that the hypotheses (V1), (V2) and ( f1)–( f3) still hold for Ṽ and f̃ provided that
those hold for V and f . In what follows, we just need to study the equivalent Eq (2.1). Therefore,
throughout this section, we make the following assumption instead of (V1)
(Ṽ1) Ṽ(x) ∈ C(R3,R) and infx∈R3 Ṽ(x) > 0.

To this end, we define the Gagliardo seminorm by

[u]α,p =

(∫
R3

∫
R3

|u(x) − u(y)|p

|x − y|N+αp dxdy
) 1

p

,

where u : R3 → R is a measurable function.
On the one hand, we define fractional Sobolev space by

Wα,p(R3) =
{
u ∈ Lp(R3) : u is measurable and [u]α,p < ∞

}
endowed with the norm

‖u‖α,p =
(
[u]p

α,p + ‖u‖p
p

) 1
p
, (2.2)

where

‖u‖p =

(∫
R3
|u(x)|pdx

) 1
p

.

If p = 2, the space Wα,2(R3) is an equivalent definition of the fractional Sobolev spaces based on
the Fourier analysis, that is,

Hα(R3) := Wα,2(R3) =

{
u ∈ L2(R3) :

∫
R3

(1 + |ξ|2α)|̃u|2dξ < ∞
}
,

endowed with the norm

‖u‖Hα =

(∫
R3
|ξ|2α |̃u|2dξ +

∫
R3
|u|2dξ

) 1
2

,

where ũ denotes the usual Fourier transform of u. Furthermore, we know that ‖ · ‖Hα is equivalent to
the norm

‖u‖Hα =

(∫
R3
|(−∆)

α
2 u|2dx +

∫
R3

u2dx
) 1

2

.

Let Ω ⊆ R3 and Lp(Ω), 1 ≤ p ≤ +∞ be a Lebesgue space, the norm in Lp(Ω) is denoted by | · |p,Ω. Let
Hα

0 (Ω), Ω ⊂ R3, and Hα(R3) denote the usual fractional Sobolev spaces (see [9]). Under the assumption
(Ṽ1), our working space is defined by

E =

{
u ∈ Hα(R3) :

∫
R3

Ṽ(x)u2dx < ∞
}

(2.3)
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and
E(Ω) = {u ∈ Hα

0 (Ω) :
∫

Ω

Ṽ(x)u2dx < ∞}.

Thus, E is a Hilbert space with the inner product

(u, v)EV =

∫
R3

(
|ξ|2αũ(ξ)̃v(ξ) + ũ(ξ)̃v(ξ)

)
dξ +

∫
R3

Ṽ(x)u(x)v(x)dx,

(u, v)E,Ω =

∫
Ω

(
|ξ|2αũ(ξ)̃v(ξ) + ũ(ξ)̃v(ξ)

)
dξ +

∫
Ω

Ṽ(x)u(x)v(x)dx,

and the norm

‖u‖EV =

(∫
R3

(
|ξ|2α |̃u(ξ)|2 + |̃u(ξ)|2

)
dξ +

∫
R3

Ṽ(x)u2(x)dx
) 1

2

,

‖u‖E,Ω =

(∫
Ω

(
|ξ|2α |̃u(ξ)|2 + |̃u(ξ)|2

)
dξ +

∫
Ω

Ṽ(x)u2(x)dx
) 1

2

,

Moreover, ‖ · ‖EV and ‖u‖E,Ω are equivalent to the following norms

‖u‖ := ‖u‖E =

(∫
R3
|(−∆)

α
2 u|2dx +

∫
R3

Ṽ(x)u2dx
) 1

2

,

and

‖u‖E,Ω =

(∫
Ω

|(−∆)
α
2 u|2dx +

∫
Ω

Ṽ(x)u2dx
) 1

2

,

where the corresponding inner product are

(u, v)E =

∫
R3

(
(−∆)

α
2 u(−∆)

α
2 v + Ṽ(x)uv

)
dx.

and
(u, v)E,Ω =

∫
Ω

(
(−∆)

α
2 u(−∆)

α
2 v + Ṽ(x)uv

)
dx.

The homogeneous Sobolev space Dα,2(R3) is defined by

Dα,2(R3) =
{
u ∈ L2∗α(R3) : |ξ|αũ(ξ) ∈ L2(R3)

}
,

which is the completion of C∞0 (R3) under the norm

‖u‖Dα,2 =

(∫
R3
|(−∆)

α
2 u|2dx

) 1
2

=

(∫
R3
|ξ|2α |̃u(ξ)|2dξ

) 1
2

,

endowed with the inner product

(u, v)Dα,2 =

∫
R3

(−∆)
α
2 u(−∆)

α
2 vdx.
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Then Dα,2(R3) ↪→ L2∗α(R3), that is, there exists a constant C0 > 0 such that

‖u‖2∗α ≤ C0‖u‖Dα,2 . (2.4)

Next, we give the following lemmas which discuss the continuous and compact embedding for
E ↪→ Lp(R3) for all p ∈ [2, 2∗α]. In the rest of paper, we use the norm ‖ · ‖ in E. Motivated by
Lemma 3.4 in [16], we can prove the following Lemma 2.1 in the same way. Here we omit it.
Lemma 2.1 E is continuously embedded into Lp(R3) for 2 ≤ p ≤ 2∗α := 6

3−2α and compactly embedded
into Lp(R3) for all s ∈ [2, 2∗α).
Lemma 2.2 ([ [9], Theorem 6.5]) For any α ∈ (0, 1), Dα,2(R3) is continuously embedded into L2∗α(R3),
that is, there exists S α > 0 such that(∫

R3
|u|2

∗
αdx

) 2
2∗α

≤ S α

∫
R3
|(−∆)

α
2 u|2dx ∀ u ∈ Dα,2(R3).

Next, let α = s ∈ (0, 1). Using Hölder’s inequality, it follows from Lemma 2.1 and Lemma 2.2 that
for every u ∈ E and s, t ∈ (0, 1), we have∫

R3
u2vdx ≤

(∫
R3
|u|

12
3+2t dx

) 3+2t
6

(∫
R3
|v|2

∗
t dx

) 1
2∗t
≤ γ 12

3+2t
S

1
2
t ‖u‖

2‖v‖Dt,2 , (2.5)

where we used the following embedding

E ↪→ L
12

3+2t (R3) if 2t + 4s ≥ 3.

By the Lax-milgram theorem, there exists a unique φt
u ∈ Dt,2(R3) such that∫

R3
v(−∆)tφt

udx =

∫
R3

(−∆)
t
2φt

u(−∆)
t
2 vdx =

∫
R3

u2vdx, v ∈ Dt,2(R3). (2.6)

Hence, φt
u satisfies the Poisson equation

(−∆)tφt
u = u2, x ∈ R3.

Moreover, φt
u has the following integral expression

φt
u(x) = ct

∫
R3

u2(y)
|x − y|3−2t dy, x ∈ R3,

which is called t-Riesz potential, where

ct = π−
3
2 2−2t Γ(3

2 − 2t)
Γ(t)

.

Thus φt
u(x) ≥ 0 for all x ∈ R3, from (2.5) and (2.6), we have

‖φt
u‖Dt,2 ≤ S

1
2
t ‖u‖

2

L
12

3+2t
≤ C1‖u‖2 if 2t + 4s ≥ 3. (2.7)
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Therefore, by Hölder’s inequality and Lemma 2.1 and Lemma 2.2, there exist C̃1 > 0, C̃2 > 0
such that ∫

R3
φt

uu2dx ≤
(∫
R3
|φt

u|
2∗t dx

) 1
2∗t

(∫
R3
|u|

12
3+2t dx

) 3+2t
6

≤ C̃1‖φ
t
u‖Dt,2‖u‖2 ≤ C̃2‖u‖4.

Now, we define a cut-off function h ∈ C(R,R) such that 0 ≤ h(t) ≤ 1, h(−t) = h(t) for all t ∈ R,
h(t) ≡ 1 for all |t| ≤ d, h(t) ≡ 0 for all |t| ≥ 2d and h is decreasing in [d, 2d], where 0 < d ≤
1
2 min{δ1, δ2, 1}. Let

fh(x, u) = f (x, u)h(u), ∀ (x, u) ∈ R3 × R, (2.8)

and
Fh(x, u) =

∫ u

0
fh(x, t)dt, ∀ (x, u) ∈ R3 × R. (2.9)

Consider the following modified fractional Schrödinger-Poisson system{
(−∆)su + Ṽ(x)u + φu = fh(x, u), x ∈ R3,

(−∆)tφ = u2, x ∈ R3.
(2.10)

and define the cut-off functional by

Jh(u) =
1
2

∫
R3

(
|(−∆)

s
2 u|2 + Ṽ(x)|u|2

)
dx +

1
4

∫
R3
φt

uu2dx −
∫
R3

Fh(x, u)dx.

Moreover, the derivative of J is

〈J ′h(u), v〉 =

∫
R3

(
(−∆)

s
2 u(−∆)

s
2 v + Ṽ(x)uv + φt

uuv − f (x, u)v
)

dx, ∀ u, v ∈ E. (2.11)

Then u ∈ E, satisfies |u| ≤ l, is a critical point of the functional Jh, u is a weak solution of (1.1).
Since the embedding E(Ω) ↪→ Lr(Ω) is continuous, where r ∈ [2, 2∗s] and Ω ⊂ R3, then there exists
a constant %r such that |u|r,Ω ≤ %r‖u‖E,Ω. By Lemma 2.1, we know that E(Ω) ↪→ Lp(Ω) is compact
for all p ∈ [2, 2∗s). Similar to [7], the energy functional Jh : E → R is well defined and of class
C1(E,R). Obviously, it can be proved that if u is a critical point of Jh, then the pair (u, φt

u) is a solution
of system (1.1).

Let Γk denote the family of closed symmetric subsets A of E such that 0 < A and the genus γ(A) ≥ k.
For more details on genus, we refer the readers to [23]. To prove the existence of infinitely many
solutions, we mainly apply the following critical point theorem established in [2].
Lemma 2.3 [2] Let E be an infinite dimensional Banach space andJh ∈ C

1(E,R) an even functional
with Jh(0) = 0. Suppose that Jh satisfies
(J1) Jh is bounded from below and satisfies (PS ) condition.
(J2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak

Jh(u) < 0.
Then there exists a critical point sequence {uk} such that Jh(uk) ≤ 0 and lim

k→∞
uk = 0.

In order to prove our main result by Lemma 2.3, we need the following lemmas.
Lemma 2.4 Assume that a sequence {un} ⊂ E, un ⇀ u in E as n → ∞ and {‖un‖} be a bounded
sequence. Then, as n→ ∞, we have∫

R3
(φt

un
un − φ

t
uu)(un − u)dx→ 0. (2.12)
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Proof. Take a sequence {un} ⊂ E such that un ⇀ u in E as n → ∞ and {‖un‖} is a bounded sequence.
By Lemma 2.1, we have un → u in Lp(R3) where 2 ≤ p < 2∗s, and un → u a.e. on R3. Hence
supn∈N ‖un‖ < ∞ and ‖u‖ is finite. Since s ∈ ( 3

4 , 1), then we know that E ↪→ L
6
2s (R3) holds. Hence

by (2.4) and (2.7), we have

∣∣∣∣∣∫
R3

(φt
un

un − φ
t
uu)(un − u)dx

∣∣∣∣∣ ≤ (∫
R3

(φt
un

un − φ
t
uu)2dx

) 1
2
(∫
R3

(un − u)2dx
) 1

2

≤
√

2
[∫
R3

(|φt
un

un|
2 + |φt

uu|2)
] 1

2

‖un − u‖2

≤ C3(‖φt
un
‖22∗s‖un‖

2
6
2s

+ ‖φt
u‖

2
2∗s
‖u‖26

2s
)

1
2 ‖un − u‖2

≤ C3(‖un‖
4 + ‖u‖4)

1
2 ‖un − u‖2 → 0, as n→ ∞.

This completes the proof of this lemma. �

Lemma 2.5 Suppose that (V1), (V2) and ( f1), ( f2) hold. Then Jh is bounded from below and satisfies
the (PS) condition on E.

Proof. By (V1), (V2), ( f1), f2) and the definition of h, we can get

|Fh(x, v)| ≤
a(x)
r1
|v|r1 +

V0

2
v2, ∀ (x, v) ∈ (R3,R).

For any given v ∈ E, let Ω = {x ∈ R3 : |v| ≤ 1}. By Hölder’s inequality and the definition of Jh,
one has

Jh(v) =
1
2
‖v‖2 +

1
4

∫
R3
φt

vv
2dx −

∫
R3

Fh(x, v)dx

≥
C
2
‖v‖2E,Ω +

1
4

∫
R3
φt

vv
2dx −

∫
Ω

Fh(x, v)dx

≥
C
2
‖v‖2E,Ω −

∫
Ω

(
a(x)
r1
|v|r1 +

V0

2
v2

)
dx

≥
C
2
‖v‖2E,Ω −

∫
Ω

(
a(x)
r1
|v|r1 +

V0

2
vr1

)
dx

≥
C
2
‖v‖2E,Ω −

1
r1
|a(x)| 2

2−r1
,Ω‖v‖

r1
2,Ω −

V0

2
‖v‖r1

r1,Ω

≥
C
2
‖v‖2E,Ω −

%r1
2

r1
|a(x)| 2

2−r1
,R3‖v‖r1

E,Ω −
V0%

r1
r1

2
‖v‖r1

E,Ω,

(2.13)

which implies that Jh is bounded from below by r1 ∈ (1, 2). Next we prove Jh satisfies the (PS )
condition. Let {vn} ⊂ E be any (PS ) sequence of Jh, that is, {Jh(vn)} is bounded and J ′h(vn) → 0. For
each n ∈ N, set Ωn = {x ∈ R3 : |vn| ≤ 1}. Then by (2.13), we have

C ≥ Jh(vn) ≥
C
2
‖vn‖

2
E,Ωn
−
%r1

2

r1
|a(x)| 2

2−r1
,R3‖vn‖

r1
E,Ωn
−

V0%
r1
r1

2
‖vn‖

r1
E,Ωn

,
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which implies that ‖vn‖E,Ωn ≤ C and C is independent of n. Thus

1
2

∫
Ωn

|(−∆)
s
2 vn|

2dx +
1
2

∫
Ωn

Ṽ(x)v2
ndx +

1
4

∫
Ωn

φt
vn

v2
ndx

= Jh(vn) +

∫
Ωn

Fh(x, vn)dx

≤ C +
%r1

2

r1
|a(x)| 2

2−r1
,R3‖vn‖

r1
E,Ωn

+
V0%

r1
r1

2
‖vn‖

r1
E,Ωn
≤ C,

(2.14)

where C is independent of n. Similarly

Jh(vn) =
1
2

∫
R3
|(−∆)

s
2 vn|

2dx +
1
2

∫
R3

Ṽ(x)v2
ndx +

1
4

∫
R3
φt

vn
v2

ndx −
∫
R3

Fh(x, vn)dx

≥
1
2

∫
R3\Ωn

|(−∆)
s
2 vn|

2dx +
1
2

∫
R3\Ωn

Ṽ(x)v2
ndx +

1
4

∫
R3\Ωn

φt
vn

v2
ndx −

∫
Ωn

Fh(x, vn)dx.

Therefore,
1
2

∫
R3\Ωn

|(−∆)
s
2 vn|

2dx +
1
2

∫
R3\Ωn

Ṽ(x)v2
ndx +

1
4

∫
R3\Ωn

φt
vn

v2
ndx

≤ Jh(vn) +

∫
Ωn

Fh(x, vn)dx

≤ C +
%r1

2

r1
|a(x)| 2

2−r1
,R3‖vn‖

r1
E,Ωn

+
V0%

r1
r1

2
‖vn‖

r1
E,Ωn

≤ C,

(2.15)

where C is independent of n. Combining (2.14) with (2.15), we have

S 2
n :=

1
2

∫
R3
|(−∆)

s
2 vn|

2dx +
1
2

∫
R3

Ṽ(x)v2
ndx +

1
4

∫
R3
φt

vn
v2

ndx

is bounded independent of n. Hence, as in the proof of Lemma 3.1 in [12], we have

C‖vn‖ ≤
1
2

∫
R3
|(−∆)

s
2 vn|

2dx +
1
2

∫
R3

Ṽ(x)v2
ndx ≤ S 2

n ≤ C,

which implies that {vn} is bounded in E. Going if necessary to a subsequence, we can assume vn ⇀ v
in E. Since the embedding E ↪→ Lp(R3) is compact, then vn → v in Lp(R3) for all 2 ≤ p < 2∗s and
vn → v a.e. on R3.

By ( f2) and Hölder’s inequality, we have∣∣∣∣∣∫
R3

( fh(x, vn) − fh(x, v)) (vn − v)dx
∣∣∣∣∣

≤

∫
R3

(|a(x)||vn|
r1 + V0|vn| + |a(x)||v|r1 + V0|v|) |vn − v|dx

≤ C2

(
|a(x)| 2

2−r1
,R3‖vn‖

r1
2,R3 + V0‖vn‖2,R3 + |a(x)| 2

2−r1
,R3‖v‖r1

2,R3 + V0‖v‖2,R3

)
‖vn − v‖2,R3

= on(1).

(2.16)
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On the other hand, by Lemma 2.4, we get that∫
R3

(φt
vn

vn − φ
t
vv)(vn − v)dx→ 0, as n→ ∞. (2.17)

Hence together with (2.16) and (2.17), we get

on(1) = 〈J ′h(vn) − J ′h(v), vn − v〉

= ‖vn − v‖2 +

∫
R3

(φt
vn

vn − φ
t
vv)(vn − v)dx

−

∫
R3

( fh(x, vn) − fh(x, v)) (vn − v)dx

≥ C3‖vn − v‖2 + on(1).

This implies vn → v in E and this completes the proof. �
Similar to the proof of Lemma 3.2 in [7] and Lemma 3.2 in [17], we can get the following lemma.

Lemma 2.6. For any k ∈ N, there exists a closed symmetric subsets Ak ⊂ E such that the genus
γ(Ak) ≥ k and supv∈Ak

J(v) < 0.

Proof. Let En be any n-dimensional subspace of E. Since all norms are equivalent in a finite
dimensional space, there is a constant β = β(En) such that

‖v‖ ≤ β‖v‖2

for all v ∈ En, where ‖ · ‖2 is the usual norm of L2(R3).
Next, we claim that there exists a constant M > 0 such that

1
2

∫
R3
|v|2dx ≥

∫
|v|>l
|v|2dx (2.18)

for all v ∈ En and ‖v‖ ≤ M. In fact, if (2.18) is false, then exists a sequence {vk} ⊂ En\{0} such that
vk → 0 in E and

1
2

∫
R3
|vk|

2dx <
∫
|vk |>l
|vk|

2dx

for all k ∈ N. Let uk = vk
‖vk‖2,R3

. Then

1
2
<

∫
|vk |>l
|uk|

2dx, for all k ∈ N. (2.19)

On the other hand, we can assume that uk → u in E since En is finite dimensional. Hence uk → u in
L2(R3). Moreover, it can be deduced from vk → 0 in E that

meas{x ∈ R3 : |vk| > l} → 0, k → ∞.

Therefore, ∫
|vk |>l
|uk|

2dx ≤ 2
∫
R3
|uk − u|2 +

∫
|vk |>l

u2dx→ 0, k → ∞
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which contradicts (2.19) and hence (2.18) holds. By ( f1), we can choose a l small enough such that

f (x, v) ≥
1
8

(
1
2

+
1
4

S t%
4

12
3+2t

)
βv2.

for all x ∈ R3 and 0 ≤ v ≤ 2l. This inequality implies that

Fh(x, v) = F(x, v) ≤ 4
(
1
2

+
1
4

S t%
4

12
3+2t

)
βv2. (2.20)

The assumption ( f3) implies Fh(x, v) is even in v. Thus, by (2.20), we have

Jh(v) =
1
2

∫
Ω

|(−∆)
s
2 v|2dx +

1
2

∫
Ω

Ṽ(x)v2dx +
1
4

∫
Ω

φt
vv

2dx −
∫

Ω

Fh(x, v)dx

≤
1
2
‖v‖2 +

1
4

S t%
4

12
3+2t
‖v‖4 −

∫
|v|≤l

Fh(x, |v|)dx

≤
1
2
‖v‖2 +

1
4

S t%
4

12
3+2t
‖v‖2 − 4

(
1
2

+
1
4

S t%
4

12
3+2t

)
β2

∫
|v|≤l
|v|2dx

=

(
1
2

+
1
4

S t%
4

12
3+2t

)
‖v‖2 − 4

(
1
2

+
1
4

S t%
4

12
3+2t

)
β2

(∫
R3
|v|2dx −

∫
|v|>l
|v|2dx

)
≤ −

(
1
2

+
1
4
τ2
∗τ

4
12
5

)
‖v‖2

for all v ∈ En with ‖v‖ ≤ min{M, 1}. Let 0 < ρ ≤ min{M, 1} and An = {v ∈ En : ‖v‖ = ρ}. We conclude
that γ(An) ≥ n and

sup
v∈An

Jh(v) ≤ −
(
1
2

+
1
4

S t%
4

12
3+2t

)
ρ2 < 0.

This completes the proof.
Proof of Theorem 1.1 . By ( f1)-( f3), we know that Jh is even and Jh(0) = 0. Furthermore,

Lemmas 2.5 and 2.6 imply that Jh has a critical sequence {vn} such that Jh(vn) ≤ 0 and vn → 0 as
n → ∞. Thus, we get by Lemma 2.3 that problem (1.1) has infinitely many small solutions. This
completes the proof.

3. Conclusions

We consider a class of fractional Schrödinger-Poisson systems with sign-changing potential.
According to the assumptions, we construct an equivalent new system. By dual method and the
critical point theorem, we proved the existence of infinitely many small solutions.
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