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1. Introduction and preliminaries

Convexity has played a crucial role in the advancement of pure and applied mathematics [1-10].
Due to its robustness, convex functions and convex sets have been generalized and extended in many
mathematical areas [11-20]. In particular, many inequalities can be found in the literature [21-30] via
convexity theory.

Integral inequalities [31-34] have numerous applications in number theory, combinatorics,
orthogonal polynomials, hypergeometric functions, quantum theory, linear programming,
optimization theory, mechanics and in the theory of relativity. This subject has received considerable
attention from researchers [35-38] and hence it is assumed as an incorporative the subject between
mathematics, statistics, economics, and physics [39-41].

To the best of our knowledge, the Hermite-Hadamard inequality is a well-known, paramount and
extensively useful inequality in the applied literature [42—45]. This inequality is of pivotal
significance because of other classical inequalities such as the Hardy, Opial, Lynger, Ostrowski,
Minkowski, Holder, Ky-Fan, Beckenbach-Dresher, Levinson, arithmetic-geometric, Young, Olsen and
Gagliardo-Nirenberg inequalities, which are closely related to the classical Hermite-Hadamard
inequality [46]. It can be stated as follows:

Letp : 7 C R — R be a convex function and ¢,d € 7 with ¢ < d. Then

d
dy 1 d
go(c-; )s Efgo(z)dzsw. (1.1)

c

In [47], Fejér contemplated the important generalizations that is the weighted generalization of the
Hermite-Hadamard inequality.
Let 7 C R and a function ¢ : 7 — R be a convex function. Then the inequalities

d d d
90(C+d) f w(z)dz < f e(2w(z)dz < w f w(z)dz. (1.2)

2
c c
hold, where w : 7 — R is non-negative, integrable and symmetric with respect to %1. If we choose
w(z) = 1, then (1.2) reduces to (1.1). Several classical inequalities can be obtained with the help of
inequality (1.1) by considering the use of peculiar convex function ¢. Moreover, these inequalities for
convex functions have a very important role in both applied and pure mathematics.

In recent years, integral inequalities have been derived via fractional analysis, which has emerged
as another interesting technique. Due to advancement in inequalities, the comprehensive investigation
of exponentially convex functions as the K-conformable fractional integral in the present paper is new.

The class of exponentially-convex functions were introduced by Dragomir and Gomm [48].
Bernstein [49] and Antczak [50] introduced these exponentially convex functions implicitly and
discuss their role in mathematical programming. The proliferating research on big data analysis and
deep learning has recently intensified the interest in information theory involving
exponentially-convex functions. The smoothness of exponentially-convex functions is exploited for
statistical learning, sequential prediction, and stochastic optimization.

Now we recall the concept of exponentially convex functions, which is mainly due to M. A. Noor
and K. I. Noor [51, 52].
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Definition 1.1. (See [51, 52]) A real-valued function ¢ : M C R — R is said to be an exponentially

convex on M if the inequality
PEH1-DD < g0 4 (] — g)e#D (1.3)

holds for all c,d € M and & € [0, 1].
It is well-known that a function ¢ : 7 = [c¢,d] C R +— R is an exponentially convex function if and
only if it satisfies the inequality

d

e 1 e#(©) 4 o)
e? 5 < f e*Vdz < ———— (1.4)
d-c 2

c

for all ¢,d € 1 with ¢ < d. Inequality (1.4) provide the upper and lower estimates for the exponential
integral, is called the Hermite-Hadamard inequality.

Recently, the fractional calculus has attracted the consideration of several researchers [53, 54]. The
impact and inspiration of the fractional calculus in both theoretical, applied science and engineering
arose out substantially. Fractional integral operators are sometimes the gateway to physical problems
that cannot be expressed by classical integral, sometimes for the solution of problems expressed in
fractional order. In recent years, a lot of new operator have been defined. Some of these operators are
very close to classical operators in terms of their characteristics and definitions. Various studies in the
literature, on distinct fractional operators such as the classical Riemann-Liouville, Caputo,
Katugampola, Hadamard, and Marchaud versions have shown versatility in modeling and control
applications across various disciplines. However, such forms of fractional derivatives may not be able
to explain the dynamic performance accurately, hence many authors are found to be sorting out new
fractional differentiations and integrations which have a kernel depending upon a function and this
makes the range of definition expanded [55, 56].

Now, we recall the basic definitions and new notations of conformable fractional operators.

Definition 1.2. ([3]). Let ¢ € Li([c,d]). Then the Riemann-Liouville integrals J L‘igo and J° g_go of order
0 > 0 are defined by

g _ L f ) _ o1
(T )e(z) = e ). =& p&)d¢  (z>0) (1.5)
and
1
(Jg)p(2) = o) f(é‘ -l dé (z<a), (1.6)
respectively, where I'(-) is the Euler Gamma function defined by 1'(6) = fe‘f £71de.
0

In [57], Jarad et al. defined a new fractional integral operator that has several special cases among
many other features as follows:

1 Z _\0 AN y-1
Vjigo(z):r(y)fc((z 2 6(5 C)) (ggi((i)l—ﬁdg (1.7)
and
N fd <d—z>5—<d—§>6)7‘1 e,
yﬂ’d-so(z)——r(y) Z ( > (d_g)l-édf' (1.8)
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Remark 1.1. It is easy to see the following connections:

(1) Let c = 0and 6 = 1. Then (1.7) reduces to the Riemann-Liouville operator that is given in (1.5)
and alike the other.

(2) If we set ¢ = 0 and 6 — O, then the new conformable fractional integral coincides with the
generalized fractional integral [58].

(3) Furthermore, (1.8) reduces to the Riemann-Liouville operator if we set d = 0 and 6 = 1. It also
corresponds the Hadamard fractional integral [58] once d = 0 and 6 — 0 with the generalized
fractional integral.

The generalized K-conformable fractional integrals are defined by

I (f(c-e’ -’V p@©
Y 6 — 1
TEe @ = g f ( > ok (1.9)
and ,
1 @-2'-@d-O\*" @
r T8 = dé. 1.10
Definition 1.3. Let K > 0. Then the K-Gamma function Uy is defined by
1KY 71
Ly (6) = lim 2 07O (1.11)
y—0o0 (6)}’,7(
If Re(6) > 0, then the K-Gamma function in integral form is defined by
00 f7<
Ty (0) = f e ® & de (1.12)
0

with 6T (8) = I'yc (6 + K), where I'yc (+) stands for the K-gamma function.

This paper is aimed at establishing some new integral inequalities for exponentially convexity via
‘K-conformable fractional integrals linked with inequality (1.1). We present some inequalities for the
class of mappings whose derivatives in absolute values are exponentially convex. In addition, we obtain
some new inequalities linked with (1.2) and exponentially convexity via classical integrals. Moreover,
we apply the novel approach of Holder-Iscan and improved power-mean inequality are better than the
Holder and power-mean inequality. Moreover, we illustrate two examples to show the applicability
and supremacy of the proposed technique. As an application, the inequalities for special means are
derived.

2. Certain Hermite-Hadamard type inequalities

In this section, we demonstrate the Hermite-Hadamard type inequalities for exponentially convex
function via K-conformable fractional integral operator.
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Theorem 2.1. Let K > 0,6 > 0, y > O and ¢ : T — R be an exponentially convex function such
that c,d € T with c < d and ¢* € L|([c,d]). Then the following inequality holds for K-conformable
fractional integrals:

Y A%
ey 0%27 Ty + K) 5 o) €O+ e?D
7)) < — {;{ (s AN 7(1'*(}((),)7( (Hd)+e¢( )} < T (2.1)
d-o)*% 2
. . . _ 1
Proof. Since ¢ is exponentially convex on 7, for & = 5, we have
— e(z1) @(22)
i L& e
for all z;,z, € 1. Thus, if we choose z; = §c + —d and z, = fc + %d, forc,d € I and ¢ € [0, 1], we
have e . e
20251 < ew(TCJrzd) + e¢(§C+T")_ (2.2)

-1
Moreover, multiplying both sides of (2.2) by (1 4 ) (1 —&)°~! and then making use of integration
with respect to & over [0, 1], we can combine the resulting inequality with the definition of integral
operator as follows

1 %_1
zew(cy’)f(%_‘f)é) (1 =& 'de
0
2 S\ %~ 1 s\&!
f(l —(1-9) ) _ i gelest d)df+f(1_(15_§) ) (1 — gyl gelierisia) g
0 0
Sy c+d —c J ct g
<( 2 ) [ (%) - (%~
“\d-c c o
—c g c+ o %_ -
+fj [(dT) _(;_Td)] (u_c;d)5 lew)du}
2

K
=(Tc) (KTa) T s € + KTxe) T €}

1
1= (1-8°\%"
[0 0 2
0 0%

-1

Al

+d o-1
(C 7~ u) e#“dy

5y

It is clear to see that

Consequently, we get

2K 2 \¥
= e ">s(—) (KTH0) Ty €O + KT ) T ). 23)

yox d-

This completes the proof of the first inequality (2.1).
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To prove the second part of the inequality (2.1), by a similar discussion, we will start with the
exponentially convexity of ¢, then for & € [0, 1], we have

A erid) o pelferid) o pee) o el 2.4)

21
By multiplying (2.4) by (1 (g )7( (1 — &)°! and then integrating the above estimate with respect to
& over [0, 1], we obtain

1 % 1 %_1
[ (1‘(1‘5)6) 1 - grtetietag s [ (—1‘(15_5)6) (1 - &yt edier g
0 0

1
esﬂ(c) + esa(d) f ( f)6) (1 —§)6_]d§.
0

After simplification, we get

x\*

e [esﬂ(C) + e‘/’(d)]

2 \#
— @(c) o(d)

The proof is completed. O

Throughout this investigation, we use 7° to denote the interior of the interval 7 C R. In order to
establish our main results, we need a lemma which we present in this section.

Lemma 2.2. Let K >0, 6, y > 0and ¢ : T — R be a differentiable and exponentially convex function
on I° such that c,d € I° with ¢ < d and (e?) € Li([c,d]). Then the following equality holds for
‘K-conformable fractional integrals:

Y A~
SR Ty +T0 [y s oo v o et@)| _ o3t
1 y
_ K@= (L= =&\ [ jotensa) (2=€ €N sserta) (€ L 2-€
= 1 f( 5 622g020+2d e22g02c+2dd§.
0

Proof. Integrating by parts and changing variable of definite integral yield

1
f(l -(1- )6)“ Aoty (2%% + gd)df
0

1 Y 1

2 1—(1—6-’)5)7( (2 +£d) 20% f 5 % 5-1 ( £ d)
= s - 2 [(1-a-g ptedFeriig
d—C( 0 o 6%(d-c) J ( & ) —¢ 3

oy Y ct -C J c 6 %_1 —

2 crd 2% % 5 (dT) —(%l—”) c+d ot y

= — e¢( 4y - —u e‘P( )du
5%(d - ) 5% d - %+ Je 0 2
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&
- _ 2 ew(%l) B 27;+ Ly +57() ;/( 5Hd _egg(c)' (2.6)
é‘f(d _ C) 67_1(61 _ C)WH (59
By similar argument, we have
1 2 oy
f I-(- é‘:)é X ega(§c+2%§d)g0/ §C + 2- gd dé: - _ 2 e(p(%) 27(+1F7((7 + (]() b 6. ) ego(d)'
0 2 2 (5%(61 -0) (5?_1(61 _ C)MH K (G
2.7)
Subtracting these two equations leads to Lemma 2.2. O

Now we are in a position to establish some new integral inequalities of Hermite-Hadamard type for
differentiable convex functions. The first main result is Theorem 2.3.

Theorem 2.3. Let K > 0, 6, vy > O and ¢ : T — R be a differentiable and exponentially convex
function on I° such that c,d € 1I° with ¢ < d and (e?) € Li([c,d]). If |(e?)'|? is convex on I for
some fixed p,q > 1, g7' + p~! = 1. Then the following inequality holds for K-conformable fractional
integrals:

(5%233-1r7<(y+7()[7 ]
(d—c)?% e

“Ud = ¢) 1\ y 3 y 2 y 1
—B +1,= B(Z +1,2|+2B[Z + 1,2 +B|L +1, =129 (o))
= A1+ [ (7( 5)] [{[ (7<+ ’5)+ (7<+ 5) Bl L)l
Y 13\ ol 2 Y o1 ey
B(W+1,6) 2B(7<+1,6)+B(7(+1,5)]|e ¢' ()

1 2\
+T1(c,d)[B(%+ 1,5)—B(7l<+ 1,5)]}

R S AT DY v l]wwq
+{[B(7(+1,6) 2B(7(+1,6)+B(7(+16) |79’ (c)|

c+d
T, eso(d)] prC)

+

Y 3 2 Y 1 N
+ B(7—<+ 1,(—5)+2B(%+1 (—S)+B(%+ 1,5)]|e“’(‘1) @)
sred|B(Le1 ) oL, 2 % (2.8)
e K xS T '
where
Ti(c,d) = [e# ' @[ + [e# D (o). (2.9)

Proof. It follows from Lemma 2.2 and the power-mean inequality that

) O+ N T ew(d)] e
2
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7 B 1 B B l q 1 B B K q é
5<d ) [f(l (1-&p\k ] [f(l (1 )6) , d.;f]
0 0
1 -4 a
_ _ &Y\ K
(fe=ey
0

1
f(l—(1—§)5)K eertstd) (§ +_fd) dg] . (2.10)
0

2 2
Utilizing the convexity of |[(e¥)’|? on Z, we have

(1 - (1 _'f)é)(K e¢(¥c+%d)‘p/ (2 _'.S:C + é:d)

Ao (2 Loy gd)

q

d¢

0 2 2

1 Yy
1_(1_5)6?»2_5 (c) § (d) 2‘5 ’ § ’
f( 3 7+ SN e O + Sl ()| dg
0
1

(] —E\E [ (2 — £\ 2
f(l (1 é:) (276) |e<p(c) ,(C)|q ( ) |egp(d) /(d)lq
J L

O%H

IA

f( y -9 [| O ()] + Ie“’(d)go'(c)lq]] dé
1 Y § l © 10 N4
‘45%{[13(«”’5)*2]3( ) (7< ) Jleovcel
+ B(lﬂ §) 2B(—+1 2)+B( +1 1)] 7D’ ()"
K US K US KUS

+T1(c,d)[B(%+ 1,%)—3(%+ 1%)]} 2.11)

Analogously, we have

1= (1= &P \F | e,,o
( (5 f)) ega(gﬁzd)go,(gc 25)

1 0% 3 0% 2 0% 1]
< B(=+1,=]|-2B{=+1,=|+B|=+1,=|[le”¢ ()
‘45%{[ (7<+ 5) (7< ’5)+ (7<+ : )'e v (@l

. [B(Vl{ i, %) . ZB(% ., %) . B(% i, )]|e¢<">¢'(d>|q

d¢

s _

Y 1 Y 2
+7T ,d[B—+1,— —B—+1,—]. 2.12
wale ()2 (e 5) I -
Substituting the above two inequalities into the inequality (2.10), we get the required inequality (2.8).
This completes the proof. O
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Theorem 2.4. Let K > 0,6,y > 0and ¢ : 1 +— R be a differentiable and exponentially convex function
on I° such that c,d € 1° with ¢ < d and (e¢*) € Li([c,d]). If |(e?)'| is convex on I for some fixed
g > 1, ¢g' + p~! = 1. Then the following inequality holds for K-conformable fractional integrals:

roR-1
OK2%K Fq(()(;+ W)[z( (c+d),e¢(0) + (deenp(d)] ego(%")
d-o)x ’
Y 1 1
Jokd=o [ 1 (py | P [T0g 0 + e @+ 20 e.d) |
- 4 5"?‘%1 e 0 12

1
YO () + T|e? Dy’ ()| + 2T (c,d) )
+?e Y + e d) «c)}}’ o
where Y i(c,d) is given in (2.9).

Proof. It follows from Lemma 2.2 and the noted Holder’s integral inequality that

Zog-1
0% 2% Tw(y + Ky ¢(0) 5 e@] _ e
Sy 7( (c+d) e + (z+d)+e e
(d-co)% 2

1

| N i
57<d— 1—(1=¢&y° 2 2— 1
skd—-0) [ [(ma-ey é] [ [lotesog (55044 dg]
0 0
[1 1-(1-¢r\* ' ‘
=5 o |
JEE

df] . (2.14)
Utilizing the convexity of |[(e?)’|? on Z, we have

Hersdy (22804 €
e? ( 5 c+2d)

e‘P(z” zfd) (2 +T§d)

1

/

0

q

3

IA

QS St

2-¢ o, £ 2-¢ . £
[ S5 171 + SO |[ S (@1 + Sl (@) |dé

2 2
- Kzgf)wWMKGW+(§)w“%MMWLkg%ffﬁwwwﬂmW+w“@¢@Wﬂd§
= —|e¢<c> ")) + —|e“’(d) @) + % 1(c, d). (2.15)
Analogously, we have
1
f oA+ 55d) oy ( c+ %5 )| de < %w@ ‘)" + 72|e“"(d) () + iTl(c d. (216

0

Substituting the above two inequalities into the inequality (2.14), we get the required inequality (2.13).
This completes the proof. O
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3. Some better approaches of Hermite-Hadamard type inequalities

In this section, we will derive the new generalizations by employing the Holder Iscan [59] and
improved power-mean [60] inequalities.

Theorem 3.1. Let K,6,y > 0 and ¢ : T — R be a differentiable and exponentially convex function
on I° such that c,d € 1° with ¢ < d and (e¢¥)’ € Li([c,d)). If |(e¥)'|? is convex on I for some fixed
g> 1, g' + p~! = 1. Then the following inequality holds for K-conformable fractional integrals:

6% 2F gty + 7<)[y
(d - o)F

5 d cxd
e?© + ((+d)+€¢( )] — 99

(czd )_

. ox(d—c)[(B(1+ 2,2 {17|e""(‘) @' (O + | D ()| + 3T (c, d)}
=2 48

51’7+1

_ 1 1
B(L+ 2,1 =B+ 2.1 [11|erOp' ()l + 31e# P’ ()7 + 5T (c,d) |
5%“ 43

B+ 2,2 [1e#9¢ () + 17|e# D (d)|7 + 3T (c, d) | *
6 Y +1 48

X

1 1
B0+ 5.5) B+ R D) [3eh¢ @l + e @1 + ST d\ "] o)
SR+ 48 ’ '
where(i(c,d) is given in (2.9).
Proof. It follows from Lemma 2.2 and the Holder-Iscan inequality [59] that
5% Ty + K1 0e) L ¥ a8 )] _ e
(d-o)F [Ty €7+ 5Ty ] = 5

< @[{(j‘(l —f)(l (5 g)(s df f(l f) e‘p( : c+*“d)90( c+ gd)‘qdf);}

Al “uf

L0 g f-f (2;§c+§d)'qd§);}
_ 1—(1—6)‘S N ( 2-¢,
a2l Of(l o+ ) ) f(l et 50y e s 2L ae)

0

— O%_

x{( f 5(1‘%‘5)5)?%)3’( fl g(’ew(icﬁfd)go'(gﬁL;fd)'ng)‘l’}]. (3.2)
0 0

Utilizing the convexity of |[(e¥)’|? on 7, we get
1

[a-eleteig Lot Laf'ag

0
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1

2 - 2 -
< [a-g[FEen + Lo 2 Eiwor + S @rlag
0

6(24— 3] [I £#©)

- [a-g| G5 epor + E) e ar + S + 16 e
0

17 3
= IO + TG @N + 2 d), (33)
1
oCteria) 228 0 4 S ae < oo o + e @y 4 2
[ e e Laflde < qeog o + e @+ ST, G4
0
1

[a-eletiedpder ZEa)ag < leogon + ety @p+ Ted)  33)
0

and
1 2 3 11 5
fdﬂﬁﬁw¢€wh§5®ﬂfsEwm¢@W+@wM¢wW+@n@Jx (3.6)
0
where we have used the indeitites
1
1—(1-&°\% py 2
Ja-o( =) e = i 25)
1 1 - &°\% 1 2
-8\« . _ Py py
ff(T) dé = 5,, [B(1+ 22.5) -B(1+ 2X.5)) 3.7)
0
Combining (3.2)—(3.7) leads to the required inequality (4.4). This completes the proof. O

Theorem 3.2. Let K,6,y > 0 and ¢ : I — R be a differentiable and exponentially convex function
on I° such that c,d € 1° with ¢ < d and (e¢*) € Li([c,d]). If |(e?)'| is convex on I for some fixed
p.q> 1, 7' + p~! = 1. Then the following inequality holds for K-conformable fractional integrals:

SK2F gy + 7<)[
(d - )%
2/ _
< 2°4(d — ¢)
26

@) | Y qf <p(d)]_ (%)
A (%z)& e

K (c+d )

1

2 l_é . q
x|(B(1+ 2.5)) “m@mwwww@W+%@wwwWwww+%m@m@w%ﬁ

(B(l + X yoBa+ 71{ %))l_q

v 1
K5
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x {94«5, VIO (O + Qs(8,7: KNV () + T (c, )RS, y: 7<)}"

1

+(B(1+ z %))1_;{92(5, YOI (O + 46, 7: KD () + (e, )6, : 7()}“
x (B(l +Z, 5) B(1+ L ))1_
X {05(6,7: HNHOG OFF + Qu, 73 KNV (@ + (6 D6, 7: «)};], (3.8)
where
Q6,7 %K) = B(% +1, %) + 213(71( +1, 5) B(% +1, g)
06,7, %K) = B(ql( +1, %) - 2153(71( +1, %) + B(% +1.5)
Q3(6,7: K) = B((]l( +1, %) - ]B((]l( +1, %)’
Q46,7 K) = B((]l( 41, é) + B(% 41, %) - B(% +1, %) - B(% +1, %),
Q5(5,7:K) = B(ql( +1, %) - 3]3(71( +1 %) + 3]8(7( +1 %) —B(% +1, j—;),
%@%mzm%+,9-M%+L9—m%+L9+m%+L9, (3.9)

and Y(c,d) is given in (2.9).

Proof. Making use of Lemma 2.2 and the improved power-mean inequality [60], we have

SR2F ey + 7<)[
(d - oF

57<(d—c)[{ f(l f)1—(16—§)5)

o [ o U Pl 25 S

y 1

1
1_1_5? 1—1—511(
X{f‘f 1-3a-4° fg 1-{a-¢y
0

0

Yo 60 LY g )] e
T e [ -e

1

A=

dg)

pe(eria) ( ;§c+ §d)' df) }

1 Y

{ f(l ~ ) # de)l g f(l — &) ﬂ)%‘ew(fﬁ 2Ed) (2c+ 2_6 )‘ g)
0

1 y 1

1—1—5w 1—1—5%
{ff 1-a-¢r ff (1-¢)
0

0

e¢(‘§0+225d)‘p’(§c + #d)'qdf);}]. (3.10)
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Utilizing the convexity of |[(¢¥)’|? on Z, we obtain

1

Ja-o( =G e (2 e S ae

0
1

1= (1 =& \k 2 ”_
< [a-o(~5 D) 2=Epmop 4 S| 2o + e
0

- [a-o~=5 PV CE e g + () e @
0

_+_'f( g)[l (), »

@I +1e40g (01 |dg

_ [{B(l +1 ‘—‘) +2B(L 41 é) +B(L 41, )}le“’(c)(p'(c)lq

4%+ | UNK 768 K 0 K
Y 4 Y 3 (d),
+ {B(v_( +1, 5) - 2]8(% +1, 5) + B(% +1, )}|e“’ ¢ (d)|
Y 2 Y 4
# i DB+ 1.5) < B(X + 1, 5)}]
1
" 4ok Q16 7: Tl (O + (6. 7: FONeH g ()] + L1 (e, )38, 7: ), (3.11)
x

=4

e [{B(% 1)+ B+ 15) B+ 1.5) Bl + 1 3 e

o5 ‘+§d)(p’(2—;§c + %d)‘qdf

; {B(% A1, 5) 318(% +1 %) ; 3153(% +1, %) - B(% A1, )}le“’<d) @
4 3 2 1
i d{B( L+ 1,5 ~B(Z 41, 2) -B(X +1,2) +B( L+ 1,5)}]
= UG TG O + Q56 7 KNP @I + Ti (e, D6 7 K], (Bu12)
! Y
f(l _éf)(#)%‘e¢(fc+ 2E4) ( %gd)‘ng
0
< (P 15) -G 1 R e
4 3 2 ,
+ {B(% +L2)+ 2153(71{ +12)+ B(% +1, 5)}|e9"(d)g0 ()
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+n@d%(% 1%)4N%+L§»]

1
T [92(5, 7 FOleP O (1 + Q16,7 KNP D (DI + T1(c, D)6, v (K)] (3.13)

and

[ otse g e 2= af e
0

<! [{B(l i1, %) - 33(% i1, %) +3B(Z +1, %) - B(% i1, %)}le“’(")cp’(c)lq
0% 2 3

+ {B(l +1 l) + B(q_( +1, 5) - B(ql( +1, 5) - B(% +1, %)}le‘a(d)sﬁ'(d)lq

rteafa(e 1) -5+ 13)-5Ger1.3) 515
= L0467 KO O + Q7 TG @ + Ty (e, DGy KO (Bl

46%*1
where we have used the facts that

fl(l _5)(ﬂ)%d§ - 57+1B
0

0

1
1-(1-¢°\x v 1 y 2
IS(T) dé = —[ (142 5)~B(1+ 2. 5)] (3.15)
0
Combining (3.10)—(3.15) gives the required inequality (3.8). This completes the proof. O

4. Examples

In this section, we present some examples to demonstrate the applications of our proposed results
on modified Bessel functions and o-digamma functions.

Example 4.1. Let z € R and 3, : R + [1, 00) be the modified Bessel function of the first kind defined
by

Zp+2n

(@) = Zg T+t 1)

The the first order derivative formula of 3, is given by

b4
J(z) = ——3 . 4.1
3'(2) 0+ l)dpu(z) (4.1)
By use of Theorem 2.4 and identity (4.1), we get
d

1 3
) d( 4)
el’ dz PY 2
d—cf

c

d-c 1 \”
_8(p+1) p+1
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{7C|€3"(C)Sp+1(6)lq +d|e DI, (@) + 2{cle> DI, 1 ()1 + dle¥ DT 1 (d))} }‘11
12
.\ {C|€Sp(0)5p+l(c)|q + 7d|e D3, 1 () + 2{cle¥ DT, (0l + d|e™ 9T, (d))? }}5]

12

where p > —1, c¢,d € R satisfy the assumptions that 6 =y = 1 and 0 < ¢ < d, K = 1. Specifically, for
J_12(2) = coshz and I 5(z) = 32, one has

z b
d-c 1\
<
T8+ \p+1

d
1 cosh(z) h(<d
S dz — cosh(5%)
e
[ {7|esinh<c> sinh(c)|? + [¥™@ sinh(d)|? + 2{|e¥"™@ sinh(c)|? + "M sinh(d)|*) };

12

. {|esinh<c> sinh(e)|? + 7|e5™@ sinh(d)]¢ + 2{[e"™@ sinh(c)|? + |e5™© sinh(d)|) }]
12 '

Example 4.2. Consider the o-analogue of the digamma function ¢ given by

e > o
$s(2) = —In(1 — o) +1H0'; e ~In(1 - o) +1no'; rpp— 4.2)
For o > 1 and 7 > 0, the o-digamma function ¢, can be expressed by
1 e AL
¢s(2) =—In(l —0) + an'[Z 5" ZO m]
In(l - o) +1 ! i i 43)
= —In(1 — n - _ _ . .
Ml RIS

It follows from lim,_, 1+ ¢ (2) = lim,_,1- ¢ (2) = ¢(2) that z — ¢ (2) is a completely monotonic function
on an interval (0, o) for all o > 0, and consequently, 7 — ¢, (z) is convex on the same interval. Let
0 (2) = ¢ (2) with g > 0. Then ¢/ (z) = ¢!/(2) is completely monotonic on the interval (0, c0), and from
Theorem 3.1 we have

et _ pbo©

¢ (o+d) (
e o 2 —
d_ C

< (d-o) 1 ’ 17]e? g (o) + |e? Dp/(d)|? + 37 (c, d) 7
-2 (p+1)(p+2) 48
y ( 1 );lz{ 11]e?7©¢” (c)|9 + 3|e?" D (d)|? + 57 (c, d)}‘ll
p+2 48
N 1 z le?r g ()7 + 17| D (d)|? + 3T (c, d) g
(p+D(p+2) 48
x( 1 )’1’ {3|€¢”(C)¢Z(C)Iq + 11]e? D¢ (d))? + 5T1(c, d)}‘l’ , (4.4)
p+1 48

forallo € (0,1),y=1=06,d>c>0,K =1and Y (c,d) is given in (2.9).
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5. Weighted Hermite-Hadamard type inequalities for differentiable functions

In order to prove our main results in this section, we need the following lemma.

Lemma 5.1. Let ¢ : T — R be a differentiable and exponentially convex functions on 1° such that
c,d € I° with ¢ < d and (¢¥)’ € Li([c,d]). Also, let w : [c,d] — R be a differentiable mapping such
that w is symmetric with respect to (¢ + d)/2. Then the identity

d

d 1
ﬁ f@/’(z)eW(z)dZ p i Ceﬁ"(Td) few(z)dZ =(d-c) fgb(g)ecp(fm(l—g)d)go,(fc + (1 -&dydE  (5.1)
¢ 0

c

holds for all z € [c,d], where

£
feW(CS+(1_S)d)dS, g c [0, 1/2)’
6 =1"

1

_few(cs+(1—5)d)ds, £e[1/2,1].
3

Proof. Note that

1
= f P(E)e IO (e + (1 - Hd)dé
0

1

2 3
f f wes+(1-9)d) 7 ¢ eso(fc+(l DDy (Ec + (1 = E)d)dé
0
1 1
+ f( _ few(cs+(1—s)d)ds)ew(fﬁ'(l—f)d)go’(é:c + (1 — f)d)dcf
% ¢
=0, + 6,.

Making use of integration by parts, we get

1

¢ 1 2

o etﬁ(fﬁ(l—f)d) 2 oy e¢(fc+(1—€)d)
o, = f pesH(I=5)d) g o _ f PMcE+(1-6)) dé
c—d 0 c—d
0

1

1
o e I #cH(1-6))
_ eWest(1=9)d) g ¢ — | M- dé.
c—d c—d
0 0

Similarly, one has
1

1
y (3 ) y ePéct(1-6)d)
0, = few(cs+(l—s) )ds y _few(c§+(l—§)) de.

c— c—d

1 1
2 2
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Therefore,
1

1
s +(1-&)d
6=06+6,= f e esti=9d g g e f ew(c§+<1—f)d>wd§
c—-d c—d ’
0 0

and identity (5.1) can be obtained by the change of variable technique and multiplying the both sided
by (d — ¢) in the above formula. O

Theorem 5.2. Let ¢ : T — R be a differentiable and exponentially convex function on I° such that
c,d € I° with c < d. Also, let w : [c,d] — R be a differentiable mapping and symmetric with respect
to(c+d)/2. If |(e‘/’)’| is convex on I. Then the inequality

d d

1 s
y f e‘p(Z)eW(Z)dz (44 f W(z)dZ
—-C

c

d

1 e
< mfe ©dz {8[(z—c)3—(d—z)3]

2

|79’ (0)] + [e# Py’ (d)|
2

+Y(c,d) [(d — ) =2(d-2)*3d-c - 2z)] } (5.2)

holds for all 7 € [c,d], where

Y(c,d) = {|e“"(c)<,0’(d)| + |e‘p(d)<,0'(c)|}.

Proof. It follows from Lemma 5.1 and the hypothesis given in Theorem 5.2 that

d
(5 f "9
C
1
2

I3
< (d—c)[ f f wies+(1— s)d)ds e¢(§c+(1—§)d) o+ (1 —f)d)] df}
0

d

1 1
¥(2) W(z)d _
d_cfe Mz - ——

c

1 1
+ {f( feW(cs+(1—s)d)ds) [etﬁ(fﬁ(l—f)d)(pl(é:c +(1 - f)d)] df}]
¢

2
1
2

3
s(d—c)[{ f ( f etes+(i- ‘)d)ds g 799" ()] + (1 = &7 [e# D' ()| + £(1 = O (c, d)]dg}
0

0

1 1
+{ f ( f et 1905 [ 1Oy (0] + (1 - 62 /(@) + €01 - O d)]df}]
TR

=p1t+ p2. (5.3)
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Exchanging the integration order gives

3 ¢
pr = f f "I 2[5O ()] + (1 = &) |7/ (d)| + £(1 = &)Y (c. )| dsdé
0

0

= f f "I 2167y ()] + (1 - £)2 [* ' (d)] + £ = £)Y(c, d)| deds
0 =

1

2
< few(cs+(1—s)d)[ L _ S_3 |€‘p(c)(p'(c)| + _i + S_3 |eso(d)()0/(d)|
= 24 3 243

+2T(e,d) {(d - ¢ = 2d = 2°(d - 3¢ +22)) ] (5.4)

Similarly, we have

1 1
P2 = f f "I [21e7g ()] + (1 - £) "V (d)] + £(1 = €)Y(c, d)| dsdg
3

1
2

ct+d

C o 1 G=0 \[ e 1 d-zp ,
= fe ()[ {( T 24 3= c)3)|e¢( ¢ (C)|} i {(ﬁ T3d- c)3)|e¢(d)"° (d)|}
+2¥(c,d) ((d = ) = 2(d - 9(d - 3¢ + 22)) ] (5.5)

Since w(z) is symmetric with respect to z = %’, for w(z) = w(c +d — z), we get

P1 = pP2.
combining (5.3)—(5.5) leads to (5.2). This completes the proof O

Theorem 5.3. Let ¢ : I — R be a differentiable and exponentially convex function on 1° such that
c,d € I° with ¢ < d. Also, let w : [c,d] — R be a differentiable mapping and symmetric with respect
to(c+d)/2. If|(e‘/’)’|q is convex on I for some q > 1 with p~' + g~' = 1. Then the inequality

d

d
1 1 c+d
¢(2) W@ . _ o34 )f W@ g
d—c fe ¢ ¢ d- ce ¢ ¢

c
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ct+d 1/ p

=2
1 +d
<(d-c) (d_c)Z fepW(Z)(Z_CT)dZ .
d

11|79’ ()| + 3 |e# Dy’ (d)|" + 6T1(c. d) 5
’ 192

[3 |79 ()| + 11 e/ (@)|" + 671 (c, d))” ’
192

(5.6)

holds for all 7 € [c,d], where Y (c,d) is given in (2.9).
Proof. Making use of Lemma 5.1 and changing the integration order, we get

d

d
1 1 et
— fe"g(Z)ew(z)dZ _ — Cetp(T‘i) feW(Z)dz

c

1

<(d- c)[{ f(j‘ew(‘“”(]_s)d)ds) [e“’(f”(l_f)d)go'(fc +(1- f)d)] df}
0

0
1 1

w{ [( [ erertmas) ooy e s 1 - o) e
&

1
2

—(d- c)[{ ffew(cs+(1—s)d)e¢(§c+(1—§>d)(p/(§c + (1 —f)d)dfds}

0 =«
1 s
+ { f f (st (1=9)) gol&e+(1-6d) (0 4 (] _§)d)d§ds}].
1 1
2 2

By Holder inequality, we have

d

d
dl - fetﬁ(z)ew(Z)dZ_ dl cetﬁ(%d) f€W(Z)dZ
c

c

1 1 1 1
2 2 p 2 2 1/
<(d- C){(ffew(aw(l—s)d)dégds) (ff|e¢(§c+(1—§)d)¢/(§c+ a —‘f)d)|q dfds)
0 s 0 s
1 s K %
w(cs+(1-5)d) M (Ec+(1=5)d) 7 a v
+(ffe - dgds) (ff|e¢» ¢ (Ec+(1 - &)d)| dgds) }
b P

? that

It follows from the convexity of |(e9")'
A0 (e + (1 - HA)f
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<[] + (1 = o) | [l @1 + (1 = &) I (@)I]
<|&]e7 @' + (1 - 7 | @] + £(1 - ) {|e# 0 @) + |7V (o'}
<[& 09 @ + (1 - &7 V9 @) + £(1 = &)Y (e, )]

for & € [0, 1].
Therefore, one has

d

d
dicfe‘p(Z)eW(Z)dz—dice“’(cgd)fewwdz

c

cw-ol( [ [emermazas)”( [ [lelrosel +a-er gl
0 s 0 s
1 s | s %
+&(1 —§>T1(c,d)]dfds)l/q+( f f eW““‘*“‘”d)dfds)p( f f [€ "¢ )

1

+ (1= 2 | (@) + £(1 — )T (c, d)]dfds)q] — 5, +5,. (5.7)
Note that
d 1/q
1 1p(3]e? g (o) + 11]|e? Dy’ ()" + 6 (c, d)
s :(— pwE) (27 — —dd) 5.8
! 2(d—c)2fe (Ge—c—d)dz 192 (.8)
c+d
and
c+d
= q q 1/q
1 U (11]e#9 ()" + 3|e" D¢’ ()" + 61 (c, d)
s :(— P+ d -2 d) . (59
2 2(d—c)2fe (c+d = 2z)dz 192 (53
Therefore, inequality (5.3) follows from (5.7)—(5.9). This completes the proof. O

Lemma 5.4. Let ¢ : 1 — R be a differentiable and exponentially convex function on I° such that
c,d € I° with ¢ < d and (¢?)" € Li([c,d]). Also, let w : [c,d] — R be a differentiable mapping such
that w is symmetric with respect to (¢ + d)/2. Then the identity

d 1

d
1 e99 4 @ 1 d-c :
T 5 feW(z)dZ _ ﬂ feW(z)ew(z)dZ = T fﬂ(f)ew(§c+(l—§)d)¢'(€:c + (1 = &d)dé

c c 0
holds for all 7 € [c,d], where

1 ¢

u(é) = f =9y — f Mest(1=9)d) g ¢

¢ 0
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Proof. We clearly see that
1

U= f p(@e =00y (e + (1 - E)d)dé

0
1 1

f ( f ew(cs+(1—s)d)ds)esa(fc‘+(1—f)d)gp’(gc+(1 ~ &)d)d¢
0 €
=cC1+ .

It follows from integration by parts that

ew<§c+(1 ~6)d) |1
w(cv+(1 v)d)ds

1
w(c$+(1 D ePtéet(l —&)d)
+ —d¢
c—d
0

m%ﬂ

|
og}_‘

1
e eP&er(1=6)d)
ew(cs+(1—s)d) a’ + f w(cé+(1-€)d) a’f.
—-d c—d
0

Similarly, we have

ew(cs+(1—s)d)d

c—d

|
s _

1
(16 ePéct(1-6)d)
+ —dé.
0

Thus, we get

1 1

O 4 @ eso(d) ; | e#EeH1=60)
U=ci+c, =~ few(”m ) )ds + 2f wicg+{1=£)d) —d¢.
c—d
0 0

Therefore, the desired result can be obtained by use of the change of variable technique and multiplying
the both sided by (d — ¢)/2. O

Theorem 5.5. Let ¢ : I — R be a differentiable and exponentially convex function on 1° such that
c,d € I° with c < d. Also, let w : [c,d] — R be a differentiable mapping and symmetric with respect
to (c +d)/2. If|(e9")'|q is convex on I for some g > 1 with p~' + g~' = 1. Then the inequality

d d
1 e%©) 4 g¢@ 1
w(2) j., _ ¥(2) ,w(2)
. > fe dz d—cfe e"¥dz
1 1p 2| ()" + |e# D (d)|") + Y1 (c, d)
<3 f () | [+] . | )

holds for all z € [c,d), where Y(c,d) is given in (2.9) and

—(d-0)¢
e"9dz]| .
c+(d—c)¢
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Proof. From Lemma 5.4 and the hypothesis of Theorem 5.5, we get

d d

: i : o#©) J2r e feW(Z)dZ - 1 . f FEREE

[ 1 1 L ¢ L
< d ; C f | f eVest1=9)d) g o f eMest(1=9d) g ¢ |€sa(§c+(1—§)d)¢'(§c +(1- g)d)|d§

[0 ¢ 0

1 d—(d-c)¢ d
. % f f Oz — f "V [ #6190 (gc + (1 - £)d)| de| . (5.10)
0 c d—(d—c)¢

Since w(z) is symmetric to z = (¢ + d)/2, we get

d—(d—c)é d d—(d—c)é
f e"9dz — f e"9dz = f e"9dz (5.11)
¢ d—(d—c)¢ c+(d—c)é¢

—(d—c)¢ c+(d—c)¢
f e"Odz — f "dz = - f e"?dz (5.12)
c d—(d—c)¢ d—(d—c)¢
for & e [1/2,1].

It follows from (5.10)—(5.12) that

for £ € [0,1/2], and

1

<5 f n(2) [#ET 10D (gc + (1 - )d)| dé

d

d
@(c) @(d)
I #+e MOy CRICYR
d-c 2 d c

c

1 1
% f(n(Z))”df f|e¢(§c+(l—§)d)¢/(§c +(1 —f)d)rldf}q.
0

e =90 (ge + (1 = o))"

<[]l + (1 = &) || [l @1 + (1 = &)l (@]

<[£ 179 (O + (1 - 7 |V @' + £01 = O){|e7 g @] + "V ()]}
< |29 @ + (1 - &7 |7 @) + £(1 - &)1 (c, D).

Therefore,

d

d
1 %O 4 o » 1
(2) @) ,w(2)
e"Yd; — —— | e¥¥e™¥dz
d-c 2 f d-c f

c c
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IA
N —

r 11/p 1 l/q
f (1)) dé { f €179 @ + (1 = €7 [ 96/ (@) + £01 = )Y1(c, )] df}
L 0 | 0

| —

6 b

- 1" 12l @ + e @) + T e,
! f (@) dé
L O -

which completes the proof. O
6. Applications

A real-valued function M : (0, o) X (0, 00) — (0, o) is said to be a bivariate mean if min{c, d} <
M(c,d) < max{c,d} for all ¢,d € (0,0). Recently, the inequalities for the bivariate means have
attracted the attention of many researchers.

Letc,d > Owith ¢ # dand n € Z \ {—1,0}. Then the classical arithmetic mean A(c,d) and n-th
generalized logarithmic mean L,(c, d) are defined by

c+d

Alc,d) = > L,(c,d) =

dn+1 _ Cn+1 1/n
(n+ 1)(d- c)]

In this section, we shall establish some inequalities for the arithmetic and generalized logarithmic
means by use of our results obtained in section 5.

Theorem 6.1. Let c,d > O withd > c and n € Z with n > 2. Then the inequality

1
< (d - C) {W I: eW(Z)dz]

x{8nl(z—c)* = (d = 1A (. )|+ Ti(e.d) |[(d - ) - 2d - 2’Bd - c - 29|} (6.1)
holds for all 7 € [c,d], where Y (c,d) is given in (2.9).

d

d
f Z'e"Pdz — A'(c,d) f e"Vdz

c

Proof. By taking ¢(z) = nlog z in Theorem 5.2, we get the desired result. m|
Let w = 1. Then inequality (6.1) leads to Corollary 6.2 immediately.
Corollary 6.2. Let c,d > O withd > cand n € Z withn > 2. Then

Li(c,d) - ﬁA”(c, d)‘ < [ 8n[(z — ¢)® - (d - 2)°] [A(CZn—l’dZn—l)]

1
12(d - c)z] {
+ 7 (c,d) {(d — )P =2d-2*Bd-c - 2z)} }

Theorem 6.3. Let p,g > 1 withp™' +q' =1, c,d > Owithd > c and n € Z with n > 2. Then the
inequality

d

d
f 7'¢"Pdz — A"(c,d)) f e"?dz

c
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1/p

d
d- c)2 f pw)( = d))dz

<(d-c)

nI6A (219, d@=D1) 4 8n9d @4 1 6T (c, d) Ha
192

n16A (c 214, @21 4 B9crDa 4 6T,(c,d)) "’
6.2
" 192 ©.2)
holds for all 7 € [c, d].
Proof. By taking ¢(z) = nlnz in Theorem (5.3), we get the desired result. O

Let w = 1. Then (6.2) leads to Corollary 6.4 immediately.

Corollary 6.4. Let p,g > 1withp™' +g7 ' =1, c,d >0withd > cand n € Z withn > 2. Then

] ¢ | (n96A (@3, d@=04) 1 8p1d@=1a 4 67, (c, d)) "
Lie,d) - —A"(c d)' < =5

[nq6A (C(Zn—l)q’ d(2n—1)q) + 8n9c@-Da 4 67 (c, d)]l/q
+
192

Theorem 6.5. Let p,g > 1 withp™' +q ' =1, c,d > Owithd > cand n € Z with n > 2. Then the

inequality
dn)f W(z)dZ _Cf "ew(Z)dZ

1/p

1 4ntA (c®=Da, d@=D1) + Y (c, d)
! f () dé (63)
2 6

holds for z € [c,d].

Proof. By taking ¢(z) = nlnz in Theorem 5.5, we get the desired result. |

Let w = 1. Then (6.3) leads to Corollary 6.6 immediately.

Corollary 6.6. Let u,v > 0 withv > u and n € Z with n > 2. Then the inequality

4nA (cCrDa, dnD1) 41 (c, d)
6

1 n n
(AW - L d)‘

holds for all g > 1.
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7. Conclusions

Using the % -conformable fractional integrals, certain inequalities related to the
Hermite-Hadamard inequalities for exponentially convex functions are established. The inequalities
are parameterized by the parameters ¢,y and K. These inequalities generalize and extend parts of the
results for Riemann-Liouville and Hadamard fractional integrals. Also, we have derived the weighted
Hermite-Hadamard inequalities for exponentially convex functions in the classical sense. Some
applications of the obtained results to special means are also presented. With these contributions, we
hope to motivate the interested researcher to further explore this enchanting field of the fractional
integral inequalities and exponentially convexity based on these techniques and the ideas developed in
the present paper.
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