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Abstract: Lucas sequence of the first kind is an integer sequence (Un)n≥0 which depends on parameters
a, b ∈ Z and is defined by the recurrence relation U0 = 0, U1 = 1, and Un = aUn−1 + bUn−2 for n ≥ 2.
In this article, we obtain exact divisibility results concerning Uk
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1. Introduction

Throughout this article, let a and b be relatively prime integers and let (Un)n≥0 be the Lucas sequence
of the first kind which is defined by the recurrence relation U0 = 0, U1 = 1, Un = aUn−1 + bUn−2 for
n ≥ 2. To avoid triviality, we also assume that b , 0 and α/β is not a root of unity where α and β
are the roots of the characteristic polynomial x2 − ax − b. In particular, this implies that α , β and
the discriminant D = a2 + 4b , 0. If a = b = 1, then (Un)n≥0 reduces to the sequence of Fibonacci
numbers Fn; if a = 6 and b = −1, then (Un)n≥0 becomes the sequence of balancing numbers; if a = 2
and b = 1, then (Un)n≥0 is the sequence of Pell numbers; and many other famous integer sequences are
just special cases of the Lucas sequence of the first kind.

The divisibility by powers of the Fibonacci numbers has attracted some attentions because it is used
in Matijasevich’s solution to Hilbert’s 10th problem [7–9]. More precisely, Matijasevich shows that

F2
n | Fnm if and only if Fn | m. (1.1)

Hoggatt and Bicknell-Johnson [3] give a generalization of (1.1) by replacing F2
n by F3

n , and for a
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general k, they prove that
if Fk

n | m, then Fk+1
n | Fnm. (1.2)

Benjamin and Rouse [1], and Seibert and Trojovský [27] also provide a different proof of (1.2).
Then the investigation on the exact divisibility results for a subsequence of (Fn)n≥1 begin with the
work of Tangboonduangjit et. al [12, 29] and is generalized by Onphaeng and Pongsriiam [10].
The most general results in this direction are obtained by Pongsriiam [18] where (1.2) is extended
to include the divisibility and exact divisibility for both the Fibonacci and Lucas numbers. Finally,
Onphaeng and Pongsriiam [11] have recently given the converse of the results in [18] which
completely answers this kind of questions for the Fibonacci and Lucas numbers. Then Panraksa and
Tangboonduangjit [13] initiate the investigation on a special subsequence of (Un)n≥0. Patra, Panda, and
Khemaratchatakumthorn [14] also obtain the analogue of those results for the balancing and Lucas-
balancing numbers. For other related and recent results on Fibonacci, Lucas, balancing, and Lucas-
balancing numbers, see for example in [2, 4–6, 15–17, 19–25, 28] and references there in.

In this article, we extend all results in the literature to the Lucas sequence of the first kind. We
organize this article as follows. In Section 2, we give some auxiliary results which are needed later.
In Section 3, we give main theorems and some related examples. Remark that the corresponding
results for other generalizations of the Fibonacci sequence have not been discovered. For example, the
question on exact divisibility by powers of the Tribonacci numbers Tn is wide open, where Tn is given
by T0 = 0, T1 = T2 = 1, and Tk = Tk−1 + Tk−2 + Tk−3 for k ≥ 3. We leave this problem to the interested
readers.

2. Preliminaries and Lemmas

In this section, we recall some well-known results and give some useful lemmas for the reader’s
convenience. The order (or the rank) of appearance of n ∈ N in the Lucas sequence (Un)n≥0 is defined
as the smallest positive integer m such that n | Um and is denoted by τ(n). The exact divisibility mk ‖ n
means that mk | n and mk+1 - n. For a prime p and n ∈ N, the p-adic valuation of n, denoted by vp(n) is
the power of p in the prime factorization of n. We sometimes write the expression such as a | b | c = d
to mean that a | b, b | c, and c = d. We let D = a2 + 4b be the discriminant and let α and β be the roots
of the characteristic polynomial x2 − ax − b. It is well known that if D , 0, then the Binet formula
Un =

αn−βn

α−β
holds for all n ≥ 0. Next, we recall Sanna’s result [26] on the p-adic valuation of Lucas

sequence of the first kind.

Lemma 1. [26, Theorem 1.5] Let p be a prime number such that p - b. Then, for each positive integer
n,

vp(Un) =



vp(n) + vp(Up) − 1 if p | D and p | n,

0 if p | D and p - n,

vp(n) + vp(Upτ(p)) − 1 if p - D, τ(p) | n, and p | n,

vp(Uτ(p)) if p - D, τ(p) | n, and p - n,

0 if p - D and τ(p) - n.

In fact, we use Lemma 1 only for p = 2, because there is a more suitable version of Lemma 1 when
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p is odd as given by Panraksa and Tangboonduangjit [13] in their calculation concerning a special
subsequence of (Un)n≥0. We state it in the next lemma.

Lemma 2. [13, Lemma 2.3] Let m, n ≥ 1 and p a prime factor of Un such that p - b. Then, if (i) p is
odd, or (ii) p = 2 and n is even, or (iii) p = 2 and m is odd, we have

vp(Unm) = vp(m) + vp(Un).

Lemma 3. Let a and b be odd integers. Then, for each positive integer n,

v2(Un) =


v2(n) + v2(U6) − 1 if n ≡ 0 (mod 6),
v2(U3) if n ≡ 3 (mod 6),
0 if n ≡ 1, 2, 4, 5 (mod 6).

Proof. Since U1 = 1, U2 = a are odd and U3 = a2 + b is even, we have τ(2) = 3. Applying Lemma 1
for p = 2, we obtain the desired result. �

The next two lemmas are also important tools in proving exact divisibility by Uk
n for all n, k ∈ N.

Lemma 4. [10, Lemma 2.3] Let k, `, m be positive integers, s nonzero integer, and sk | m. Then
sk+` |

(
m
j

)
s j for all 1 ≤ j ≤ m satisfying 2 j−`+1 > j. In particular, sk+1 |

(
m
j

)
s j for all 1 ≤ j ≤ m, and

sk+2 |
(

m
j

)
s j for all 3 ≤ j ≤ m.

Proof. The statement in [10, Lemma 2.3] is given for s ≥ 1 but it is easy to see that if s ≤ −1, then we
can replace s by −s and every divisibility relation still holds. Therefore this is true for all s , 0. �

Lemma 5. Let m, n ≥ 1 and r ≥ 0 be integers. Then

(i) Umn+r =
∑m

j=0

(
m
j

)
U j

n(bUn−1)m− jU j+r,

(ii) Umn =
∑m

j=1

(
m
j

)
U j

n(bUn−1)m− jU j.

Proof. By Binet’s formula, we obtain αn = αUn + bUn−1, βn = βUn + bUn−1, and

Umn+r =
αmn+r − βmn+r

α − β

=
1

α − β
((αUn + bUn−1)m αr − (βUn + bUn−1)mβr)

=
1

α − β

 m∑
j=0

(
m
j

)
(αUn) j(bUn−1)m− jαr −

m∑
j=0

(
m
j

)
(βUn) j(bUn−1)m− jβr


=

1
α − β

m∑
j=o

((
m
j

)
U j

n(bUn−1)m− j
(
α j+r − β j+r

))

=

m∑
j=0

(
m
j

)
U j

n(bUn−1)m− jU j+r.

This proves (i). Since U0 = 0, (ii) follows immediately from (i) by substituting r = 0. �
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Recall that we assume throughout this article that (a, b) = 1. This is necessary for the proof of the
following lemmas.

Lemma 6. Suppose (a, b) = 1. Then (Um,Un) = U(m,n) and in particular (Un,Un+1) = 1 for each
m, n ∈ N.

Proof. This is well known. �

Lemma 7. Let n ≥ 1 and (a, b) = 1. If p is a prime factor of Un, then p - b. Consequently, (Un, b) = 1
for all n ≥ 1.

Proof. Suppose for a contradiction that (a, b) = 1, n ≥ 1, p | Un, and p | b. We can choose n to be the
smallest such integer. Since U1 = 1, U2 = a, we see that n ≥ 3. Since p | Un = aUn−1 +bUn−2 and p | b,
we have p | aUn−1. By the choice of n, p - Un−1. So p | a. Therefore p | (a, b) = 1, a contradiction. �

Lemma 8. Let a and b be odd, (a, b) = 1, and v2(U6) ≥ v2(U3) + 2. Then v2(U3) = 1.

Proof. Since U3 = a2 + b is even and U6 = a(a2 + 3b)U3, we obtain v2(U3) ≥ 1 and

v2(U6) = v2(U3) + v2(a2 + 3b). (2.1)

If v2(U3) ≥ 2, then 4 | a2 +b, and so b ≡ 3 (mod 4) and (2.1) implies v2(U6) = v2(U3)+1 contradicting
v2(U6) ≥ v2(U3) + 2. Thus v2(U3) = 1.

�

3. Main results

We begin with the simplest main result of this paper.

Theorem 9. Let k, m, and n be positive integers. If Uk
n | m, then Uk+1

n | Unm.

Proof. If Uk
n | m, then we obtain by Lemma 4 that, Uk+1

n |
(

m
j

)
U j

n for all 1 ≤ j ≤ m, which implies
Uk+1

n | Unm, by Lemma 5. �

Next, we extend Theorem 9 to include exact divisibility. The proof of Theorem 10 is much longer
than that of Theorem 9 since we would like to cover all possible cases. Although many cases can be
combined, it is more convenient to state them separately. Recall that for x ∈ R, the largest integer
which is less than or equal to x is denoted by bxc.

Theorem 10. Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, n ≥ 2, and Uk
n ‖ m. Then

(i) if a is odd and b is even, then Uk+1
n ‖ Unm;

(ii) if a is even and b is odd, then Uk+1
n ‖ Unm;

(iii) if a and b are odd and n . 3 (mod 6), then Uk+1
n ‖ Unm;

(iv) if a and b are odd, n ≡ 3 (mod 6), and Uk+1
n
2 - m, then Uk+1

n ‖ Unm;

(v) if a and b are odd, n ≡ 3 (mod 6), Uk+1
n
2 | m, and 2 ‖ a2 + 3b, then Uk+1

n ‖ Unm;

(vi) if a and b are odd, n ≡ 3 (mod 6), Uk+1
n
2 | m, and 4 | a2 + 3b, then Uk+t+1

n ‖ Unm, where

t = min({v2(U6) − 2} ∪ {yp − k | p is an odd prime factor of Un})

and yp =
⌊ vp(m)

vp(Un)

⌋
for each odd prime p dividing Un.
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Proof. By Theorem 9, we obtain Uk+1
n | Unm. So for (i) to (v), it is enough to show that Uk+2

n - Unm.
We divide the calculation into several cases.
Case 1. a is odd and b is even. Since U1 and U2 are odd and Ur = aUr−1 + bUr−2 ≡ Ur−1 (mod 2) for
r ≥ 3, it follows by induction that Un is odd. From the assumption Uk

n ‖ m, we have Uk+1
n - m, and

so there exists a prime p dividing Un such that vp(Uk+1
n ) > vp(m). Since Un is odd, p is also odd. In

addition, p - b by Lemma 7. So we can apply Lemma 2(i) to obtain

vp(Unm) = vp(m) + vp(Un) < vp(Uk+1
n ) + vp(Un) = vp(Uk+2

n ),

which implies Uk+2
n - Unm, as required. This proves (i).

Case 2. a is even and b is odd. Similar to Case 1, we have U1 is odd, U2 is even, Ur ≡ Ur−2 (mod 2)
for r ≥ 3, and so Un is even if and only if n is even. In addition, there exists a prime p such that p | Un,
vp(Uk+1

n ) > vp(m), and p - b. So if 2 - n, then Un is odd, p is odd, and we obtain by Lemma 2(i) that

vp(Unm) = vp(m) + vp(Un) < vp(Uk+1
n ) + vp(Un) = vp(Uk+2

n ), (3.1)

which implies Uk+2
n - Unm. If 2 | n, then we can still use either Lemma 2(i) or Lemma 2(ii) to obtain

(3.1), which leads to the same conclusion Uk+2
n - Unm. This proves (ii).

Case 3. a and b are odd. Similar to Case 1, there is a prime p such that p | Un, vp(Uk+1
n ) > vp(m), and

p - b.
Case 3.1 n . 3 (mod 6). If n ≡ 1, 2, 4, 5 (mod 6), then we obtain by Lemmas 3 and 2, respectively
that p is odd and

vp(Unm) = vp(Un) + vp(m) < vp(Un) + vp(Uk+1
n ) = vp(Uk+2

n ). (3.2)

If n ≡ 0 (mod 6), then n is even and Lemma 2(i) or Lemma 2(ii) can still be used to obtain (3.2). In
any case, Uk+2

n - Unm. This proves (iii).
Case 3.2 n ≡ 3 (mod 6) and Uk+1

n
2 - m. Since Uk

n ‖ m, we can write m = cUk
n where c ≥ 1 and Un - c.

By Lemma 4, Uk+2
n |

(
m
j

)
U j

n for 3 ≤ j ≤ m. Then we obtain by Lemma 5 that

Unm = Umn ≡ mUn(bUn−1)m−1 +
m(m − 1)

2
U2

n(bUn−1)m−2a (mod Uk+2
n ).

By Lemma 3, we know that v2(Un) = v2(U3) ≥ 1. Since Uk+1
n
2 - m and m = cUk

n, we see that Un
2 does not

c. Let d = bUn−1 + Un
2 (m − 1)a. By Lemmas 6 and 7, we obtain

(
Un
2 , d

)
=

(
Un
2 , bUn−1

)
= 1. Then

Unm ≡ mUnbm−2Um−2
n−1

(
bUn−1 +

Un

2
(m − 1)a

)
≡ cUk+1

n bm−2Um−2
n−1 d (mod Uk+2

n ).

By Lemmas 6 and 7, we obtain Uk+2
n | Unm if and only if Un | cd. But if Un | cd, then Un

2 | cd which
implies Un

2 | c, a contradiction. So Un - cd and therefore Uk+2
n - Unm. This proves (iv). To prove

(v) and (vi), we first assume that a and b are odd, n ≡ 3 (mod 6), and Uk+1
n
2 | m. (The other condition

will be assumed later). Then vp(Uk+1
n ) ≤ vp(m) for all odd primes p and v2(Uk+1

n ) − 1 ≤ v2(m). If
v2(Uk+1

n ) − 1 < v2(m), then v2(Uk+1
n ) ≤ v2(m), and so vp(Uk+1

n ) ≤ vp(m) for all primes p, which implies
Uk+1

n | m contradicting the assumption Uk
n ‖ m. Hence

v2(Uk+1
n ) − 1 = v2(m) and vp(Uk+1

n ) ≤ vp(m) for every odd prime p (3.3)
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We now separate the consideration into two cases according to the additional conditions in (v) and (vi).
Observe that v2(a2 + 3b) = 1 is equivalent to 2 ‖ a2 + 3b.
Case 4. v2(a2 + 3b) = 1. Since U6 = a(a2 + 3b)U3, we obtain v2(U6) = v2(U3) + 1. Recall that n ≡ 3
(mod 6) and Uk

n | m. So n is odd, m is even, and nm ≡ 0 (mod 6). If Uk+2
n | Unm, then we obtain by

Lemma 3 and (3.3) that

v2(Uk+1
n ) + v2(Un) = v2(Uk+2

n ) ≤ v2(Unm) = v2(n) + v2(m) + v2(U6) − 1
= v2(Uk+1

n ) − 1 + v2(U3)
= v2(Uk+1

n ) + v2(Un) − 1,

which is a contradiction. Therefore Uk+2
n - Unm. This proves (v).

Case 5. v2(a2 +3b) ≥ 2. Then v2(U6) = v2(U3)+v2(a2 +3b) ≥ v2(U3)+2. By Lemma 8, v2(U3) = 1 and
so v2(U6) = x + 2 where x = v2(a2 + 3b)− 1 ∈ N. For each odd prime p dividing Un, let yp =

⌊ vp(m)
vp(Un)

⌋
be

the largest integer which is less than or equal to vp(m)
vp(Un) . Since Uk

n | m, we have yp ≥ k for all odd p | Un.
Let

t = min({x} ∪ {yp − k | p is an odd prime factor of Un}).

Then t ≥ 0. By Lemma 3 and (3.3), v2(m) = (k + 1)v2(U3) − 1 = k and

v2(Unm) = v2(m) + v2(U6) − 1 = k + x + 1 ≥ k + t + 1 = v2(Uk+t+1
n ). (3.4)

By the definition of yp, we have vp(m) ≥ ypvp(Un). So by Lemma 2, if p is an odd prime dividing Un,
then

vp(Unm) = vp(m) + vp(Un) ≥ (yp + 1)vp(Un) ≥ (k + t + 1)vp(Un) = vp(Uk+t+1
n ). (3.5)

By (3.4) and (3.5), vp(Unm) ≥ vp(Uk+t+1
n ) for all primes p dividing Un. This show that Uk+t+1

n | Unm. It
remains to show that Uk+t+2

n - Unm. If t = yp − k for some odd prime p dividing Un, then we recall the
definition of yp and apply Lemma 2 to obtain

vp(Unm) = vp(m) + vp(Un) < (yp + 2)vp(Un) = (k + t + 2)vp(Un) = vp(Uk+t+2
n ).

If t = x = v2(U6) − 2, then we use Lemma 3 to get

v2(Unm) = v2(m) + v2(U6) − 1 = k + t + 1 < v2(Uk+t+2
n ).

In any case, Uk+t+2
n - Unm. This completes the proof. �

The next example shows that the integer t in Theorem 10(vi) can be any odd positive integer.

Example 11. Let M ∈ N be given. We show that there are positive integers k, m, n, a, b satisfying
the conditions in Theorem 10(vi) with t = M. Choose a = 1 and b =

(
24M − 1

)
/3. Then a and b

are odd integers, (a, b) = 1, and v2(a2 + 3b) = 4M > 2. Next choose any k, n ∈ N such that n ≡ 3
(mod 6). Since v2(U6) = v2(U3) + v2(a2 + 3b) ≥ v2(U3) + 2, we obtain by Lemmas 3 and 8 that
v2(Un) = v2(U3) = 1 and v2(U6) = 4M + 1. Since Un ≥ U3 = a2 + b > 2 and v2(Un) = 1, we can write
Un = 2pa1

1 pa2
2 · · · p

as
s where s ≥ 1, p1, p2, . . . , ps are distinct odd primes, and a1, a2, . . . , as are positive

integers. Next, choose m = 2k pa1(k+M)
1 pa2(k+M)

2 · · · pas(k+M)
s . Then Uk

n ‖ m and Uk+1
n
2 | m. Therefore k, m, n,

a, b satisfy all the conditions in Theorem 10(vi). Finally, we have

v2(U6) − 2 = v2(a2 + 3b) − 1 = 4M − 1

and yp − k = M for all p ∈ {p1, p2, . . . , ps}, and therefore t = min{4M − 1,M} = M, as desired.
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Next, we prove the converse of Theorem 10.

Theorem 12. k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, n ≥ 2, and Uk+1
n ‖ Unm. Then

(i) if a is odd and b is even, then Uk
n ‖ m;

(ii) if a is even and b is odd, then Uk
n ‖ m;

(iii) if a and b are odd and n . 3 (mod 6), then Uk
n ‖ m;

(iv) if a and b are odd, n ≡ 3 (mod 6), and 2 ‖ a2 + 3b, then Uk
n ‖ m;

(v) if a and b are odd, n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) ≥ k, then Uk
n ‖ m;

(vi) if a and b are odd, n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) < k, then

m is even, v2(m) ≥ k + 1 − v2(a2 + 3b), and Uv2(m)
n ‖ m.

Proof. Some parts of the proof are similar to those of Theorem 10, so we skip some details.
Case 1. a is odd and b is even. Similar to Case 1 of Theorem 10, we have Un is odd. For any prime
p | Un, we obtain by Lemma 2 that

vp(Uk
n) + vp(Un) = vp(Uk+1

n ) ≤ vp(Unm) = vp(Un) + vp(m), (3.6)

which implies Uk
n | m. If Uk+1

n | m, then by Theorem 9, we have Uk+2
n | Unm which contradicts

Uk+1
n ‖ Unm. Therefore Uk+1

n - m, and thus Uk
n ‖ m.

Case 2. a is even and b is odd. Then Un is even if and only if n is even. So if 2 - n, then for any
prime p | Un, we have p is odd, (3.6) holds, and so Uk

n | m. If 2 | n, then we can still apply Lemma
2(i) or Lemma 2(ii) to obtain (3.6) and conclude that Uk

n | m. If Uk+1
n | m, then by Theorem 9, we have

Uk+2
n | Unm which contradicts Uk+1

n ‖ Unm. So Uk+1
n - m and therefore Uk

n ‖ m.
We now assume throughout that a and b are odd and divide the consideration into four cases

according to the additional conditions in (iii) to (vi).
Case 3. n . 3 (mod 6). If n ≡ 1, 2, 4, 5 (mod 6), then we apply Lemma 3 to obtain v2(Uk

n) = 0 ≤
v2(m), and use Lemma 2 to show that for any odd prime p | Un,

vp(Un) + vp(Uk
n) = vp(Uk+1

n ) ≤ vp(Unm) = vp(m) + vp(Un). (3.7)

If n ≡ 0 (mod 6), then n is even and we can apply Lemma 2(i) or Lemma 2(ii) to obtain (3.7) for any
prime p | Un. In any case, we have Uk

n | m. Again, by Theorem 9, we have Uk+1
n - m, and so Uk

n ‖ m.
This proves (iii).
Case 4. n ≡ 3 (mod 6) and 2 ‖ a2 + 3b. Similar to Case 4 in the proof of Theorem 10 we have
v2(U6) = v2(U3) + 1. If m is odd, then nm ≡ 3 (mod 6) and we obtain by Lemma 3 that v2(Unm) =

v2(U3) < (k + 1)v2(U3) = v2(Uk+1
n ), which contradicts the assumption Uk+1

n | Unm. So m is even,
and thus nm ≡ 0 (mod 6). By Lemma 3 and the fact that n ≡ 3 (mod 6) is odd, we obtain v2(m) +

v2(U6) − 1 = v2(Unm) ≥ v2(Uk+1
n ) = v2(Uk

n) + v2(Un) = v2(Uk
n) + v2(U3) = v2(Uk

n) + v2(U6) − 1, which
implies v2(m) ≥ v2(Uk

n). If p is odd and p | Un, then we apply Lemma 2 to obtain (3.7) Therefore
vp(Uk

n) ≤ vp(m) for every prime p dividing Un. Thus Uk
n | m. By Theorem 9, Uk+1

n - m. Hence Uk
n ‖ m.

This proves (iv).
Case 5. n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) ≥ k. Then U3 = a2 + b = (a2 + 3b) − 2b ≡ 2 (mod 4),
and so v2(U3) = 1. By Lemma 3, we obtain v2(m) ≥ kv2(U3) = kv2(Un) = v2(Uk

n). By Lemma 2, if p is
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an odd prime dividing Un, then (3.6) holds, and so we conclude that vp(Uk
n) ≤ vp(m) for every prime p

dividing Un. Therefore Uk
n | m. By Theorem 9, Uk+1

n - m and so Uk
n ‖ m. This proves (v).

Case 6. n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) < k. For convenience, let t = v2(m). Similar to Case
4, we have m is even. In addition, v2(U6) = v2(U3) + v2(a2 + 3b) = 1 + v2(a2 + 3b). So k > t ≥ 1 and
v2(m) = tv2(U3) = tv2(Un) = v2(U t

n). By Lemma 2, if p is odd and p | Un, then

vp(Un) + vp(U t
n) ≤ vp(Un) + vp(Uk

n) = vp(Uk+1
n ) ≤ vp(Unm) = vp(m) + vp(Un).

From the above inequalities, we obtain that vp(U t
n) ≤ vp(m) for every prime p dividing Un. Therefore

U t
n | m. If U t+1

n | m, then we obtain by Lemma 3 that t = v2(m) ≥ v2(U t+1
n ) = t + 1, which is false.

So U t+1
n - m. Therefore U t

n ‖ m. From Uk+1
n ‖ Unm, we also obtain k + 1 = v2(Uk+1

n ) ≤ v2(Unm) =

v2(m) + v2(U6) − 1 = v2(m) + v2(a2 + 3b), which implies v2(m) ≥ k + 1 − v2(a2 + 3b). This completes
the proof. �

The next example shows that v2(m) in Theorem 12(vi) can be any positive integer in [1, k).

Example 13. Let k ≥ 1 and 1 ≤ M < k be integers. We show that there are m, n, a, b satisfying the
conditions in Theorem 12(vi) with v2(m) = M. Choose n ∈ N and n ≡ 3 (mod 6).
Case 1. k − M is odd. Choose a = 1, b = 2k−M+1−1

3 , and m =
Uk

n
2k−M . Then a and b are odd integers,

(a, b) = 1, and v2(a2 + 3b) = k − M + 1 ≥ 2. Since v2(U6) = v2(U3) + v2(a2 + 3b) ≥ v2(U3) + 2, we
obtain by Lemmas 3 and 8 that v2(Un) = v2(U3) = 1 and v2(U6) = k − M + 2. By Lemma 2, for p > 2
and p | Un we obtain

vp(Unm) = vp(m) + vp(Un) = vp(Uk
n) + vp(Un) = vp(Uk+1

n ).

By Lemma 3, we have
v2(m) = v2(Uk

n) − v2(2k−M) = k − k + M = M

and
v2(Unm) = v2(m) + v2(U6) − 1 = M + k − M + 2 − 1 = v2(Uk+1

n ).

From these, we obtain Uk+1
n ‖ Unm and UM

n ‖ m. Therefore k,m, n, a, b satisfy all the conditions in
Theorem 12(vi).
Case 2. k − M is even. Choose a = 1, b = 5·2k−M+1−1

3 , and m =
Uk

n
2k−M . The verification is the same as that

in Case 1. So we leave the details to the reader.

Substituting a = b = 1 in Theorems 10 and 12, (Un) becomes the Fibonacci sequence (Fn)n≥0 and
we obtain our previous results [11, 18] as a corollary.

Corollary 14. [18, Theorem 2] and [11, Theorem 3.2] Let n ≥ 3. Then the following statements hold:

(i) if Fk
n ‖ m and n . 3 (mod 6), then Fk+1

n ‖ Fnm;
(ii) if Fk

n ‖ m, n ≡ 3 (mod 6) and Fk+1
n
2 - m, then Fk+1

n ‖ Fnm;

(iii) if Fk
n ‖ m, n ≡ 3 (mod 6) and Fk+1

n
2 | m, then Fk+2

n ‖ Fnm;
(iv) if Fk+1

n ‖ Fnm and n . 3 (mod 6), then Fk
n ‖ m;

(v) if Fk+1
n ‖ Fnm, n ≡ 3 (mod 6), and 2k | m, then Fk

n ‖ m;
(vi) if Fk+1

n ‖ Fnm, n ≡ 3 (mod 6), and 2k - m, then Fk−1
n ‖ m.
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Substituting a = 6 and b = −1, in our theorems, (Un) reduces to the sequence (Bn) of balancing
numbers and we obtain the results of Patra, Panda, and Khemaratchatakumthorn.

Corollary 15. [14, Theorem 9] For all k ≥ 1 and m, n ≥ 2, we obtain Bk
n ‖ m if and only if Bk+1

n ‖ Bnm.

Similarly by, substituting a = 2 and b = 1 in our theorems, we obtain the exact divisibility results
for the Pell sequence (Pn)n≥0 as follows.

Corollary 16. For all k ≥ 1 and m, n ≥ 2, we obtain Pk
n ‖ m if and only if Pk+1

n ‖ Pnm.

We also plan to solve this problem for the Lucas sequence of the second kind in the future. The
answers will appear in our next article.
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