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1. Introduction

1.1. Background of the research

The study of analytic functions has been the core interest of various prominent researchers in the
last decade. Much emphasis has been on the aspect of introduction of various concepts in this field.
Uralegaddi [1], in 1994, introduced the subclasses of starlike, convex and close-to-convex functions
with positive coefficients and opened a new side of Geometric Function Theory. Motivated by his
work Dixit and Chandra [2] introduced new subclass of analytic functions with positive coefficients.
Continuing the trend Dixit et al. [3], Porwal and Dixit [4] and Porwal et al. [5] made a substantial
amount of important theory which illuminated various new directions of this field. One such area is
Harmonic Analysis which has vastly influenced and nurtured the branch of Geometric Function Theory.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2020436


6783

Dixit and Porwal [6] defined and investigated the class of harmonic univalent functions with positive
coefficients. With the introduction of this work many mathematicians generalized various important
results with the help of some operators, the work of Pathak et al. [7], Porwal and Aouf [8] and Porwal
et al. [9] are worth mentioning here. More recently new subclasses of harmonic starlike and convex
functions are introduced and studied by Porwal and Dixit [10], see also [5].

Recently attention has been drawn to Mittag-Leffer functions as these functions can be widely
applied across the fields of engineering, chemical, biological, physical sciences as will as in various
other applied sciences. Various factors in applying such functions are evident within chaotic,
stochastic, dynamic systems, fractional differential equations and distribution of statistics. The
geometric characteristics such as convexity, close-to-convexity and starlikeness of the functions
investigated here has been broadly examined by many authors. Direct applications of these functions
can be seen in a number of fractional calculus tools which includes significant work by [11–20].

1.2. Preliminaries

Before we go into details about our new work we give some basics which will be helpful in
understanding the concepts of this research.

A real-valued function u (x, y) is said to be harmonic in a domain D ⊂ C if it has continuous second
partial derivative and satisfy the Laplace’s equation

∂2u
∂x2 +

∂2u
∂y2 = 0,

and complex-valued function f = u + iv is said to be harmonic in a domain D if and only if u and v
are both real harmonic functions in domain D. Every complex-valued harmonic function f which is
harmonic in D, containing the origin, can be represented in the canonical form as

f = h (z) + g (z), (1.1)

where h and g are analytic functions in D with g (0) = 0.Then functions h and g are known as analytic
and co-analytic parts of f respectively. The Jacobian of f = u + iv is given by

J f (z) =

∣∣∣∣∣∣ ux vx

uy vy

∣∣∣∣∣∣ = uxvy − vxuy ,

which can be represented in terms of derivatives with respect to z and z as

J f (z) = | fz|
2
− | fz|

2 =
∣∣∣h′ (z)

∣∣∣2 − ∣∣∣g′ (z)
∣∣∣2 (z ∈ D) .

It can be noted that if f is analytic inD, then fz = 0 and fz (z) = f
′ (z) .A well- known result for analytic

functions state that an analytic function f is locally univalent at a point z0 if and only if J f (z) , 0 in
D (see for example [21]). In [22], Lewy proved the converse of this theorem which is also true for
harmonic mappings. Therefore, f is sense-preserving and locally univalent if and only if∣∣∣h′ (z)

∣∣∣ > ∣∣∣g′ (z)
∣∣∣ (z ∈ D) . (1.2)
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Let H denote the class of functions f which are harmonic in the unit disc A := A (1), where A (r) :=
{z ∈ C : |z| < r} . Also, let H0 denote the class of functions f ∈ H which satisfy the normalization
conditions

f (0) = f
′

z (0) = f
′

(0) − 1 = 0.

Therefore the analytic functions h and g given by (1.1) can be written in the form

h (z) = z +

∞∑
n=2

anzn, g (z) =

∞∑
n=2

bnzn (z ∈ A) ,

and

f (z) = z +

∞∑
n=2

(
anzn + bnzn

)
(z ∈ A) . (1.3)

Let
SH :=

{
f ∈ H0 : f is univalent and sense-preserving in A

}
.

It is clear that SH reduces to the class S, and by A whenever the co-analytic part of f vanishes, i.e.,
g (z) = 0 in A. Clunie and Sheil-Small [23] and Sheil-Small [24] studied SH together with some of its
geometric subclasses. We say that a function f ∈ H0 is said to be harmonic starlike in A if it satisfy

Re
DH f (z)

f (z)
> 0,

where
DH f (z) := h

′

(z) − g′ (z) (z ∈ A) .

A function f (z) is subordinated to a function g (z) denoted by f (z) ≺ g (z), if there is complex-
valued function w(z) with |w(z)| ≤ 1 and g (0) = 0 such that

f (z) = g (w(z)) (z ∈ A) .

Also, if g (z) is univalent in A, we have equivalence condition

f (z) ≺ g(z), z ∈ A ⇐⇒ f (0) = g(0) and f (A) ⊂ g(A).

Convolution or Hadamard product of two function f1 and f2 is denoted by f1 ∗ f2 and is defined by

( f1 ∗ f2) (z) = z +

∞∑
n=2

(
a1a2zn + b1b2zn

)
(z ∈ A) . (1.4)

In 1973, Janowski [25] introduced the idea of circular domain by introducing Janowski functions as;
A function k (z) , analytic in A with k (0) = 1, is said to be in class T [A, B] if for −1 ≤ B < A ≤ 1

k (z) ≺
1 + Az
1 + Bz

.

Janowski showed that the function k maps A onto the domain ∆ (A, B) with centre on real axis and
D1 = 1−A

1−B and D2 = 1+A
1+B are diameter end points with 0 < D1 < 1 < D2.
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The Mittag-Leffer function is defined as

Eα (z) =

∞∑
n=0

zn

Γ (αn + 1)
. (1.5)

The initial two parametric generalizations for the function shown in (1.5) were given by Wiman [26,
27]. It is defined in the following way

Eα,β (z) =

∞∑
n=0

zn

Γ (αn + β)
,

where α, β ∈ C, Re (α) > 0, Re (β) > 0 and Γ (z) is gamma function.
Now the function Qα,β is defined by

Qα,β (z) = zΓ (β) Eα,β (z) = z +

∞∑
n=2

Γ (β)
Γ (α (n − 1) + β)

zn.

Using the function Qα,β Elhaddad et al. [28] defined the differential operator for the class of analytic
functions asDm

δ (α, β) : A → A as illustrated below :

Dm
δ (α, β) f (z) = f (z) ∗ Qα,β (z) ,

Dm
δ (α, β) f (z) = z +

∞∑
n=2

[1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

anzn, (1.6)

where m = N0 = {0, 1, 2, ...} , δ > 0.
Where the operatorDm

δ (α, β) for a function f ∈ H given by (1.1) can be defined as below:

Dm
δ (α, β) f (z) = Dm

δ (α, β) h (z) +Dm
δ (α, β) g (z) (z ∈ A) ,

where

Dm
δ (α, β) h (z) = z +

∞∑
n=2

[1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

anzn,

Dm
δ (α, β) g (z) = z +

∞∑
n=2

[1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

bnzn,

for m ∈ N0.

Motivated by [29, 30] and using the operator Dm
δ (α, β) f (z) , we introduced the class of harmonic

univalent functions as:
Definition Let −B ≤ A < B ≤ 1, 0 ≤ a < 1 and Sα,β

H
(m, δ, A, B) denote the class of functions

f ∈ SH such that
DH

(
Dm

δ (α, β) f (z)
)

Dm
δ (α, β) f (z)

≺
1 + Az
1 + Bz

, (1.7)

with
DH

(
Dm

δ (α, β) f (z)
)

:= DH
(
Dm

δ (α, β) h (z)
)
−DH

(
Dm

δ (α, β) g (z)
)
.

Note that,
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1. S0,1
H

(0, δ, A, B) = S∗
H

(A, B) , which was studied by Deziok [29].
2. S0,1

H
(0, δ, 2a − 1, 1) = S∗

H
(a) , defined by Jahangiri in [31]

3. S0,1
H

(1, 1, 2a − 1, 1) = Sc
H

(a) , introduced by Jahangiri, see [32] for details.

LetV ⊂ H0, A0 = A� {0} . Using Ruscheweyh’s approach in [33] we define the dual set ofV by

V∗ :=
{
f ∈ H0 : ∗g∈V ( f ∗ g) , 0 (z ∈ A0)

}
2. Main criteria

In this section we prove some important results beginning with necessary and sufficient condition.
Then some inequality regarding the coefficients of the functions in their series form are evaluated along
with examples for justifications.

2.1. Theorem

Let f ∈ H0 and is given by (1.3) is in the class Sα,β
H

(m, δ, A, B) if and only if

S
α,β

H
(m, δ, A, B) =

{
Dm

δ (α, β)ϕξ (z) ; |ξ| = 1
}∗
,

where
ϕξ (z) = z

1 + Bξ − (1 + Aξ) (1 − z)
(1 − z)2 − z

1 + Bξ − (1 + Aξ) (1 − z)

(1 − z)2 (z ∈ D) .

Proof. Let f ∈ H0, then f ∈ Sα,β
H

(m, δ, A, B) if and only if the following holds

DH

(
Dm

δ (α, β) f (z)
)

Dm
δ (α, β) f (z)

,
1 + Aξ
1 + Bξ

(ξ ∈ C, |ξ| = 1) .

Now as
DH

(
Dm

δ (α, β) h (z)
)

= Dm
δ (α, β) h (z) ∗

z
(1 − z)2

and
Dm

δ (α, β) h (z) = Dm
δ (α, β) h (z) ∗

z
1 − z

,

thus

(1 + Bξ)DH
(
Dm

δ (α, β) f (z)
)
− (1 + Aξ)Dm

δ (α, β) f (z)

= (1 + Bξ)DH
(
Dm

δ (α, β) h (z)
)
− (1 + Aξ)Dm

δ (α, β) h (z)

−
[
(1 + Bξ)DH

(
Dm

δ (α, β) g (z)
)

+ (1 + Aξ)Dm
δ (α, β) g (z)

]
= Dm

δ (α, β) h (z) ∗
(
(1 + Bξ) z
(1 − z)2 −

(1 + Aξ) z
1 − z

)
−Dm

δ (α, β) g (z) ∗
(
(1 + Bξ) z

(1 − z)2 +
(1 + Aξ) z

1 − z

)
= f (z) ∗ Dm

δ (α, β)ϕξ (z) , 0 (z ∈ A0, |ξ| = 1) .

Thus f ∈ Sα,β
H

(m, δ, A, B) if and only if f (z) ∗ Dm
δ (α, β)ϕξ (z) , 0 for z ∈ A0, |ξ| = 1 i.e.

S
α,β

H
(m, δ, A, B) =

{
Dm

δ (α, β)ϕξ (z) ; |ξ| = 1
}∗

. �
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A sufficient coefficient bound for the class Sα,β
H

(m, δ, A, B) is provided in the following.

2.2. Theorem

Let f ∈ H0 be of the form (1.3) and satisfies the condition

∞∑
n=2

(λn |an| + σn |bn|) ≤ B − A, (2.1)

with

λn =

∣∣∣∣∣ [1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

∣∣∣∣∣ [(1 + B) n − (1 + A)] , (2.2)

σn =

∣∣∣∣∣ [1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

∣∣∣∣∣ [(1 + B) n + (1 + A)] , (2.3)

then f ∈ Sα,β
H

(m, δ, A, B) .

Proof. Obviously the theorem is true for f (z) = z. Suppose f ∈ H0 given by (1.3) and let there exist
n ≥ 2 such that an , 0 or bn , 0. Since

λn

B − A
≥ n,

σn

B − A
≥ n, n = 2, 3, ...,

by (2.1) we have
∞∑

n=2

(n |an| + n |bn|) ≤ 1 (2.4)

and ∣∣∣h′ (z)
∣∣∣ − ∣∣∣g′ (z)

∣∣∣ ≥ 1 −
∞∑

n=2

n |an| |z|n −
∞∑

n=2

n |bn| |z|n ≥ 1 − |z|
∞∑

n=2

(n |an| + n |bn|)

≥ 1 −
|z|

B − A

∞∑
n=2

(λn |an| + σn |an|) ≥ 1 − |z| > 0 (z ∈ A) .

Therefore
∣∣∣h′ (z)

∣∣∣ > ∣∣∣g′ (z)
∣∣∣ which shows that f is locally univalent and sense-preserving in A. Moreover

ifz1, z2 ∈ A and z1 , z2 then∣∣∣∣∣∣zn
1 − zn

2

z1 − z2

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

k=1

zk−1
1 zn−k

2

∣∣∣∣∣∣∣ ≤
n∑

k=1

∣∣∣zk−1
1

∣∣∣ ∣∣∣zn−k
2

∣∣∣ < n (n = 2, 3, ..) .

Hence by (2.4) we have

| f (z1) − f (z2)| ≥ |h (z1) − h (z2)| − |g (z1) − g (z2)|

≥

∣∣∣∣∣∣∣z1 − z2 −

∞∑
n=2

an
(
zn

1 − zn
2
)∣∣∣∣∣∣∣ −

∣∣∣∣∣∣∣
∞∑

n=2

bn

(
zn

1 − zn
2

)∣∣∣∣∣∣∣
AIMS Mathematics Volume 5, Issue 6, 6782–6799.
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≥ |z1 − z2| −

∞∑
n=2

|an|
∣∣∣zn

1 − zn
2

∣∣∣ − ∞∑
n=2

|bn|
∣∣∣zn

1 − zn
2

∣∣∣
= |z1 − z2|

1 − ∞∑
n=2

|an|

∣∣∣∣∣∣zn
1 − zn

2

z1 − z2

∣∣∣∣∣∣ − ∞∑
n=2

|bn|

∣∣∣∣∣∣zn
1 − zn

2

z1 − z2

∣∣∣∣∣∣


> |z1 − z2|

1 − ∞∑
n=2

n |an| −

∞∑
n=2

n |bn|

 ≥ 0.

This shows that f is univalent, i.e. f ∈ SH . Therefore f ∈ Sα,β
H

(m, δ, A, B) if and only if there exists a
complex-valued function ω, ω (0) = 0, |ω (z)| < 1 (z ∈ A) , such that

DH

(
Dm

δ (α, β) f (z)
)

Dm
δ (α, β) f (z)

=
1 + Aω (z)
1 + Bω (z)

(z ∈ A) ,

or equivalently ∣∣∣∣∣∣∣∣
DH

(
Dm

δ (α, β) f (z)
)
−Dm

δ (α, β) f (z)

BDH
(
Dm

δ (α, β) f (z)
)
− ADm

δ (α, β) f (z)

∣∣∣∣∣∣∣∣ < 1 (z ∈ A) . (2.5)

Thus, it is sufficient to prove that∣∣∣DH (
Dm

δ (α, β) f (z)
)
−Dm

δ (α, β) f (z)
∣∣∣ − ∣∣∣BDH (

Dm
δ (α, β) f (z)

)
− ADm

δ (α, β) f (z)
∣∣∣ < 0,

where z ∈ A\ {0} , now by putting |z| = r, r ∈ (0, 1) we get∣∣∣DH (
Dm

δ (α, β) f (z)
)
−Dm

δ (α, β) f (z)
∣∣∣ − ∣∣∣BDH (

Dm
δ (α, β) f (z)

)
− ADm

δ (α, β) f (z)
∣∣∣

=

∣∣∣∣∣∣∣
∞∑

n=2

[1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

(n − 1) anzn −

∞∑
n=2

[1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

(n + 1) bnzn

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣(B − A) z +

∞∑
n=2

[1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

(Bn − A) anzn −
[1 + (n − 1) δ]m Γ (β)

Γ (α (n − 1) + β)
(Bn + A) bnzn

∣∣∣∣∣∣∣ ,
≤

∞∑
n=2

∣∣∣∣∣ [1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

∣∣∣∣∣ (n − 1) |an| rn +

∞∑
n=2

∣∣∣∣∣ [1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

∣∣∣∣∣ (n + 1) |bn| rn

− (B − A) r +

∞∑
n=2

∣∣∣∣∣ [1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

∣∣∣∣∣ (Bn − A) |an| rn

+

∞∑
n=2

∣∣∣∣∣ [1 + (n − 1) δ]m Γ (β)
Γ (α (n − 1) + β)

∣∣∣∣∣ (Bn + A) |bn| rn

≤ r

 ∞∑
n=2

(λn |an| + σn |bn|) rn − (B − A)

 < 0,

hence f ∈ Sα,β
H

(m, δ, A, B) . �
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2.3. Example

For function

f (z) = z +

∞∑
n=2

pn
B − A
λn

zn +

∞∑
n=2

qn
B − A
σn

zn (z ∈ A) ,

such that
∑∞

n=2 (|pn| + |qn|) = 1, we have

∞∑
n=2

(λn |an| + σn |bn|) =

∞∑
n=2

(|pn| (B − A) + |qn| (B − A))

= (B − A)
∞∑

n=2

(|pn| + |qn|) = (B − A) .

Thus f ∈ Sα,β
H

(m, δ, A, B) and above inequality (2.1) is sharp for this function.
Motivated from Silverman [34], we introduce the class τ for functions f ∈ H0 of the form (1.3)

such that an = − |an| , bn = |bn| (n = 2, 3, ...) , i.e.

f (z) = h (z) + g (z), h (z) = z −
∞∑

n=2

|an| zn, g (z) =

∞∑
n=2

|bn| z
n (z ∈ A) . (2.6)

Further, let us define
Sα,βτ (m, δ, A, B) = τ ∩ S

α,β

H
(m, δ, A, B) .

Where α = 0, β = 1 and m = 0 the class is studied by Dziok see [29].

2.4. Theorem

Let f ∈ τ and of the form (2.6) . Then f ∈ Sα,βτ (m, δ, A, B) if and only if condition (2.1) holds true.

Proof. In Theorem 2.2 we need only to show that each function f ∈ Sα,βτ (m, δ, A, B) satisfies coefficient
inequality (2.1) . If f ∈ Sα,βτ (m, δ, A, B) then it is of the form (2.6) and satisfies (2.5) or equivalently∣∣∣∣∣∣∣∣

−
∑∞

n=2
[1+(n−1)δ]mΓ(β)

Γ(α(n−1)+β) (n − 1) anzn −
∑∞

n=2
[1+(n−1)δ]mΓ(β)

Γ(α(n−1)+β) (n + 1) bnzn

(B − A) z −
∑∞

n=2
[1+(n−1)δ]mΓ(β)

Γ(α(n−1)+β) (Bn − A) anzn −
∑∞

n=2
[1+(n−1)δ]mΓ(β)

Γ(α(n−1)+β) (Bn + A) bnzn

∣∣∣∣∣∣∣∣ < 1 ,

where z ∈ A, therefore by putting z = r , r ∈ [0, 1), we get∑∞
n=2

∣∣∣∣ [1+(n−1)δ]mΓ(β)
Γ(α(n−1)+β)

∣∣∣∣ [(n − 1) |an| + (n + 1) |bn|] rn−1

(B − A) +
∑∞

n=2

∣∣∣∣ [1+(n−1)δ]mΓ(β)
Γ(α(n−1)+β)

∣∣∣∣ {(Bn − A) |an| + (Bn + A) |bn|}
< 1. (2.7)

It is clear that the denominator of the left hand side cannot vanishes for r ∈ (0, 1). Moreover, it is
positive for r = 0, and in consequence for r ∈ (0, 1). Thus, by (2.7) we have

∞∑
n=2

(λn |an| + σn |bn|) rn−1 ≤ B − A r ∈ [0, 1) . (2.8)
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The sequence of partial sums {S n} associated with the series
∑∞

n=2 (λn |an| + σn |bn|) is a non-decreasing
sequence. Moreover, by (2.8) it is bounded by B − A. Hence, the sequence {S n} is convergent and

∞∑
n=2

(λn |an| + σn |bn|) rn−1 = lim
n→∞

S n ≤ B − A,

which yields assertion (2.1) . �

2.5. Example

For function

f (z) = z −
∞∑

n=2

cn
B − A
λn

zn +

∞∑
n=2

dn
B − A
σn

zn (z ∈ A) ,

such that
∑∞

n=2 (|cn| + |dn|) = 1, we have
∞∑

n=2

(λn |an| + σn |bn|) =

∞∑
n=2

(|cn| (B − A) + |dn| (B − A))

= (B − A)
∞∑

n=2

(|cn| + |dn|) = (B − A) .

Thus f ∈ Sα,βτ (m, δ, A, B).

3. Topological properties

we consider the usual topology onH in which a sequence { fn} inH converges to f if and only if it
converges to f uniformly on each compact subset of A. The metric induces the usual topology on H .
It is to verify that the obtained topological space is complete.

Let F be a subclass of the class H . A function f ∈ F is called an extreme point of F if the
condition

f = γ f1 + (1 − γ) f2 ( f1, f2 ∈ F , 0 < γ < 1)

implies f1 = f2 = f . We shall use the notation EF to denote the set of all extreme points of F . It is
clear that EF ⊂ F .

We say that F is locally uniformly bounded if for each r, 0 < r < 1, there is a real constant
M = M (r) so that

| f (z)| ≤ M ( f ∈ F , |z| ≤ r) .

We say that a class F is convex if

γ f + (1 − γ) g ∈ F ( f , g ∈ F , 0 ≤ γ ≤ 1) .

Moreover, we define the closed convex hull of F as the intersection of all closed convex subsets ofH
that contain F . We denote the closed convex hull of F by coF .

A real-valued function J : H → R is called convex on a convex class F ⊂ H if

J (γ f + (1 − γ) g) ≤ γJ ( f ) + (1 − γ)J (g) ( f , g ∈ F , 0 ≤ γ ≤ 1) .

The Krein-Milman theorem (see [35]) is fundamental in the theory of extreme points. In particular, it
implies the following lemma.
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3.1. Lemma

Let F be a non-empty convex compact subclass of the classH and let J : H → R be a real-valued,
continuous and convex function on F . Then

max {J ( f ) : f ∈ F } = max {J ( f ) : f ∈ EF } .

3.2. Lemma

A class F ⊂ H is compact if and only if F is closed and locally uniformly bounded.
SinceH is complete metric space, Montel’s theorem (see [36]) implies the following lemma.

3.3. Lemma

Let F be a non-empty compact subclass of the classH , then EF is non-empty and coEF = coF .

3.4. Theorem

The class Sα,βτ (m, δ, A, B) is a convex and compact subset ofH .

Proof. Let fl ∈ S
α,β
τ (m, δ, A, B) be a functions of the form

fl (z) = z −
∞∑

n=2

(∣∣∣al,n

∣∣∣ zn −
∣∣∣bl,n

∣∣∣ zn
)

(z ∈ A, l ∈ N = {1, 2, 3, ...}) , (3.1)

and 0 ≤ γ ≤ 1. Since
γ f1 (z) + (1 − γ) f2 (z) =

z −
∞∑

n=2

{(
γ
∣∣∣a1,n

∣∣∣ + (1 − γ)
∣∣∣a2,n

∣∣∣) zn +
(
γ
∣∣∣b1,n

∣∣∣ + (1 − γ)
∣∣∣b2,n

∣∣∣)} zn

and by Theorem 2.4, we have

∞∑
n=2

{
αn

(
γ
∣∣∣a1,n

∣∣∣ + (1 − γ)
∣∣∣a2,n

∣∣∣) zn + βn

(
γ
∣∣∣b1,n

∣∣∣ + (1 − γ)
∣∣∣b2,n

∣∣∣)}
= γ

∞∑
n=2

{
αn

∣∣∣a1,n

∣∣∣ + βn

∣∣∣b1,n

∣∣∣} + (1 − γ)
∞∑

n=2

{
αn

∣∣∣a2,n

∣∣∣ + βn

∣∣∣b2,n

∣∣∣}
≤ γ (B − A) + (1 − γ) (B − A) = B − A,

the function Ψ = γ f1 + (1 − γ) f2 ∈ S
α,β
τ (m, δ, A, B). Hence, the class is convex. Furthermore, for

f ∈ Sα,βτ (m, δ, A, B), |z| ≤ r r ∈ (0, 1), we have

| f (z)| ≤ r +

∞∑
n=2

(|an| + |bn|) rn ≤ r +

∞∑
n=2

(αn |an| + βn |bn|) ≤ r + (B − A) . (3.2)
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Thus, we conclude that the class Sα,βτ (m, δ, A, B) is locally uniformly bounded. By Lemma 3.2, we
need only to show that it is closed, i.e. if fl → f , then f ∈ Sα,βτ (m, δ, A, B). Let fl and f be given by
(3.1) and (2.6), respectively. Using Theorem 2.4, we have

∞∑
n=2

(
αn

∣∣∣ai,n

∣∣∣ + βn

∣∣∣bi,n

∣∣∣) ≤ B − A (i ∈ N) . (3.3)

Since fi → f , we conclude that
∣∣∣ai,n

∣∣∣→ |an| and
∣∣∣bi,n

∣∣∣→ |bn| as i→ ∞ (n ∈ N) . The sequence of partial
sums {S n} associated with the series

∑∞
n=2

(
αn

∣∣∣ai,n

∣∣∣ + βn

∣∣∣bi,n

∣∣∣) is non-decreasing sequence. Moreover,
by (3.3) it is bounded by B − A. Therefore, the sequence {S n} is convergent and

∞∑
n=2

(
αn

∣∣∣ai,n

∣∣∣ + βn

∣∣∣bi,n

∣∣∣) = lim
n→∞
{S n} ≤ B − A.

This gives condition (2.1) and in consequence, f ∈ Sα,βτ (m, δ, A, B), which complete the proof. �

3.5. Theorem

We have
ESα,βτ (m, δ, A, B) =

{
h∗n : n ∈ N

}
∪

{
g∗n : n ∈ {2, 3, ...}

}
,

where
h∗1 (z) = z, h∗n (z) = z −

B − A
λn

zn, g∗n (z) = z +
B − A
σn

zn (n = 2, 3, ..., z ∈ A) (3.4)

Proof. Suppose that 0 < γ < 1 and

g∗n (z) = γ f1 + (1 − γ) f2,

where f1, f2 ∈ S
α,β
τ (m, δ, A, B) are functions of the form (3.1). Then, by (2.1) we have∣∣∣b1,n

∣∣∣ =
∣∣∣b2,n

∣∣∣ =
B − A
σn

,

and, in consequence , a1,i = a2,i = 0 for i ∈ {2, 3, ...} and b1,i = b2,i = 0 for i ∈ {2, 3, ...} \ {n} . It follows
that g∗n = f1 = f2, and consequently g∗n ∈ ESα,βτ (m, δ, A, B). Similarly, we verify that the functions h∗n of
the form (3.4) are extreme points of the class Sα,βτ (m, δ, A, B). Now, suppose that f ∈ ESα,βτ (m, δ, A, B)
and f is not of the form (3.4). Then there exists i ∈ {2, 3, ...} such that

0 < |ai| <
B − A
λi

or 0 < |bi| <
B − A
σi

.

If 0 < |ai| <
B−A
λi
, then putting

γ =
|ai| λi

B − A
, Φ =

1
1 − γ

(
f − γh∗i

)
,

we have that 0 < γ < 1, h∗i , Φ ∈ S
α,β
τ (m, δ, A, B) , h∗i , Φ and

f = γh∗i + (1 − γ) Φ.
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Thus, f < ESα,βτ (m, δ, A, B). Similarly, if 0 < |bi| <
B−A
σi
, then putting

γ =
|bi|σi

B − A
, Ψ =

1
1 − γ

(
f − γg∗i

)
,

we have that 0 < γ < 1, g∗i , Φ ∈ S
α,β
τ (m, δ, A, B) , g∗i , Ψ and

f = γg∗i + (1 − γ) Ψ.

It follows that f < ESα,βτ (m, δ, A, B) , and this completes the proof. �

4. Radii of starlikeness and convexity

A function f ∈ H0 is said to be starlike of order α in A (r) if

∂

∂t

(
arg f

(
ρeit

))
> α, 0 ≤ t ≤ 2π, 0 < ρ < r < 1. (4.1)

Also, A function f ∈ H0 is said to be convex of order α in A (r) if

∂

∂t

(
∂

∂t

(
arg f

(
ρeit

)))
> α, 0 ≤ t ≤ 2π, 0 < ρ < r < 1.

It easy to verify that for function f ∈ τ the condition (4.1) is equivalent to the following

Re
DH f (z)

f (z)
> α (z ∈ A (r)) ,

or equivalently ∣∣∣∣∣DH f (z) − (1 + α) f (z)
DH f (z) + (1 + α) f (z)

∣∣∣∣∣ < 1 (z ∈ A (r)) . (4.2)

Let B be a subclass of the classH0. We define the radius of starlikeness and convexity

R∗α (B) = inf
f∈B

(
sup {r ∈ (0, 1] : f is starlike of order α in A (r)}

)
,

Rc
α (B) = inf

f∈B

(
sup {r ∈ (0, 1] : f is convex of order α in A (r)}

)
.

In simple word these show the subregion of the open unit disc where the functions would behave
starlike and convex of order α.

4.1. Theorem

The radii of starlikeness of order α for the class Sα,βτ (m, δ, A, B) is given by

R∗α
(
Sα,βτ (m, δ, A, B)

)
= inf

n≥2

(
1 − α
B − A

min
{
λn

n − α
,
σn

n + α

}) 1
n−1

, (4.3)

where λn and σn are define in (2.2) and (2.3) respectively.
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Proof. Let f ∈ Sα,βτ (m, δ, A, B) be of the form (2.6) . Then, for |z| = r < 1 we have∣∣∣∣∣DH f (z) − (1 + α) f (z)
DH f (z) + (1 + α) f (z)

∣∣∣∣∣ =

∣∣∣∣∣∣ −αz +
∑∞

n=2
(
(n − 1 − α) |an| zn − (n + 1 + α) |bn| z

n)
(2 − α) z +

∑∞
n=2

(
(n + 1 − α) |an| zn − (n − 1 + α) |bn| z

n) ∣∣∣∣∣∣
≤

α +
∑∞

n=2 ((n − 1 − α) |an| − (n + 1 + α) |bn|) rn−1

(2 − α) −
∑∞

n=2 ((n + 1 − α) |an| − (n − 1 + α) |bn|) rn−1 .

Thus the condition (4.2) is true if and only if

∞∑
n=2

(n − α
1 − α

|an| +
n + α

1 − α
|bn|

)
rn−1 ≤ 1. (4.4)

By Theorem 2.2, we have
∞∑

n=2

(
λn

B − A
|an| +

σn

B − A
|bn|

)
≤ 1, (4.5)

where λn and σn are defined by (2.2) and (2.3) respectively. Thus the conditions (4.4) is true if

n − α
1 − α

rn−1 ≤
λn

B − A
,

n + α

1 − α
rn−1 ≤

σn

B − A
(n = 2, 3, ...) ,

i.e.,

r ≤
(

1 − α
B − A

min
{
λn

n − α
,
σn

n + α

}) 1
n−1

(n = 2, 3, ...) .

It follows that the function f is starlike of order α in the disc A (r∗) , where r∗

r∗ := inf
(

1 − α
B − A

min
{
λn

n − α
,
σn

n + α

}) 1
n−1

.

The functions h∗n and g∗n are define by (3.4) realize equality in (4.5) , and the radius r∗ cannot be larger,
thus we have (4.3) . �

The following theorem may be proved in much same fashion as Theorem 4.1..

4.2. Theorem

The radii of convexity of order α for the class Sα,βτ (m, δ, A, B) is given by

Rc
α

(
Sα,βτ (m, δ, A, B)

)
= inf

n≥2

(
1 − α
B − A

min
{
λn

n − α
,
σn

n + α

}) 1
n−1

,

where λn and σn are define in (2.2) and (2.3) respectively.
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5. Applications

In this section we give some applications of the work discussed in this article in the form of some
results and examples. It is clear that if the class

F = { fn ∈ H : n ∈ N}

is locally uniformly bounded, then

coF =

 ∞∑
n=1

γn fn :
∞∑

n=2

γn = 1, γn ≥ 0 (n ∈ N)

 (5.1)

5.1. Corollary

Sα,βτ (m, δ, A, B) =

 ∞∑
n=2

(γnhn + δngn) :
∞∑

n=2

(γn + δn) = 1, δ1 = 0, γn, δn ≥ 0 (n ∈ N)

 , (5.2)

where hn and gn are defined by Eq (3.4) .

Proof. By Theorem 3.4 and Lemma 3.3 we have

Sα,βτ (m, δ, A, B) = coSα,βτ (m, δ, A, B) = coESα,βτ (m, δ, A, B) .

Thus, by Theorem 3.5 and by (5.1) we have Eq (5.2) . �

We observe, that for each n ∈ N, z ∈ A, the following real-valued functionals are continuous and
convex onH :

J ( f ) = |an| , J ( f ) = |bn| , J ( f ) = | f (z)| , J ( f ) = |DH f (z)| ( f ∈ H) ,

and

J ( f ) =

(
1

2π

∫ 2π

0

∣∣∣∣ f (
reiθ

)∣∣∣∣γ dθ
) 1
γ

( f ∈ H , γ ≥ 1, 0 < r < 1) .

Therefore, using Lemma 3.1 and Theorem 3.5 we have the following corollaries.

5.2. Corollary

Let f ∈ Sα,βτ (m, δ, A, B) be a function of the form (2.6) . Then

|an| ≤
B − A
λn

, |bn| ≤
B − A
σn

(n = 2, 3, ...) . (5.3)

where λn and σn are defined by (2.2) and (2.3) respectively. The result is sharp. The function h∗n and g∗n
of the form (3.4) are extremal functions.

Proof. Since for the extremal functions h∗n and g∗n we have |an| =
B−A
λn

and |bn| =
B−A
σn
. Thus, by Lemma

3.1 we have Eq (5.3) . �
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5.3. Example

Since B−A+2
λ2

> B−A
λ2

the polynomial

k (z) = z −
B − A + 2

λ2
z2 (z ∈ A) ,

by Corollary 5.2, clearly k (z) does not belong to Sα,βτ (m, δ, A, B) .

5.4. Corollary

Let f ∈ Sα,βτ (m, δ, A, B), |z| = r < 1. Then

r −
∣∣∣∣∣ Γ (α + β)
[1 + δ]m Γ (β)

∣∣∣∣∣ B − A
(1 + 2B − A)

r2 ≤ | f (z)| ≤ r +

∣∣∣∣∣ Γ (α + β)
[1 + δ]m Γ (β)

∣∣∣∣∣ B − A
(1 + 2B − A)

r2,

r −
∣∣∣∣∣ Γ (α + β)
[1 + δ]m Γ (β)

∣∣∣∣∣ 2 (B − A)
(1 + 2B − A)

r2 ≤ |DH f (z)| ≤ r +

∣∣∣∣∣ Γ (α + β)
[1 + δ]m Γ (β)

∣∣∣∣∣ 2 (B − A)
(1 + 2B − A)

r2.

Due to Littlewood [37] we consider the integral means inequalities for functions from the class
S
α,β
τ (m, δ, A, B) .

5.5. Lemma

Let f , g ∈ A. If f ≺ g, then ∫ 2π

0

∣∣∣∣ f (
reiθ

)∣∣∣∣γ dθ ≤
∫ 2π

0

∣∣∣∣g (
reiθ

)∣∣∣∣γ dθ .

5.6. Theorem

Let 0 < r < 1, γ > 0. Then

1
2π

∫ 2π

0

∣∣∣∣h∗n (
reiθ

)∣∣∣∣γ dθ ≤
1

2π

∫ 2π

0

∣∣∣∣h∗2 (
reiθ

)∣∣∣∣γ dθ (n = 2, 3, ...) , (5.4)

and
1

2π

∫ 2π

0

∣∣∣∣g∗n (
reiθ

)∣∣∣∣γ dθ ≤
1

2π

∫ 2π

0

∣∣∣∣h∗2 (
reiθ

)∣∣∣∣γ dθ (n = 2, 3, ...) , (5.5)

where h∗n and g∗nis defined by Eq (3.4) .

Proof. Let h∗n and g∗n are define by Eq (3.4) and let g̃n (z) = z + B−A
σn

zn (n = 2, 3, ...) . Since h∗n
z ≺

h∗2
z and

g̃n
z ≺

h∗2
z , by Lemma 5.5 we have∫ 2π

0

∣∣∣∣h∗n (
reiθ

)∣∣∣∣γ dθ ≤
∫ 2π

0

∣∣∣∣h∗2 (
reiθ

)∣∣∣∣γ dθ,

and ∫ 2π

0

∣∣∣∣g∗n (
reiθ

)∣∣∣∣γ dθ =

∫ 2π

0

∣∣∣∣g̃n

(
reiθ

)∣∣∣∣γ dθ ≤
∫ 2π

0

∣∣∣∣h∗2 (
reiθ

)∣∣∣∣γ dθ,

which complete the proof. �
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5.7. Corollary

If f ∈ Sα,βτ (m, δ, A, B) then

1
2π

∫ 2π

0

∣∣∣∣ f (
reiθ

)∣∣∣∣γ dθ ≤
1

2π

∫ 2π

0

∣∣∣∣h∗2 (
reiθ

)∣∣∣∣γ dθ,

and
1

2π

∫ 2π

0

∣∣∣∣DH f
(
reiθ

)∣∣∣∣γ dθ ≤
1

2π

∫ 2π

0

∣∣∣∣DHh∗2
(
reiθ

)∣∣∣∣γ dθ,

where γ ≥ 1, 0 < r < 1 and h∗2 is the function defined by Eq (3.4) .

6. Conclusions

With the use of Mittag-Leffer functions, we introduced a new subclass of harmonic mappings in
Janowski domain. We studied some useful results, like necessary and sufficient conditions, coefficient
inequality, topological properties, radii problems, distortion bounds and integral mean of inequality
for newly defined classes of functions. It can be seen that our defined class not only generalizes
various well known classes and their respective results but also give new direction to this field by the
introduction of Mittag-Leffer functions here. Further using the concepts of Mittag-Leffer functions
these problems can be studied for classes of meromorphic harmonic functions, Bazilevi´c harmonic
functions and for p-valent harmonic functions as well.
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