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1. Introduction

Habitat fragmentation is usually observed in nature related with heterogeneity in the distribution of
resources. For example, food, water, shelter sites, physical factors such as temperature, light, moisture,
and any feature be able to affect the growth rate of the population of a given species [1]. These
fragments, also known as patches, are not completely isolated because they are coupled by the motion
of individuals in space. Therefore, mathematicians and ecologists apply diffusion models to explain
many ecological problems [1–7]. One of the classical population diffusion model [7]:ẋ1(t) = x1(t)(r1 − a1x1(t))dt + (d21x2(t) − d12x1(t)),

ẋ2(t) = x2(t)(r2 − a2x2(t))dt + (d12x1(t) − d21x2(t)),
(1.1)

where xi(t) stands for the density of patch i at time t; ri stands for the population growth rate of patch
i; di j stands for the dispersal rate of the population from the i-th patch to j-th patch, i = 1, 2, i , j.
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The above diffusion processes are all based on the random movement of matter in space. However,
many ecologists have found that there are many practical phenomena that cannot be explained by
simple diffusion population models, such as, tripping and killing pests. In general, an important
feature of many biological individuals is that they can perceive external signals and cues from a
specific stimulus, especially vertebrates. Due to the attraction of some external signals, species may
move in specific directions, which is called chemotaxis [8–11]. Colombo and Anteneodo proposed a
model to consider the interplay between spatial dispersal and environment spatiotemporal fluctuations
in meta-population dynamics [1]. Li and Guo studied a reaction-diffusion model with chemotaxis and
nonlocal delay effect [9]. In [12, 13], they showed that vertebrates have better sensory and
differentiated nervous systems than invertebrates, which can transmit sensory information in the
polluted environment to the region of brain where it can analysis and make corresponding processing,
either bear the concentration of toxins in the habitat or escape from the area. Wei and Chen [12]
proposed a single-speices population model with psychological effects in the polluted environment:

ẋ(t) = x(t)(r − r0c0(t) − ax(t) −
λce(t)

1 + αc2
e(t)

)

ċ0(t) = kce(t) − (g + m)c0(t)
ċe(t) = −hce(t) + ue(t)

(1.2)

where ce(t) and c0(t) denote the concentration of toxicant in the environment and organism at time
t respectively, ue(t) represents the input rate of external toxins to the habitat at time t, and, it is a
continuous and bounded non-negative function. Coefficients r, r0, a, k, g, m, h, λ and α are positive
constants, and their biological significance has been given in [12].

As we all know, with the influence of human economic activities, not only habitats of population
are destroyed, but also the environment of habitats are polluted. The survival of those unprotected
populations will be seriously threatened, even human beings, therefore, it is necessary to consider the
effect of toxins in polluted patches on the population [14–17]. The “psychological effect” mentioned in
[12,13] is also due to the response of biological individuals to the stimulation of environmental toxins
in polluted environment, in other words, it is “chemotaxis”. Considering the chemotaxis of biological
individuals, the single-species population in heavily polluted patches will increase their diffusion to
other nonpolluting or lightly polluted patches, while the populations of lightly polluted or nonpolluting
patches will slow down their diffusion to heavily polluted patches under the influence of chemotaxis.
In order to understand the effect of chemotaxis on population survival, we suppose that patch 1 is
heavily polluted patch, and patch 2 is nonpolluting patch. On the basis of previous studies, we propose
a single-species population diffusion model with chemotaxis in polluted environment:

ẋ1(t) = x1(t)(r1 − r0c0(t) − a1x1(t)) + d21(1 −
λ2ce(t)

1 + αc2
e(t)

)x2(t) − d12(1 +
λ1ce(t)

1 + αc2
e(t)

)x1(t)

ẋ2(t) = x2(t)(r2 − a2x2(t)) + d12(1 +
λ1ce(t)

1 + αc2
e(t)

)x1(t) − d21(1 −
λ2ce(t)

1 + αc2
e(t)

)x2(t)

ċ0(t) = f ce(t) − (g + m)c0(t)
ċe(t) = −hce(t) + ue(t)

(1.3)

where λi(0 ≤ λi ≤ 1) denotes the contact rate between the single-species population and the
environment toxicant. The initial value satisfies x1(0) > 0, x2(0) > 0, co(0) ≥ 0, ce(0) ≥ 0.
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However, in nature, the population will be more or less disturbed by various random factors, which
usually composed of many tiny and independent random disturbances, such as temperature, weather
and climate change. May [18] has pointed out that even the smallest environmental randomness
resulted in a qualitatively different result from the deterministic one. In recent years, stochastic
population models have received a lot of attention [19–25]. Zou and Fan studied a single-species
stochastic linear diffusion system [23]. Zu and Jiang focused on the extinction, stochastic persistence
and stationary distribution of a single-species stochastic model with directed diffusion [24]. Liu and
Bai considered a stochastic logistic population with biased diffusion [25]. Studies of single-species
stochastic population models with migrations between the nature preserve and natural environment
had received increasing attention in recent works [26–29]. But, few studies discuss the single-species
population diffusion model with chemotaxis in population environment.

In this paper, we assume that the white noise mainly affects the intrinsic growth rate ri of system
(1.3), we thus model the single-species population diffusion system by replacing the intrinsic growth
rate ri of system (1.3) by a stochastic process ri → ri + σi

dB(t)
dt , i=1,2., where dB(t)

dt denotes white noise,
σ2

i represents the density of white noise. We therefore derive a single-species stochastic diffusion
system with chemotaxis in polluted environment as follows:

dx1(t) = x1(t)(r1 − r0c0(t) − a1x1(t))dt

+ [d21(1 −
λ2ce(t)

1 + αc2
e(t)

)x2(t) − d12(1 +
λ1ce(t)

1 + αc2
e(t)

)x1(t)]dt + σ1x1(t)dB1(t),

dx2(t) = x2(t)(r2 − a2x2(t))dt

+ [d12(1 +
λ1ce(t)

1 + αc2
e(t)

)x1(t) − d21(1 −
λ2ce(t)

1 + αc2
e(t)

)x2(t)]dt + σ2x2(t)dB1(t),

dc0(t) = ( f ce(t) − (g + m)c0(t))dt

dce(t) = (−hce(t) + ue(t))dt

(1.4)

Remark 1.1. [17]. Since c0(t) and ce(t) denote the concentration of toxicant, thus, 0 ≤ ce(t) ≤ 1,
0 ≤ c0(t) ≤ 1, with this end in view, we need the following constraints f ≤ g + m, 0 ≤ u(t) ≤ u < h.

Because the latter two equations in model (1.4) are linear, we only need to discuss the following
subsystem here:

dx1(t) = x1(t)(r1 − r0c0(t) − a1x1(t))dt

+ [d21(1 −
λ2ce(t)

1 + αc2
e(t)

)x2(t) − d12(1 +
λ1ce(t)

1 + αc2
e(t)

)x1(t)]dt + σ1x1(t)dB1(t),

dx2(t) = x2(t)(r2 − a2x2(t))dt

+ [d12(1 +
λ1ce(t)

1 + αc2
e(t)

)x1(t) − d21(1 −
λ2ce(t)

1 + αc2
e(t)

)x2(t)]dt + σ2x2(t)dB1(t).

(1.5)

2. Preliminaries

In this paper, unless otherwise noted, let (Ω,F, P) is a complete probability space with a filtration
{F}t≥0 satisfying the usual conditions. (i.e., it is right continuous and contains all P-null sets)
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For the convenience of later discussion, some notations, lemma and theorem are given in this
section:

Rn
+ = {(x1, x2, ..., xn)|xi > 0}, 〈 f (t)〉 = t−1

∫ t

0
f (s)ds, f u = lim sup

t→+∞

f (t), f l = lim inf
t→+∞

f (t), f = lim
t→+∞

f (t),

f∗ = inf
t≥0

f (t), f ∗ = sup
t≥0

f (t),R1(t) = r1 − r0c0(t) − d12(1 +
λ1ce(t)

1 + αc2
e(t)

),D12(t) = d12(1 +
λ1ce(t)

1 + αc2
e(t)

),

R2(t) = r2 − d21(1 −
λ2ce(t)

1 + αc2
e(t)

),D21(t) = d21(1 −
λ2ce(t)

1 + αc2
e(t)

), σ2 =
σ2

1σ
2
2

σ2
1 + σ2

2

, σ̌2 = max{σ2
1, σ

2
2}.

Definition 1. (1) population x(t) is said to be extinction if lim
t→+∞

x(t) = 0, a.s.;
(2) population x(t) is said to be strongly persistent if lim inf

t→+∞
x(t) > 0;

(3) population x(t) is said to be strongly persistent in the mean if lim inf
t→+∞

〈x(t)〉 > 0.

Lemma 2.1. (see[22]) Suppose that x(t) ∈ C(Ω × [0,+∞),R+).

(1) If there are λ and positive constants λ0, T , such that ln x(t) ≤ λt−λ0

∫ t

0
x(s)ds+

n∑
i=1
βidBi(t), t ≥ T,

where βi(1 ≤ i ≤ n) is constant, then
lim sup

t→+∞

t−1
∫ t

0
x(s)ds ≤

λ

λ0
, a.s., λ ≥ 0,

lim
t→+∞

x(t) = 0, a.s., λ < 0.

(2) If there are positive constants λ, λ0 and T , such that ln x(t) ≥ λt−λ0

∫ t

0
x(s)ds+

n∑
i=1
βidBi(t), t ≥ T.

Then lim inf
t→+∞

t−1
∫ t

0
x(s)ds ≥ λ

λ0
, a.s.

Theorem 2.2. (see[19]) Let M(t) be a continuous local martingale and M(0) = 0, then
(1) If lim

t→+∞
〈M(t),M(t)〉t = ∞, a.s.,⇒ lim

t→+∞

M(t)
〈M(t),M(t)〉 = 0, a.s.

(2) If lim
t→+∞
〈M(t),M(t)〉t < ∞, a.s.,⇒ lim

t→+∞

M(t)
t = 0, a.s.

Lemma 2.3. (see[22]) Stochastic population equation dx(t) = x(t)(r − ax(t))dt + σx(t)dB(t), where r,
a and σ are positive constants.

(1) If r − 0.5σ2 > 0, have lim
t→+∞
〈x(t)〉 = r−0.5σ2

a , lim
t→+∞

ln x(t)
t = 0, a.s.

(2) If r − 0.5σ2 < 0, have lim
t→+∞

x(t) = 0, a.s.

Lemma 2.4. If lim
t→+∞

ue(t) = ue, then

lim
t→+∞

ce(t) =
ue

h
, lim

t→+∞
c0(t) =

f ue

h(g + m)
, lim

t→+∞

ce(t)
1 + αc2

e(t)
=

hue

h2 + αue
2 .

Proof. From the last two equations of model (1.4), for all ε > 0, we can imply that

−hce(t) + ue − ε ≤
dce(t)

dt
≤ −hce(t) + ue + ε.
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By standard comparison theorem obtains that

ue − ε

h
≤ ce(t) ≤

ue + ε

h
,

which implies that

lim
t→+∞

ce(t) =
ue

h
.

Thus, it easily obtain that

lim
t→+∞

c0(t) =
f ue

h(g + m)
, lim

t→+∞

ce(t)
1 + αc2

e(t)
=

hue

h2 + αūe
2 .

3. Survival analysis of deterministic population model (1.3)

Assumption H1 : r̃1 = r1 − r0(c0)∗ − d12(1 +
λ1(ce)∗

1+α(c2
e )∗ ) < 0, r̃2 = r2 − d21(1 − λ2(ce)∗

1+α(c2
e )∗

) < 0.

Assumption H2 : d̃ = d21(1 − λ2(ce)∗
1+α(c2

e )∗ )d12(1 +
λ1c∗e

1+α(c2
e )∗

) − r̃1̃r2 < 0.

Assumption H3 : r̂1 = r1 − r0(c0)∗ − d12(1 +
λ1(ce)∗

1+α(c2
e )∗

) < 0, r̂2 = r2 − d21(1 − λ2(ce)∗
1+α(c2

e )∗ ) < 0.

Assumption H4 : d̂ = d12(1 +
λ1(ce)∗

1+α(c2
e )∗ )d21(1 − λ2c∗e

1+α(c2
e )∗

) − r̂1r̂2 < 0.

Theorem 3.1. Let x(t) = (x1(t), x2(t)) be the solution of the first two equations of (3) with the initial
value x(0) ∈ R2

+,
(1) Suppose Assumption H1 and H2 hold simultaneously, single-species x will be extinct.
(2) Suppose Assumption H3 or H4 are not true, single-species x is strongly persistent.

Proof. It follows from the first two equations of (3) that,
dx1(t)

dt
≤ (r1 − r0(c0)∗ − d12(1 +

λ1(ce)∗
1 + α(c2

e)∗
))x1 + d21(1 −

λ2(ce)∗
1 + α(c2

e)∗
)x2

dx2(t)
dt

≤ d12(1 +
λ1c∗e

1 + α(c2
e)∗

)x1 + (r2 − d21(1 −
λ2(ce)∗

1 + α(c2
e)∗

))x2,
dx1(t)

dt
≥ (r1 − r0(c0)∗ − d12(1 +

λ1(ce)∗

1 + α(c2
e)∗

))x1 + d21(1 −
λ2c∗e

1 + α(c2
e)∗

)x2 − a1x2
1

dx2(t)
dt

≥ d12(1 +
λ1(ce)∗

1 + α(c2
e)∗

)x1 + (r2 − d21(1 −
λ2(ce)∗

1 + α(c2
e)∗

))x2 − a2x2
2.

Comparison system
dy1(t)

dt
= (r1 − r0(c0)∗ − d12(1 +

λ1(ce)∗
1 + α(c2

e)∗
))y1 + d21(1 −

λ2(ce)∗
1 + α(c2

e)∗
)y2

dy2(t)
dt

= d12(1 +
λ1c∗e

1 + α(c2
e)∗

)y1 + (r2 − d21(1 −
λ2(ce)∗

1 + α(c2
e)∗

))y2,

(3.1)

and 
dz1(t)

dt
= (r1 − r0(c0)∗ − d12(1 +

λ1(ce)∗

1 + α(c2
e)∗

))z1 + d21(1 −
λ2c∗e

1 + α(c2
e)∗

)z2 − a1z2
1,

dz2(t)
dt

= d12(1 +
λ1(ce)∗

1 + α(c2
e)∗

)z1 + (r2 − d21(1 −
λ2(ce)∗

1 + α(c2
e)∗

))z2 − a2z2
2,

(3.2)
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with zi(0) = yi(0) = xi(0) > 0, i = 1, 2. By comparison theorem, we have zi(t) ≤ xi(t) ≤ yi(t), i = 1, 2.
(1) If Assumption H1 and H2 hold simultaneously, it is easy to see that the eigenvalue of system

(6) at equilibrium point (0, 0) has negative real part and is quasi-monotone non-decreasing. Since
xi(t) ≥ yi(t), i = 1, 2. have lim

t→+∞
xi(t) = 0, i = 1, 2. a.s.

(2) If Assumption H3 or H4 are not true, the proof is similar to [6]. we know that system (3.2)
have positive equilibrium point z and zero equilibrium point. According to the conclusion and proof of
Theorem 1 (see Allen[6]), system (7) is unstable at zero equilibrium, but stable at positive equilibrium
point z, then lim

t→+∞
z(t) = z. By virtue of, zi(t) ≤ xi(t), i = 1, 2., we have, lim inf

t→+∞
x(t) ≥ z, that is,

population x is strongly persistent.
The proof is completes.�
According to the Theorem 3.1’s (1), if Assumption H1 and H2 simultaneously true, population x

will die out. By r̃1 < 0 and r̃2 < 0, we get
r1 − r0(c0)∗ < d12(1 +

λ1(ce)∗
1 + α(c2

e)∗
)

r2 < d21(1 −
λ2(ce)∗

1 + α(c2
e)∗

),
(3.3)

by virtue of d̃ = d12d21(1 +
λ1c∗e

1+α(c2
e )∗

)(1 − λ2(ce)∗
1+α(c2

e )∗ ) − r̃1r̃2 < 0, we can obtain that

(r1 − r0(c0)∗)r2 > (r1 − r0(c0)∗)d21(1 −
λ2(ce)∗

1 + α(c2
e)∗

) + r2d12(1 +
λ1(ce)∗

1 + α(c2
e)∗

). (3.4)

If (r1 − r0(c0)∗)r2 ≥ 0, by virtue of (3.3) and (3.4), one can imply that (r1 − r0(c0)∗)r2 < 0, it
is contradiction with (r1 − r0(c0)∗)r2 ≥ 0. Thus, (r1 − r0(c0)∗)r2 < 0 is a necessary condition of
Assumption H1 and H2 holding at the same time.

4. Survival analysis of stochastic population model (1.4)

In order to analysis the long-time behaviors of single-species of system (1.5), first of all, we shall
show that system (1.5) has unique global positive solution x(t) = (x1(t), x2(t)).

Lemma 4.1. For any given initial value x(0) ∈ R2
+, there is a unique positive solution x(t) to system

(1.5), and the solution will remain R2
+ with probability 1.

Proof. Because the coefficients of system (1.5) is locally Lipschitz continuous for any given initial
value x(0) ∈ R2

+, there is a unique local solution x(t) in [0, τe), where τe is the explosion time(see [23]).
In order to proof the solution is global, we only need to prove τe = +∞, a.s..

For each integer n > n0, defining the stopping time

τn = inf{t ∈ [0, τe]|xi(t)∈̄(
1
n
, n), i = 1, 2},

obviously, τn is increasing when n→ ∞. Let τ∞ = lim
n→+∞

τn, hence, τ∞ ≤ τe, a.s. Next, we just need to
proof τ∞ = +∞, if the conclusion is not true, there are T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T } > ε.
Thus, there is a integer n1 ≥ n0, such that P{τn ≤ T } ≥ ε, n ≥ n1.

AIMS Mathematics Volume 5, Issue 6, 6749–6765.



6755

Defining Lyapounov function V : R2
+ → R+, have

V(x) = x1 − 1 − ln x1 + x2 − 1 − ln x2.

For x ∈ R2
+, applying Itô’s formula, we get

dV(x) = LV(x)dt + σ1(x1 − 1)dB1(t) + σ2(x2 − 1)dB2(t), (4.1)

where
LV(x) ≤(r1 + a1 + d12(1 + λ1))x1 − a1x2

1 + (d21 + r2 + a2)x2 − a2x2
2

+r0c0 + d12(1 + λ1) + d21 + 0.5σ2
1 + 0.5σ2

2.

Obviously, there is a positive constant K such that LV(x) ≤ K.
Integrating both sides of inequality (4.1) from 0 to τn ∧ T and taking expectation yield

EV(x(τn ∧ T )) ≤ V(x(0)) + KT. (4.2)

By the definition of τn, xi(τn ∧ T ) = n or 1
n for some i = 1, 2, hence,

V(x(τn ∧ T )) ≥ min{n − 1 − ln n,
1
n
− 1 + ln n}.

It follows from (4.2) that

V(x(0)) + KT ≥ P(τn ≤ T )V(x(τn ∧ T )) ≥ ε{n − 1 − ln n,
1
n
− 1 + ln n},

when n→ ∞, we have
∞ > V(x(0)) + KT = ∞,

which is a contradiction.
This completes the proof. �

Lemma 4.2. Let x(t) be the solution of system (1.5) with the initial value x(0) ∈ R2
+, for any θ > 0,

have
lim sup

t→+∞

ln(x1 + θx2)
t

≤ 0, a.s.

Proof. Defining function V(x) = ln(x1 + θx2), applying Itô′s formula to V(x), we have

d ln(x1 + θx2) = (
x1(r1 − r0c0 − a1x1) + d21(1 − λ2ce

1+αc2
e
)x2 − d12(1 + λ1ce

1+αc2
e
)x1 + θx2(r2 − a2x2)

x1 + θx2

+
θ[d12(1 + λ1ce

1+αc2
e
)x1 − d21(1 − λ2ce

1+αc2
e
)x2]

x1 + θx2
−
σ2

1x2
1 + σ2

2θ
2x2

2

2(x1 + θx2)2 )dt +
σ1x1dB1(t) + σ2θx2dB2(t)

x1 + θx2

≤ (r − â(x1 + θx2) −
σ2

1x2
1 + σ2

2θ
2x2

2

2(x1 + θx2)2 )dt +
σ1x1dB1(t) + σ2θx2dB2(t)

x1 + θx2
,

where r = max{(r1 + θd12(1 + λ1√
α
)), (r2 + d21

θ
)} and â = 0.5 min{a1,

a2
θ
}. Thus

det ln(x1+θx2) = et ln(x1 + θx2)dt + etd ln(x1 + θx2)

≤ et(r + ln(x1 + θx2) − â(x1 + θx2) −
σ2

1x2
1 + σ2

2θ
2x2

2

2(x1 + θx2)2 )dt + etσ1x1dB1(t) + σ2θx2dB2(t)
x1 + θx2

.
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Integrating the two sides of the above inequality in the interval [0, t], we get

etV(x) − V(x(0)) ≤
∫ t

0
es(r + V(x(s)) − â(x1(s) + θx2(s)) −

σ2
1x2

1(s) + σ2
2θ

2x2
2(s)

2(x1(s) + θx2(s))2 )ds + M(t), (4.3)

where M(t) =
∫ t

0
es σ1 x1(s)dB1(s)+σ2θx2(s)dB2(s)

x1(s)+θx2(s) ds.

The quadratic variation of M(t) is 〈M(t),M(t)〉 =
∫ t

0
σ2

1 x2
1(s)+σ2

2θ
2 x2

2(s)
(x1(s)+θx2(s))2 ds. According to the exponential

martingale inequality, for all positive constants µ, ν and T0, we can obtain that

P{ sup
0≤t≤T0

[M(t) − 0.5µ〈M(t),M(t)〉] > ν} ≤ e−µν,

we choose µ = e−k, β = γek ln k, T0 = k and γ > 1,

P{ sup
0≤t≤k

[M(t) − 0.5e−k〈M(t),M(t)〉] > γek ln k} ≤ k−γ,

since
+∞∑
k=1

k−γ < ∞, according to Borel-Cantalli Lemma, there exists Ω ∈ F and positive integer k1 =

k1(ω) satisfy P(Ω) = 1, for all ω ∈ Ω, and k > k1, have

M(t) ≤ 0.5e−k〈M(t),M(t)〉 + θek ln k, 0 ≤ t ≤ k. (4.4)

It follows from ln(x1 + θx2) + r − â(x1 + θx2) that there is a positive constant K, such that ln(x1 +

θx2) + r − â(x1 + θx2) ≤ K. by (4.3) and (4.4), for all k > k1, we have

et ln(x1 + θx2) ≤ V(x(0)) + K(et − 1) + γek ln k,

for k − 1 ≤ t ≤ k, we get

ln(x1 + θx2)
t

≤
V(x(0))

tet +
K(et − 1)

tet +
γek ln k

tet .

Let t → +∞, we can observe that lim sup
t→+∞

ln ln xi(t)
t ≤ lim sup

t→+∞

ln ln(x1(t)+θx2(t))
t ≤ 0, a.s., i = 1, 2.

This completes the proof. �

4.1. Extinction

Let (θ, ρ) be the solution of the following equationsa + θb = ρ

θc + d = ρθ.
(4.5)

where b > 0 and d > 0. By virtue of (4.5), it easily observe that θ = d
ρ−c , where ρ is the solution of

equation
ρ2 − (a + c)ρ + ac − bd = 0. (4.6)

Because a and c are the solutions of equation ρ2 − (a + c)ρ + ac = 0, obviously, Eq (4.6) has two
solutions, and there must be a solution

ρ =
(a + c) +

√
(a − c)2 + 4bd
2

which is greater than c, thus θ > 0.
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Remark 4.3. We next come to analyze the following possible cases of the solution of Eq (4.6).
(a) If a and c are negative constants, when bd − ac < 0, all solutions of Eq (4.6) are negative.

However, when bd − ac ≥ 0, there must be a nonnegative solution of Eq (4.6).
(b) If a or c aren’t both negative, we can imply that there must be a positive solution of Eq (4.6).

Theorem 4.4. Let (x1(t), x2(t)) be the solution of system (1.5) with initial value (x1(0), x2(0)) ∈ R2
+. If

(Ru
1 + Ru

2) +

√
(Ru

1 − Ru
2)2 + 4Du

12Du
21 < σ

2,

the single-species population x of system (1.5) will die out, that is, lim
t→+∞

xi(t) = 0, a.s., i = 1, 2.

Proof. Let θ > 0, it follows from (1.5) that

d(x1(t) + θx2(t)) = [(R1(t) + θD12(t))x1(t) − a1x2
1(t) + (θR2(t) + D21(t))x2(t)

− a2θx2
2(t)]dt + σ1x1(t)dB1(t) + σ2θx2(t)dB2(t).

(4.7)

Then for all ε > 0, there is a positive constant t1, for all t ≥ t1, it follows from (4.7) that

d(x1 + θx2) ≤ ((Ru
1 + ε) + θ(Du

12 + ε))x1 + (θ(Ru
2 + ε) + (Du

21 + ε))x2)dt

+ σ1x1dB1(t) + σ2θx2dB1(t).
(4.8)

We can imply that there must be a

ρ =
(Ru

1 + Ru
2 + 2ε) +

√
(Ru

1 − Ru
2)2 + 4(Du

12 + ε)(Du
21 + ε)

2

and θ =
Du

21+ε

ρ−Ru
2−ε

> 0, such that

d(x1 + θx2) ≤ ρ(x1 + θx2)dt + σ1x1dB1(t) + σ2θx2dB2(t).

Applying Itô′s formula to ln(x1 + θx2), we have

d ln(x1 + θx2) ≤ (ρ −
σ2

1x2
1 + σ2

1θ
2x2

2

2(x1 + θx2)2 )dt +
σ1x1dB1(t) + σ2θx2dB2(t)

(x1 + θx2)

≤ (ρ − 0.5σ2)dt +
σ1x1dB1(t) + σ2θx2dB2(t)

(x1 + θx2)
, t ≥ t1.

(4.9)

By (4.9), we can obtain that

x1(t) + θx2(t) ≤ (x1(t1) + θx2(t1))e(ρ−0.5σ2+
N(t)
t−t1

)(t−t1)
, (4.10)

where N(t) =
∫ t

t1
σ1 x1(s)dB1(s)+σ2θx2(s)dB2(s)

(x1(s)+θx2(s)) .
The quadratic variation of N(t), have

〈N(t),N(t)〉 =

∫ t

t1

σ2
1x2

1(s) + σ2
2θ

2x2
2(s)

(x1(s) + θx2(s))2 ds ≤ max{σ2
1, σ

2
2}(t − t1).

It follows from the Theorem 2.2, we can get that lim
t→+∞

N(t)
t−t1

= 0, a.s.
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If (Ru
1 + Ru

2) +
√

(Ru
1 − Ru

2)2 + 4Du
12Du

21 < σ2, let ε be sufficient small such that ρ < 0.5σ2. Because
lim

t→+∞

N(t)
t−t1

= 0, a.s., it follows from (4.10) that

lim sup
t→+∞

(x1(t) + θx2(t)) ≤ 0, a.s.

which yields
lim

t→+∞
xi(t) = 0, i = 1, 2. a.s.

This completes the proof of Theorem 4.4. �
According to Theorem 4.4 and Lemma 2.4, we can obtain the following corollary.

Corollary 4.5. If lim
t→+∞

ue(t) = ūe, when the coefficients R1 + R2 +

√
(R1 − R2)2 + 4D12D21 < σ2, the

single-species population x will be extinct.

Remark 4.6. It follows from the proof of Theorem 4.4 and the results of Remark 4.3, if Ru
1 < 0, Ru

2 < 0
and Du

12Du
21 − Ru

1Ru
2 < 0 hold, the single-species population will be extinct.

Remark 4.7. From Theorem 4.4, if r̃1 < 0, r̃2 < 0 and d12d21(1 +
λ1c∗e

1+α(c2
e )∗

)(1 − λ2(ce)∗
1+α(c2

e )∗ ) − r̃1r̃2 < 0, it
follows from the proof of the Theorem 4.4 and the results of the Remark 4.3(a), we find that the single-
species population x of stochastic model (1.4) will die out, and it is also extinction in deterministic
model (1.3). When Assumption H3 or H4 aren’t true, the single-species x of deterministic model (1.3)
is strongly persistent, but Theorem 4.4 shows that the single-species x of stochastic model will die out
when white noises large enough, which means that the white noises in the environment will affect the
sustainable survival of the species, especially the endangered species.

4.2. Persistence in the mean

Theorem 4.8. Let (x1(t), x2(t)) be the solution of system (1.5) with initial value (x1(0), x2(0)) ∈ R2
+, if

(Rl
1 + Rl

2) +

√
(Rl

1 − Rl
2)2 + 4Dl

12Dl
21 > σ̌

2,

the single-species population x is strongly persistent in the mean.

Proof. Let ε > 0 be large enough that

Dl
12 − ε > 0, Dl

21 − ε > 0, (Rl
1 + Rl

2) +

√
(Rl

1 − Rl
2)2 + 4Dl

12Dl
21 − σ̌

2 − 4ε > 0.

By
Rl

1 = lim inf
t→+∞

R1(t),Dl
12 = lim inf

t→+∞
D12(t),Rl

2 = lim inf
t→+∞

R2(t),Dl
21 = lim inf

t→+∞
D21(t)

and (4.7), for all ε > 0, there exists a positive constant t1, when t ≥ t1, we can obtain that

d(x1 + θx2) ≥ ((Rl
1 − ε) + θ(Dl

12 − ε))x1 + (θ(Rl
2 − ε) + (Dl

21 − ε))x2

− a1x2
1 − a2θx2

2)dt + σ1x1dB1(t) + σ2θx2dB2(t), t ≥ t1.
(4.11)

In view of the proof of Theorem 4.4, by virtue of (4.11), we can imply that there are positive
constants θ and ρ such that

d(x1 + θx2) ≥ (ρ(x1 + θx2) − a1x2
1 − a2θx2

2)dt + σ1x1dB1(t) + σ2θx2dB2(t), t ≥ t1, (4.12)
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where θ and ρ satisfy the following equations:
ρ2 − (Rl

1 + Rl
2 − 2ε)ρ + (Rl

1 − ε)(R
l
2 − ε) − (Dl

12 − ε)(D
l
21 − ε) = 0,

θ =
D21 − ε

ρ − R2 + ε
> 0.

Thus ρ =
(Rl

1+Rl
2−2ε)+

√
(R1−R2)2+4(D12−ε)(D21−ε)

2 . By virtue of (4.12), we get

d ln(x1 + θx2) ≥ (ρ −
σ2

1x2
1 + σ2

2θ
2x2

2

2(x1 + θx2)2 −
a1x2

1 + a2θx2
2

x1 + θx2
)dt +

σ1x1dB1(t) + σ2θx2dB2(t)
x1 + θx2

, t ≥ t1.

Integrating from t1 to t and dividing by t on above inequality, have

ln(x1 + θx2)
t

≥
ln(x1(t1) + θx2(t1))

t
+ ρ − 〈

σ2
1x2

1 + σ2
2θ

2x2
2

2(x1 + θx2)2 〉 − 〈
a1x2

1 + a2θx2
2

x1 + θx2
〉 +

N(t)
t

≥
ln(x1(t1) + θx2(t1))

t
+ ρ − 0.5σ̌2 −max{a1,

a2

θ
}〈x1 + θx2〉 +

N(t)
t
,

(4.13)

where N(t) =
∫ t

t1
σ1 x1(s)dB1(s)+σ2θx2(s)dB2(s)

x1(s)+θx2(s) .

Taking the inferior limit on both sides of (4.13),we obtain that

lim inf
t→+∞

ln(x1 + θx2)
t

+ lim inf
t→+∞

max{a1,
a2

θ
}〈x1 + θx2〉

≥ lim inf
t→+∞

ln(x1(t1) + θx2(t1))
t

+ lim inf
t→+∞

N(t)
t

+ ρ − 0.5σ̌2.

(4.14)

Because lim
t→+∞

N1(t)
t = 0, lim

t→+∞

ln(φ1(0)+θφ2(0))
t = 0, a.s. and ρ − 0.5σ̌2 > 0, by virtue of (4.14) and Lemma

2.3, we get lim inf
t→+∞

〈x1(t) + θx2(t)〉 ≥ ρ−0.5σ̌2

max{a1,
a2
θ }

.

The proof of Theorem 4.8 is completes. �
It follows from Theorem 4.8 and Lemma 2.4, we can get the following corollary.

Corollary 4.9. If lim
t→+∞

ue(t) = ue, when the coefficients R1 + R2 +

√
(R1 − R2)2 + 4D12D21 > σ̆2, the

single-species population x is strongly persistent in the mean.

We next discuss the persistence in the mean of the population of each patch.

Theorem 4.10. Let (x1(t), x2(t)) be the solution of system (1.5) with initial value (x1(0), x2(0)) ∈ R2
+, if

〈R1(t)〉l − 0.5σ2
1 > 0, 〈R2(t)〉l − 0.5σ2

2 > 0,

the population xi in the patch i is strongly persistent in the mean, and

lim inf
t→+∞

〈x1(t)〉 ≥
r1 − 0.5σ2

1

a1
, lim inf

t→+∞
〈x2(t)〉 ≥

r2 − 0.5σ2
2

a2
, a.s.
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Proof. It follows from (1.5) that

d ln x1 ≥ (R1(t) − 0.5σ2
1 − a1x1)dt + σ1dB1(t), (4.15)

d ln x2 ≥ (R2(t) − 0.5σ2
2 − a2x2)dt + σ2dB2(t). (4.16)

Integrating both sides of above inequalities (4.15) and (4.16) from 0 to t,

ln x1/x1(0)
t

≥ 〈R1(t)〉 − 0.5σ2
1 − a1〈x1(s)〉 +

σ1B1(t)
t

, (4.17)

ln x2/x2(0)
t

≥ 〈R2(t)〉 − 0.5σ2
2 − a2〈x2(s)〉 +

σ2B2(t)
t

, (4.18)

For sufficiently small ε > 0, such that 〈Ri(t)〉l− ε > 0, i = 1, 2. It follows from (4.17) and (4.18) that

ln x1/x1(0)
t

≥ 〈R1(t)〉l − ε − 0.5σ2
1 − a1〈x1(s)〉 +

σ1B1(t)
t

, (4.19)

ln x2/x2(0)
t

≥ 〈R2(t)〉l − ε − 0.5σ2
2 − a2〈x2(s)〉 +

σ2B2(t)
t

, (4.20)

by virtue of Lemma 2.1, (4.19), (4.20) and the arbitrariness of ε, we can obtain that

lim inf
t→+∞

〈x1(t)〉 ≥
〈R1(t)〉l − 0.5σ2

1

a1
, lim inf

t→+∞
〈x2(t)〉 ≥

〈R2(t)〉l − 0.5σ2
2

a2
, a.s.

The proof of Theorem 4.10 is completes.

5. Examples and numerical simulations

In this section, we will show the numerical simulation results to illustrate the accuracy of
analytical results in above section by using the famous Milstein’s method [30]. It is very hard to
choose parameters of the model from realistic estimation, which needs to apply many methods of
statistical, therefore, we will only use some hypothetical parameters to simulate the theoretical effects
in this section.
Example 1. In deterministic system (1.3), we choose the parameters as:

r1 = 0.2, r2 = 0.2, r0 = 0.8, a1 = 0.5, a2 = 0.6, g = 0.3, m = 0.2, h = 0.5, f = 0.4, d12 =

0.5, d21 = 0.7, ue = 0.4, with initial value (x1(0), x2(0), c0(0), ce(0)) = (0.5, 0.5, 0.5, 0.4).
In order to simulate the influence of chemotaxis on the survival of single-species, we change the

values of λ1, λ2, and α. We firstly adopt λ1 = 0.5, λ2 = 0.2, α = 1.5, by simple calculation, we know
that it satisfy Assumption H1 and H2, by virtue of the Theorem 4.4, one can see that the single-species
population x will die out, see Figure 1(a). If λ1 = 0.5, λ2 = 0.5, α = 0.1, by computing, Assumption
H4 is not true, by virtue of the Theorem 4.4’s (2), we can observe that the single-species x is strongly
persistent, see Figure 1(b).
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Figure 1. Solution of deterministic system (1.3) for r1 = 0.2, r2 = 0.2, r0 = 0.8, a1 =

0.5, a2 = 0.6, g = 0.3, m = 0.2, h = 0.5, f = 0.4, d12 = 0.5, d21 = 0.7, ue = 0.4,
(a) : λ1 = 0.5, λ2 = 0.2, α = 1.5, (b) : λ1 = 0.5, λ2 = 0.5, α = 0.1.

 

 

Figure 2. Solution of stochastic system (1.4) for r1 = 0.2, r2 = 0.3, r0 = 0.8, a1 = 0.5, a2 =

0.6, g = 0.3, m = 0.12, h = 0.5, f = 0.4, d12 = 0.3, d21 = 0.4, ue = 0.4 − 0.1e−0.2t,

with initial value (x1(0), x2(0), c0(0), ce(0)) = (0.5, 0.5, 0.1, 0.3), (a) : σ1 = 0.2, σ2 = 0.2.
(b) : σ1 = 0.7, σ2 = 0.8.

Example 2. In stochastic system (1.4), Chooses the parameters as:
r1 = 0.2, r2 = 0.3, r0 = 0.8, a1 = 0.5, a2 = 0.6, g = 0.3, m = 0.12, h = 0.5, f = 0.4, d12 =

0.3, d21 = 0.4, ue = 0.4 − 0.1e−0.2t, λ1 = 0.6, λ2 = 0.4, α = 1, with initial value
(x1(0), x2(0), c0(0), ce(0)) = (0.5, 0.5, 0.1, 0.3).

We next focus on the effect of the intensity of white noises on the survival of population x. we

adopt σ1 = 0.2, σ2 = 0.2, computing shows that R1 + R2 +

√
(R1 − R2)2 + 4D12D21 − σ̌

2 = 0.2298 −
0.04 = 0.1898 > 0, it follows from the Corollary 4.9 that the population x is strongly persistent in
the mean, see Figure 2(a). Suppose σ1 = 0.7, σ2 = 0.8, and other parameters are the same as Figure

2(a), by computing, one can know that R1 + R2 +

√
(R1 − R2)2 + 4D12D21 − σ̌

2 = 0.2298 − 0.2775 =
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−0.0477 < 0, according to Corollary 4.9, one can find that the population x will die out (see Figure
2(b)). Therefore, from Figure 2, we can observe that the single-species x will be extinct when the
densities of white noises larger enough.

 

 

Figure 3. Solution of stochastic system (1.4) for r1 = 0.2, r2 = 0.3, r0 = 0.8, a1 = 0.5, a2 =

0.6, g = 0.3, m = 0.2, h = 0.5, f = 0.4, σ1 = 0.4, σ2 = 0.4, ue = 0.4 − 0.1e−0.2t, with
initial value (x1(0), x2(0), c0(0), ce(0)) = (0.5, 0.5, 0.1, 0.3). Case a: d12 = 0, d21 = 0. Case b:
d12 = 0.3, d21 = 0.5, λ1 = 0, λ2 = 0. Case c: d12 = 0.3, d21 = 0.2, λ1 = 0, λ2 = 0. Case d:
d12 = 0.3, d21 = 0.5, λ1 = 0.3, λ2 = 0.4, α = 0.2.

Example 3. In stochastic system (1.4), we choose the parameters as:
r1 = 0.2, r2 = 0.3, r0 = 0.8, a1 = 0.5, a2 = 0.6, g = 0.3, m = 0.2, h = 0.5, f = 0.4, ue =

0.4 − 0.1e−0.2t, σ1 = 0.4, σ2 = 0.4, with initial value (x1(0), x2(0), c0(0), ce(0)) = (0.5, 0.5, 0.1, 0.3).
Case a: Suppose that d12 = 0, d21 = 0, the population x live in two independent patches. Simple

calculation shows that r1 − r0〈c0(t)〉 < 0.5σ2
1 and r2 > 0.5σ2

2. According to the Remark 3 in [22] and
Lemma 2.3, we can get that the population x1 goes to extinction, and the population x2 is strongly
persistent in the mean, see Figure 3(a).

Case b: If d12 = 0.3, d21 = 0.5, λ1 = 0, λ2 = 0, thus, system (1.4) is a single-species stochastic

diffusion system. By computing, R1+R2+

√
(R1 − R2)2 + 4D12D21−σ

2 = 0.0654−0.08 = −0.0146 < 0,
by Theorem 4.4, population x will die out (see Figure 3(b)).
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Case c: If d12 = 0.3, d21 = 0.2, λ1 = 0, λ2 = 0, by computing, we have

R1 + R2 +

√
(R1 − R2)2 + 4D12D21 − σ̌

2 = 0.3523 − 0.16 = 0.1923 > 0, by Theorem 4.8, we know that
the population x is strongly persistent in the mean (see Figure 3(c)).

Case d: If d12 = 0.3, d21 = 0.5, λ1 = 0.3, λ2 = 0.4, α = 0.2, by simple computing shows that

R1 + R2 +

√
(R1 − R2)2 + 4D12D21 − σ̌

2 = 0.2161− 0.16 = 0.0561 > 0, by Theorem 4.8, the population
x is strongly persistent in the mean (see Figure 3(d)).

Figure 3 shows that the properties of chemotaxis have an influence on persistence in the mean and
extinction of the population.

6. Conclusion

It is a pretty active topic to consider spatial information affects population dynamics, when the
habitat of species is polluted, the species will be stimulated by the toxins in the habitat and increase
diffusion to other patch. Thus, single-species population diffusion models with chemotaxis in polluted
environment are proposed and studied. For the deterministic model, sufficient conditions for
persistent and extinction of population are obtain. And then, considering the influence of
environmental noise, a single-species population diffusion model with chemotaxis in polluted
environment is proposed. Firstly, we discussed that the model (1.4) has unique global positive
solution. Secondly, we investigated the persistence in the mean and extinction of system (1.4), if
Ru

1 + Ru
2 +

√
(Ru

1 − Ru
2)2 + 4Du

12Du
21 < σ2, the single-species population will extinction; if

Rl
1 + Rl

2 +

√
(Rl

1 − Rl
2)2 + 4Dl

12Dl
21 > σ̌2, the single-species population is strongly persistent in the

mean. Finally, numerical simulations are used to confirm the efficiency of the main results.
Figure 2(a) and (b) show that the single-species x will die out when the densities of white noises

large enough, therefore, it is significance to consider the effect of stochastic perturbation.
If we set d12 = d21 = 0, that is to say, the single-species population live in two independent

environments, respectively. Literature [22] shows that, when r1 − r0ce < 0.5σ2
1, the population x1 will

tend to extinct, when r1 − r0ce > 0.5σ2
1, the population x1 is persistent in the mean, see Figure 3(a).

However, by virtue of Theorem 4.4 and Theorem 4.8, we can obtain that population diffusion would
affect the survival of the population x, see Figure 3(a) and (c).
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