Mathematics

Research article

Exact divisibility by powers of the integers in the Lucas sequence of the first kind

Kritkhajohn Onphaeng and Prapanpong Pongsriiam*

Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand

* Correspondence: Email: prapanpong@gmail.com, pongsriiam_p@silpakorn.edu.

Abstract

Lucas sequence of the first kind is an integer sequence $\left(U_{n}\right)_{n \geq 0}$ which depends on parameters $a, b \in \mathbb{Z}$ and is defined by the recurrence relation $U_{0}=0, U_{1}=1$, and $U_{n}=a U_{n-1}+b U_{n-2}$ for $n \geq 2$. In this article, we obtain exact divisibility results concerning U_{n}^{k} for all positive integers n and k. This extends many results in the literature from 1970 to 2020 which dealt only with the classical Fibonacci and Lucas numbers ($a=b=1$) and the balancing and Lucas-balancing numbers ($a=6, b=-1$).

Keywords: Lucas sequence; Lucas number; Fibonacci number; exact divisibility; p-adic valuation Mathematics Subject Classification: 11B39, 11B37, 11A05

1. Introduction

Throughout this article, let a and b be relatively prime integers and let $\left(U_{n}\right)_{n \geq 0}$ be the Lucas sequence of the first kind which is defined by the recurrence relation $U_{0}=0, U_{1}=1, U_{n}=a U_{n-1}+b U_{n-2}$ for $n \geq 2$. To avoid triviality, we also assume that $b \neq 0$ and α / β is not a root of unity where α and β are the roots of the characteristic polynomial $x^{2}-a x-b$. In particular, this implies that $\alpha \neq \beta$ and the discriminant $D=a^{2}+4 b \neq 0$. If $a=b=1$, then $\left(U_{n}\right)_{n \geq 0}$ reduces to the sequence of Fibonacci numbers F_{n}; if $a=6$ and $b=-1$, then $\left(U_{n}\right)_{n \geq 0}$ becomes the sequence of balancing numbers; if $a=2$ and $b=1$, then $\left(U_{n}\right)_{n \geq 0}$ is the sequence of Pell numbers; and many other famous integer sequences are just special cases of the Lucas sequence of the first kind.

The divisibility by powers of the Fibonacci numbers has attracted some attentions because it is used in Matijasevich's solution to Hilbert's 10th problem [7-9]. More precisely, Matijasevich shows that

$$
\begin{equation*}
F_{n}^{2} \mid F_{n m} \quad \text { if and only if } \quad F_{n} \mid m \tag{1.1}
\end{equation*}
$$

Hoggatt and Bicknell-Johnson [3] give a generalization of (1.1) by replacing F_{n}^{2} by F_{n}^{3}, and for a
general k, they prove that

$$
\begin{equation*}
\text { if } F_{n}^{k} \mid m \text {, then } F_{n}^{k+1} \mid F_{n m} \text {. } \tag{1.2}
\end{equation*}
$$

Benjamin and Rouse [1], and Seibert and Trojovský [27] also provide a different proof of (1.2). Then the investigation on the exact divisibility results for a subsequence of $\left(F_{n}\right)_{n \geq 1}$ begin with the work of Tangboonduangjit et. al [12,29] and is generalized by Onphaeng and Pongsriiam [10]. The most general results in this direction are obtained by Pongsriiam [18] where (1.2) is extended to include the divisibility and exact divisibility for both the Fibonacci and Lucas numbers. Finally, Onphaeng and Pongsriiam [11] have recently given the converse of the results in [18] which completely answers this kind of questions for the Fibonacci and Lucas numbers. Then Panraksa and Tangboonduangjit [13] initiate the investigation on a special subsequence of $\left(U_{n}\right)_{n \geq 0}$. Patra, Panda, and Khemaratchatakumthorn [14] also obtain the analogue of those results for the balancing and Lucasbalancing numbers. For other related and recent results on Fibonacci, Lucas, balancing, and Lucasbalancing numbers, see for example in $[2,4-6,15-17,19-25,28]$ and references there in.

In this article, we extend all results in the literature to the Lucas sequence of the first kind. We organize this article as follows. In Section 2, we give some auxiliary results which are needed later. In Section 3, we give main theorems and some related examples. Remark that the corresponding results for other generalizations of the Fibonacci sequence have not been discovered. For example, the question on exact divisibility by powers of the Tribonacci numbers T_{n} is wide open, where T_{n} is given by $T_{0}=0, T_{1}=T_{2}=1$, and $T_{k}=T_{k-1}+T_{k-2}+T_{k-3}$ for $k \geq 3$. We leave this problem to the interested readers.

2. Preliminaries and Lemmas

In this section, we recall some well-known results and give some useful lemmas for the reader's convenience. The order (or the rank) of appearance of $n \in \mathbb{N}$ in the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$ is defined as the smallest positive integer m such that $n \mid U_{m}$ and is denoted by $\tau(n)$. The exact divisibility $m^{k} \| n$ means that $m^{k} \mid n$ and $m^{k+1} \nmid n$. For a prime p and $n \in \mathbb{N}$, the p-adic valuation of n, denoted by $v_{p}(n)$ is the power of p in the prime factorization of n. We sometimes write the expression such as $a|b| c=d$ to mean that $a|b, b| c$, and $c=d$. We let $D=a^{2}+4 b$ be the discriminant and let α and β be the roots of the characteristic polynomial $x^{2}-a x-b$. It is well known that if $D \neq 0$, then the Binet formula $U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$ holds for all $n \geq 0$. Next, we recall Sanna's result [26] on the p-adic valuation of Lucas sequence of the first kind.

Lemma 1. [26, Theorem 1.5] Let p be a prime number such that $p \nmid b$. Then, for each positive integer n,

$$
v_{p}\left(U_{n}\right)= \begin{cases}v_{p}(n)+v_{p}\left(U_{p}\right)-1 & \text { if } p \mid D \text { and } p \mid n, \\ 0 & \text { if } p \mid D \text { and } p \nmid n, \\ v_{p}(n)+v_{p}\left(U_{p \tau(p))}-1\right. & \text { if } p \nmid D, \tau(p) \mid n, \text { and } p \mid n, \\ v_{p}\left(U_{\tau(p)}\right) & \text { if } p \nmid D, \tau(p) \mid n, \text { and } p \nmid n, \\ 0 & \text { if } p \nmid D \text { and } \tau(p) \nmid n .\end{cases}
$$

In fact, we use Lemma 1 only for $p=2$, because there is a more suitable version of Lemma 1 when
p is odd as given by Panraksa and Tangboonduangjit [13] in their calculation concerning a special subsequence of $\left(U_{n}\right)_{n \geq 0}$. We state it in the next lemma.

Lemma 2. [13, Lemma 2.3] Let $m, n \geq 1$ and p a prime factor of U_{n} such that $p \nmid b$. Then, if (i) p is odd, or (ii) $p=2$ and n is even, or (iii) $p=2$ and m is odd, we have

$$
v_{p}\left(U_{n m}\right)=v_{p}(m)+v_{p}\left(U_{n}\right) .
$$

Lemma 3. Let a and b be odd integers. Then, for each positive integer n,

$$
v_{2}\left(U_{n}\right)= \begin{cases}v_{2}(n)+v_{2}\left(U_{6}\right)-1 & \text { if } n \equiv 0 \quad(\bmod 6), \\ v_{2}\left(U_{3}\right) & \text { if } n \equiv 3 \quad(\bmod 6), \\ 0 & \text { if } n \equiv 1,2,4,5 \quad(\bmod 6) .\end{cases}
$$

Proof. Since $U_{1}=1, U_{2}=a$ are odd and $U_{3}=a^{2}+b$ is even, we have $\tau(2)=3$. Applying Lemma 1 for $p=2$, we obtain the desired result.

The next two lemmas are also important tools in proving exact divisibility by U_{n}^{k} for all $n, k \in \mathbb{N}$.
Lemma 4. [10, Lemma 2.3] Let k, ℓ, m be positive integers, s nonzero integer, and $s^{k} \mid m$. Then $s^{k+\ell} \left\lvert\,\binom{ m}{j} s^{j}\right.$ for all $1 \leq j \leq m$ satisfying $2^{j-\ell+1}>j$. In particular, $s^{k+1} \left\lvert\,\binom{ m}{j} s^{j}\right.$ for all $1 \leq j \leq m$, and $s^{k+2} \left\lvert\,\binom{ m}{j} s^{j}\right.$ for all $3 \leq j \leq m$.

Proof. The statement in [10, Lemma 2.3] is given for $s \geq 1$ but it is easy to see that if $s \leq-1$, then we can replace s by $-s$ and every divisibility relation still holds. Therefore this is true for all $s \neq 0$.

Lemma 5. Let $m, n \geq 1$ and $r \geq 0$ be integers. Then
(i) $U_{m n+r}=\sum_{j=0}^{m}\binom{m}{j} U_{n}^{j}\left(b U_{n-1}\right)^{m-j} U_{j+r}$,
(ii) $U_{m n}=\sum_{j=1}^{m}\binom{m}{j} U_{n}^{j}\left(b U_{n-1}\right)^{m-j} U_{j}$.

Proof. By Binet's formula, we obtain $\alpha^{n}=\alpha U_{n}+b U_{n-1}, \beta^{n}=\beta U_{n}+b U_{n-1}$, and

$$
\begin{aligned}
U_{m n+r} & =\frac{\alpha^{m n+r}-\beta^{m n+r}}{\alpha-\beta} \\
& =\frac{1}{\alpha-\beta}\left(\left(\alpha U_{n}+b U_{n-1}\right)^{m} \alpha^{r}-\left(\beta U_{n}+b U_{n-1}\right)^{m} \beta^{r}\right) \\
& =\frac{1}{\alpha-\beta}\left(\sum_{j=0}^{m}\binom{m}{j}\left(\alpha U_{n}\right)^{j}\left(b U_{n-1}\right)^{m-j} \alpha^{r}-\sum_{j=0}^{m}\binom{m}{j}\left(\beta U_{n}\right)^{j}\left(b U_{n-1}\right)^{m-j} \beta^{r}\right) \\
& =\frac{1}{\alpha-\beta} \sum_{j=o}^{m}\left(\binom{m}{j} U_{n}^{j}\left(b U_{n-1}\right)^{m-j}\left(\alpha^{j+r}-\beta^{j+r}\right)\right) \\
& =\sum_{j=0}^{m}\binom{m}{j} U_{n}^{j}\left(b U_{n-1}\right)^{m-j} U_{j+r} .
\end{aligned}
$$

This proves (i). Since $U_{0}=0$, (ii) follows immediately from (i) by substituting $r=0$.

Recall that we assume throughout this article that $(a, b)=1$. This is necessary for the proof of the following lemmas.

Lemma 6. Suppose $(a, b)=1$. Then $\left(U_{m}, U_{n}\right)=U_{(m, n)}$ and in particular $\left(U_{n}, U_{n+1}\right)=1$ for each $m, n \in \mathbb{N}$.
Proof. This is well known.
Lemma 7. Let $n \geq 1$ and $(a, b)=1$. If p is a prime factor of U_{n}, then $p \nmid b$. Consequently, $\left(U_{n}, b\right)=1$ for all $n \geq 1$.

Proof. Suppose for a contradiction that $(a, b)=1, n \geq 1, p \mid U_{n}$, and $p \mid b$. We can choose n to be the smallest such integer. Since $U_{1}=1, U_{2}=a$, we see that $n \geq 3$. Since $p \mid U_{n}=a U_{n-1}+b U_{n-2}$ and $p \mid b$, we have $p \mid a U_{n-1}$. By the choice of $n, p \nmid U_{n-1}$. So $p \mid a$. Therefore $p \mid(a, b)=1$, a contradiction.

Lemma 8. Let a and b be odd, $(a, b)=1$, and $v_{2}\left(U_{6}\right) \geq v_{2}\left(U_{3}\right)+2$. Then $v_{2}\left(U_{3}\right)=1$.
Proof. Since $U_{3}=a^{2}+b$ is even and $U_{6}=a\left(a^{2}+3 b\right) U_{3}$, we obtain $v_{2}\left(U_{3}\right) \geq 1$ and

$$
\begin{equation*}
v_{2}\left(U_{6}\right)=v_{2}\left(U_{3}\right)+v_{2}\left(a^{2}+3 b\right) . \tag{2.1}
\end{equation*}
$$

If $v_{2}\left(U_{3}\right) \geq 2$, then $4 \mid a^{2}+b$, and so $b \equiv 3(\bmod 4)$ and (2.1) implies $v_{2}\left(U_{6}\right)=v_{2}\left(U_{3}\right)+1$ contradicting $v_{2}\left(U_{6}\right) \geq v_{2}\left(U_{3}\right)+2$. Thus $v_{2}\left(U_{3}\right)=1$.

3. Main results

We begin with the simplest main result of this paper.
Theorem 9. Let k, m, and n be positive integers. If $U_{n}^{k} \mid m$, then $U_{n}^{k+1} \mid U_{n m}$.
Proof. If $U_{n}^{k} \mid m$, then we obtain by Lemma 4 that, $U_{n}^{k+1} \left\lvert\,\binom{ m}{j} U_{n}^{j}\right.$ for all $1 \leq j \leq m$, which implies $U_{n}^{k+1} \mid U_{n m}$, by Lemma 5.

Next, we extend Theorem 9 to include exact divisibility. The proof of Theorem 10 is much longer than that of Theorem 9 since we would like to cover all possible cases. Although many cases can be combined, it is more convenient to state them separately. Recall that for $x \in \mathbb{R}$, the largest integer which is less than or equal to x is denoted by $\lfloor x\rfloor$.
Theorem 10. Let $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1, n \geq 2$, and $U_{n}^{k} \| m$. Then
(i) if a is odd and b is even, then $U_{n}^{k+1} \| U_{n m}$;
(ii) if a is even and b is odd, then $U_{n}^{k+1} \| U_{n m}$;
(iii) if a and b are odd and $n \not \equiv 3(\bmod 6)$, then $U_{n}^{k+1} \| U_{n m}$;
(iv) if a and b are odd, $n \equiv 3(\bmod 6)$, and $\frac{U_{n}^{k+1}}{2} \nmid m$, then $U_{n}^{k+1} \| U_{n m}$;
(v) if a and b are odd, $n \equiv 3(\bmod 6), \left.\frac{U_{n}^{k+1}}{2} \right\rvert\, m$, and $2 \| a^{2}+3 b$, then $U_{n}^{k+1} \| U_{n m}$;
(vi) if a and b are odd, $n \equiv 3(\bmod 6), \left.\frac{U_{n}^{k+1}}{2} \right\rvert\, m$, and $4 \mid a^{2}+3 b$, then $U_{n}^{k+t+1} \| U_{n m}$, where

$$
t=\min \left(\left\{v_{2}\left(U_{6}\right)-2\right\} \cup\left\{y_{p}-k \mid p \text { is an odd prime factor of } U_{n}\right\}\right)
$$

and $y_{p}=\left\lfloor\frac{v_{p}(m)}{v_{p}\left(U_{n}\right)}\right\rfloor$ for each odd prime p dividing U_{n}.

Proof. By Theorem 9, we obtain $U_{n}^{k+1} \mid U_{n m}$. So for (i) to (v), it is enough to show that $U_{n}^{k+2} \nmid U_{n m}$. We divide the calculation into several cases.
Case 1. a is odd and b is even. Since U_{1} and U_{2} are odd and $U_{r}=a U_{r-1}+b U_{r-2} \equiv U_{r-1}(\bmod 2)$ for $r \geq 3$, it follows by induction that U_{n} is odd. From the assumption $U_{n}^{k} \| m$, we have $U_{n}^{k+1} \nmid m$, and so there exists a prime p dividing U_{n} such that $v_{p}\left(U_{n}^{k+1}\right)>v_{p}(m)$. Since U_{n} is odd, p is also odd. In addition, $p \nmid b$ by Lemma 7. So we can apply Lemma 2(i) to obtain

$$
v_{p}\left(U_{n m}\right)=v_{p}(m)+v_{p}\left(U_{n}\right)<v_{p}\left(U_{n}^{k+1}\right)+v_{p}\left(U_{n}\right)=v_{p}\left(U_{n}^{k+2}\right),
$$

which implies $U_{n}^{k+2} \nmid U_{n m}$, as required. This proves (i).
Case 2. a is even and b is odd. Similar to Case 1, we have U_{1} is odd, U_{2} is even, $U_{r} \equiv U_{r-2}(\bmod 2)$ for $r \geq 3$, and so U_{n} is even if and only if n is even. In addition, there exists a prime p such that $p \mid U_{n}$, $v_{p}\left(U_{n}^{k+1}\right)>v_{p}(m)$, and $p \nmid b$. So if $2 \nmid n$, then U_{n} is odd, p is odd, and we obtain by Lemma 2(i) that

$$
\begin{equation*}
v_{p}\left(U_{n m}\right)=v_{p}(m)+v_{p}\left(U_{n}\right)<v_{p}\left(U_{n}^{k+1}\right)+v_{p}\left(U_{n}\right)=v_{p}\left(U_{n}^{k+2}\right), \tag{3.1}
\end{equation*}
$$

which implies $U_{n}^{k+2} \nmid U_{n m}$. If $2 \mid n$, then we can still use either Lemma 2(i) or Lemma 2(ii) to obtain (3.1), which leads to the same conclusion $U_{n}^{k+2} \nmid U_{n m}$. This proves (ii).

Case 3. a and b are odd. Similar to Case 1 , there is a prime p such that $p \mid U_{n}, v_{p}\left(U_{n}^{k+1}\right)>v_{p}(m)$, and $p \nmid b$.
Case $3.1 n \not \equiv 3(\bmod 6)$. If $n \equiv 1,2,4,5(\bmod 6)$, then we obtain by Lemmas 3 and 2, respectively that p is odd and

$$
\begin{equation*}
v_{p}\left(U_{n m}\right)=v_{p}\left(U_{n}\right)+v_{p}(m)<v_{p}\left(U_{n}\right)+v_{p}\left(U_{n}^{k+1}\right)=v_{p}\left(U_{n}^{k+2}\right) \tag{3.2}
\end{equation*}
$$

If $n \equiv 0(\bmod 6)$, then n is even and Lemma 2(i) or Lemma 2(ii) can still be used to obtain (3.2). In any case, $U_{n}^{k+2} \nmid U_{n m}$. This proves (iii).
Case $3.2 n \equiv 3(\bmod 6)$ and $\frac{U_{n}^{k+1}}{2} \nmid m$. Since $U_{n}^{k} \| m$, we can write $m=c U_{n}^{k}$ where $c \geq 1$ and $U_{n} \nmid c$. By Lemma 4, $U_{n}^{k+2} \left\lvert\,\binom{ m}{j} U_{n}^{j}\right.$ for $3 \leq j \leq m$. Then we obtain by Lemma 5 that

$$
U_{n m}=U_{m n} \equiv m U_{n}\left(b U_{n-1}\right)^{m-1}+\frac{m(m-1)}{2} U_{n}^{2}\left(b U_{n-1}\right)^{m-2} a \quad\left(\bmod U_{n}^{k+2}\right)
$$

By Lemma 3, we know that $v_{2}\left(U_{n}\right)=v_{2}\left(U_{3}\right) \geq 1$. Since $\frac{U_{n}^{k+1}}{2} \nmid m$ and $m=c U_{n}^{k}$, we see that $\frac{U_{n}}{2}$ does not c. Let $d=b U_{n-1}+\frac{U_{n}}{2}(m-1) a$. By Lemmas 6 and 7 , we obtain $\left(\frac{U_{n}}{2}, d\right)=\left(\frac{U_{n}}{2}, b U_{n-1}\right)=1$. Then

$$
U_{n m} \equiv m U_{n} b^{m-2} U_{n-1}^{m-2}\left(b U_{n-1}+\frac{U_{n}}{2}(m-1) a\right) \equiv c U_{n}^{k+1} b^{m-2} U_{n-1}^{m-2} d \quad\left(\bmod U_{n}^{k+2}\right)
$$

By Lemmas 6 and 7, we obtain $U_{n}^{k+2} \mid U_{n m}$ if and only if $U_{n} \mid c d$. But if $U_{n} \mid c d$, then $\left.\frac{U_{n}}{2} \right\rvert\, c d$ which implies $\left.\frac{U_{n}}{2} \right\rvert\, c$, a contradiction. So $U_{n} \nmid c d$ and therefore $U_{n}^{k+2} \nmid U_{n m}$. This proves (iv). To prove (v) and (vi), we first assume that a and b are odd, $n \equiv 3(\bmod 6)$, and $\left.\frac{U_{n}^{k+1}}{2} \right\rvert\, m$. (The other condition will be assumed later). Then $v_{p}\left(U_{n}^{k+1}\right) \leq v_{p}(m)$ for all odd primes p and $v_{2}\left(U_{n}^{k+1}\right)-1 \leq v_{2}(m)$. If $v_{2}\left(U_{n}^{k+1}\right)-1<v_{2}(m)$, then $v_{2}\left(U_{n}^{k+1}\right) \leq v_{2}(m)$, and so $v_{p}\left(U_{n}^{k+1}\right) \leq v_{p}(m)$ for all primes p, which implies $U_{n}^{k+1} \mid m$ contradicting the assumption $U_{n}^{k} \| m$. Hence

$$
\begin{equation*}
v_{2}\left(U_{n}^{k+1}\right)-1=v_{2}(m) \text { and } v_{p}\left(U_{n}^{k+1}\right) \leq v_{p}(m) \text { for every odd prime } p \tag{3.3}
\end{equation*}
$$

We now separate the consideration into two cases according to the additional conditions in (v) and (vi). Observe that $v_{2}\left(a^{2}+3 b\right)=1$ is equivalent to $2 \| a^{2}+3 b$.
Case 4. $v_{2}\left(a^{2}+3 b\right)=1$. Since $U_{6}=a\left(a^{2}+3 b\right) U_{3}$, we obtain $v_{2}\left(U_{6}\right)=v_{2}\left(U_{3}\right)+1$. Recall that $n \equiv 3$ $(\bmod 6)$ and $U_{n}^{k} \mid m$. So n is odd, m is even, and $n m \equiv 0(\bmod 6)$. If $U_{n}^{k+2} \mid U_{n m}$, then we obtain by Lemma 3 and (3.3) that

$$
\begin{aligned}
v_{2}\left(U_{n}^{k+1}\right)+v_{2}\left(U_{n}\right)=v_{2}\left(U_{n}^{k+2}\right) \leq v_{2}\left(U_{n m}\right) & =v_{2}(n)+v_{2}(m)+v_{2}\left(U_{6}\right)-1 \\
& =v_{2}\left(U_{n}^{k+1}\right)-1+v_{2}\left(U_{3}\right) \\
& =v_{2}\left(U_{n}^{k+1}\right)+v_{2}\left(U_{n}\right)-1,
\end{aligned}
$$

which is a contradiction. Therefore $U_{n}^{k+2} \nmid U_{n m}$. This proves (v).
Case 5. $v_{2}\left(a^{2}+3 b\right) \geq 2$. Then $v_{2}\left(U_{6}\right)=v_{2}\left(U_{3}\right)+v_{2}\left(a^{2}+3 b\right) \geq v_{2}\left(U_{3}\right)+2$. By Lemma $8, v_{2}\left(U_{3}\right)=1$ and so $v_{2}\left(U_{6}\right)=x+2$ where $x=v_{2}\left(a^{2}+3 b\right)-1 \in \mathbb{N}$. For each odd prime p dividing U_{n}, let $y_{p}=\left\lfloor\frac{v_{p}(m)}{v_{p}\left(U_{n}\right)}\right\rfloor$ be the largest integer which is less than or equal to $\frac{v_{p}(m)}{v_{p}\left(U_{n}\right)}$. Since $U_{n}^{k} \mid m$, we have $y_{p} \geq k$ for all odd $p \mid U_{n}$. Let

$$
t=\min \left(\{x\} \cup\left\{y_{p}-k \mid p \text { is an odd prime factor of } U_{n}\right\}\right) .
$$

Then $t \geq 0$. By Lemma 3 and (3.3), $v_{2}(m)=(k+1) v_{2}\left(U_{3}\right)-1=k$ and

$$
\begin{equation*}
v_{2}\left(U_{n m}\right)=v_{2}(m)+v_{2}\left(U_{6}\right)-1=k+x+1 \geq k+t+1=v_{2}\left(U_{n}^{k+t+1}\right) . \tag{3.4}
\end{equation*}
$$

By the definition of y_{p}, we have $v_{p}(m) \geq y_{p} v_{p}\left(U_{n}\right)$. So by Lemma 2 , if p is an odd prime dividing U_{n}, then

$$
\begin{equation*}
v_{p}\left(U_{n m}\right)=v_{p}(m)+v_{p}\left(U_{n}\right) \geq\left(y_{p}+1\right) v_{p}\left(U_{n}\right) \geq(k+t+1) v_{p}\left(U_{n}\right)=v_{p}\left(U_{n}^{k+t+1}\right) . \tag{3.5}
\end{equation*}
$$

By (3.4) and (3.5), $v_{p}\left(U_{n m}\right) \geq v_{p}\left(U_{n}^{k+t+1}\right)$ for all primes p dividing U_{n}. This show that $U_{n}^{k+t+1} \mid U_{n m}$. It remains to show that $U_{n}^{k+t+2} \nmid U_{n m}$. If $t=y_{p}-k$ for some odd prime p dividing U_{n}, then we recall the definition of y_{p} and apply Lemma 2 to obtain

$$
v_{p}\left(U_{n m}\right)=v_{p}(m)+v_{p}\left(U_{n}\right)<\left(y_{p}+2\right) v_{p}\left(U_{n}\right)=(k+t+2) v_{p}\left(U_{n}\right)=v_{p}\left(U_{n}^{k+t+2}\right) .
$$

If $t=x=v_{2}\left(U_{6}\right)-2$, then we use Lemma 3 to get

$$
v_{2}\left(U_{n m}\right)=v_{2}(m)+v_{2}\left(U_{6}\right)-1=k+t+1<v_{2}\left(U_{n}^{k+t+2}\right) .
$$

In any case, $U_{n}^{k+t+2} \nmid U_{n m}$. This completes the proof.
The next example shows that the integer t in Theorem 10(vi) can be any odd positive integer.
Example 11. Let $M \in \mathbb{N}$ be given. We show that there are positive integers k, m, n, a, b satisfying the conditions in Theorem 10(vi) with $t=M$. Choose $a=1$ and $b=\left(2^{4 M}-1\right) / 3$. Then a and b are odd integers, $(a, b)=1$, and $v_{2}\left(a^{2}+3 b\right)=4 M>2$. Next choose any $k, n \in \mathbb{N}$ such that $n \equiv 3$ $(\bmod 6)$. Since $v_{2}\left(U_{6}\right)=v_{2}\left(U_{3}\right)+v_{2}\left(a^{2}+3 b\right) \geq v_{2}\left(U_{3}\right)+2$, we obtain by Lemmas 3 and 8 that $v_{2}\left(U_{n}\right)=v_{2}\left(U_{3}\right)=1$ and $v_{2}\left(U_{6}\right)=4 M+1$. Since $U_{n} \geq U_{3}=a^{2}+b>2$ and $v_{2}\left(U_{n}\right)=1$, we can write $U_{n}=2 p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}$ where $s \geq 1, p_{1}, p_{2}, \ldots, p_{s}$ are distinct odd primes, and $a_{1}, a_{2}, \ldots, a_{s}$ are positive integers. Next, choose $m=2^{k} p_{1}^{a_{1}(k+M)} p_{2}^{a_{2}(k+M)} \cdots p_{s}^{a_{s}(k+M)}$. Then $U_{n}^{k} \| m$ and $\left.\frac{U_{n}^{k+1}}{2} \right\rvert\, m$. Therefore k, m, n, a, b satisfy all the conditions in Theorem 10(vi). Finally, we have

$$
v_{2}\left(U_{6}\right)-2=v_{2}\left(a^{2}+3 b\right)-1=4 M-1
$$

and $y_{p}-k=M$ for all $p \in\left\{p_{1}, p_{2}, \ldots, p_{s}\right\}$, and therefore $t=\min \{4 M-1, M\}=M$, as desired.

Next, we prove the converse of Theorem 10.
Theorem 12. $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1, n \geq 2$, and $U_{n}^{k+1} \| U_{n m}$. Then
(i) if a is odd and b is even, then $U_{n}^{k} \| m$;
(ii) if a is even and b is odd, then $U_{n}^{k} \| m$;
(iii) if a and b are odd and $n \not \equiv 3(\bmod 6)$, then $U_{n}^{k} \| m$;
(iv) if a and b are odd, $n \equiv 3(\bmod 6)$, and $2 \| a^{2}+3 b$, then $U_{n}^{k} \| m$;
(v) if a and b are odd, $n \equiv 3(\bmod 6), 4 \mid a^{2}+3 b$, and $v_{2}(m) \geq k$, then $U_{n}^{k} \| m$;
(vi) if a and b are odd, $n \equiv 3(\bmod 6), 4 \mid a^{2}+3 b$, and $v_{2}(m)<k$, then

$$
m \text { is even, } v_{2}(m) \geq k+1-v_{2}\left(a^{2}+3 b\right) \text {, and } U_{n}^{v_{2}(m)} \| m .
$$

Proof. Some parts of the proof are similar to those of Theorem 10, so we skip some details.
Case 1. a is odd and b is even. Similar to Case 1 of Theorem 10, we have U_{n} is odd. For any prime $p \mid U_{n}$, we obtain by Lemma 2 that

$$
\begin{equation*}
v_{p}\left(U_{n}^{k}\right)+v_{p}\left(U_{n}\right)=v_{p}\left(U_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right)=v_{p}\left(U_{n}\right)+v_{p}(m), \tag{3.6}
\end{equation*}
$$

which implies $U_{n}^{k} \mid m$. If $U_{n}^{k+1} \mid m$, then by Theorem 9, we have $U_{n}^{k+2} \mid U_{n m}$ which contradicts $U_{n}^{k+1} \| U_{n m}$. Therefore $U_{n}^{k+1} \nmid m$, and thus $U_{n}^{k} \| m$.
Case 2. a is even and b is odd. Then U_{n} is even if and only if n is even. So if $2 \nmid n$, then for any prime $p \mid U_{n}$, we have p is odd, (3.6) holds, and so $U_{n}^{k} \mid m$. If $2 \mid n$, then we can still apply Lemma 2(i) or Lemma 2(ii) to obtain (3.6) and conclude that $U_{n}^{k} \mid m$. If $U_{n}^{k+1} \mid m$, then by Theorem 9, we have $U_{n}^{k+2} \mid U_{n m}$ which contradicts $U_{n}^{k+1} \| U_{n m}$. So $U_{n}^{k+1} \nmid m$ and therefore $U_{n}^{k} \| m$.

We now assume throughout that a and b are odd and divide the consideration into four cases according to the additional conditions in (iii) to (vi).
Case 3. $n \not \equiv 3(\bmod 6)$. If $n \equiv 1,2,4,5(\bmod 6)$, then we apply Lemma 3 to obtain $v_{2}\left(U_{n}^{k}\right)=0 \leq$ $v_{2}(m)$, and use Lemma 2 to show that for any odd prime $p \mid U_{n}$,

$$
\begin{equation*}
v_{p}\left(U_{n}\right)+v_{p}\left(U_{n}^{k}\right)=v_{p}\left(U_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right)=v_{p}(m)+v_{p}\left(U_{n}\right) . \tag{3.7}
\end{equation*}
$$

If $n \equiv 0(\bmod 6)$, then n is even and we can apply Lemma 2(i) or Lemma 2(ii) to obtain (3.7) for any prime $p \mid U_{n}$. In any case, we have $U_{n}^{k} \mid m$. Again, by Theorem 9, we have $U_{n}^{k+1} \nmid m$, and so $U_{n}^{k} \| m$. This proves (iii).
Case 4. $n \equiv 3(\bmod 6)$ and $2 \| a^{2}+3 b$. Similar to Case 4 in the proof of Theorem 10 we have $v_{2}\left(U_{6}\right)=v_{2}\left(U_{3}\right)+1$. If m is odd, then $n m \equiv 3(\bmod 6)$ and we obtain by Lemma 3 that $v_{2}\left(U_{n m}\right)=$ $v_{2}\left(U_{3}\right)<(k+1) v_{2}\left(U_{3}\right)=v_{2}\left(U_{n}^{k+1}\right)$, which contradicts the assumption $U_{n}^{k+1} \mid U_{n m}$. So m is even, and thus $n m \equiv 0(\bmod 6)$. By Lemma 3 and the fact that $n \equiv 3(\bmod 6)$ is odd, we obtain $v_{2}(m)+$ $v_{2}\left(U_{6}\right)-1=v_{2}\left(U_{n m}\right) \geq v_{2}\left(U_{n}^{k+1}\right)=v_{2}\left(U_{n}^{k}\right)+v_{2}\left(U_{n}\right)=v_{2}\left(U_{n}^{k}\right)+v_{2}\left(U_{3}\right)=v_{2}\left(U_{n}^{k}\right)+v_{2}\left(U_{6}\right)-1$, which implies $v_{2}(m) \geq v_{2}\left(U_{n}^{k}\right)$. If p is odd and $p \mid U_{n}$, then we apply Lemma 2 to obtain (3.7) Therefore $v_{p}\left(U_{n}^{k}\right) \leq v_{p}(m)$ for every prime p dividing U_{n}. Thus $U_{n}^{k} \mid m$. By Theorem $9, U_{n}^{k+1} \nmid m$. Hence $U_{n}^{k} \| m$. This proves (iv).
Case 5. $n \equiv 3(\bmod 6), 4 \mid a^{2}+3 b$, and $v_{2}(m) \geq k$. Then $U_{3}=a^{2}+b=\left(a^{2}+3 b\right)-2 b \equiv 2(\bmod 4)$, and so $v_{2}\left(U_{3}\right)=1$. By Lemma 3, we obtain $v_{2}(m) \geq k v_{2}\left(U_{3}\right)=k v_{2}\left(U_{n}\right)=v_{2}\left(U_{n}^{k}\right)$. By Lemma 2, if p is
an odd prime dividing U_{n}, then (3.6) holds, and so we conclude that $v_{p}\left(U_{n}^{k}\right) \leq v_{p}(m)$ for every prime p dividing U_{n}. Therefore $U_{n}^{k} \mid m$. By Theorem 9, $U_{n}^{k+1} \nmid m$ and so $U_{n}^{k} \| m$. This proves (v).
Case 6. $n \equiv 3(\bmod 6), 4 \mid a^{2}+3 b$, and $v_{2}(m)<k$. For convenience, let $t=v_{2}(m)$. Similar to Case 4 , we have m is even. In addition, $v_{2}\left(U_{6}\right)=v_{2}\left(U_{3}\right)+v_{2}\left(a^{2}+3 b\right)=1+v_{2}\left(a^{2}+3 b\right)$. So $k>t \geq 1$ and $v_{2}(m)=t v_{2}\left(U_{3}\right)=t v_{2}\left(U_{n}\right)=v_{2}\left(U_{n}^{t}\right)$. By Lemma 2, if p is odd and $p \mid U_{n}$, then

$$
v_{p}\left(U_{n}\right)+v_{p}\left(U_{n}^{t}\right) \leq v_{p}\left(U_{n}\right)+v_{p}\left(U_{n}^{k}\right)=v_{p}\left(U_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right)=v_{p}(m)+v_{p}\left(U_{n}\right) .
$$

From the above inequalities, we obtain that $v_{p}\left(U_{n}^{t}\right) \leq v_{p}(m)$ for every prime p dividing U_{n}. Therefore $U_{n}^{t} \mid m$. If $U_{n}^{t+1} \mid m$, then we obtain by Lemma 3 that $t=v_{2}(m) \geq v_{2}\left(U_{n}^{t+1}\right)=t+1$, which is false. So $U_{n}^{t+1} \nmid m$. Therefore $U_{n}^{t} \| m$. From $U_{n}^{k+1} \| U_{n m}$, we also obtain $k+1=v_{2}\left(U_{n}^{k+1}\right) \leq v_{2}\left(U_{n m}\right)=$ $v_{2}(m)+v_{2}\left(U_{6}\right)-1=v_{2}(m)+v_{2}\left(a^{2}+3 b\right)$, which implies $v_{2}(m) \geq k+1-v_{2}\left(a^{2}+3 b\right)$. This completes the proof.

The next example shows that $v_{2}(m)$ in Theorem $12(\mathrm{vi})$ can be any positive integer in $[1, k)$.
Example 13. Let $k \geq 1$ and $1 \leq M<k$ be integers. We show that there are m, n, a, b satisfying the conditions in Theorem 12(vi) with $v_{2}(m)=M$. Choose $n \in \mathbb{N}$ and $n \equiv 3(\bmod 6)$.
Case 1. $k-M$ is odd. Choose $a=1, b=\frac{2^{k-M+1}-1}{3}$, and $m=\frac{U_{n}^{k}}{2^{k-M}}$. Then a and b are odd integers, $(a, b)=1$, and $v_{2}\left(a^{2}+3 b\right)=k-M+1 \geq 2$. Since $v_{2}\left(U_{6}\right)=v_{2}\left(U_{3}\right)+v_{2}\left(a^{2}+3 b\right) \geq v_{2}\left(U_{3}\right)+2$, we obtain by Lemmas 3 and 8 that $v_{2}\left(U_{n}\right)=v_{2}\left(U_{3}\right)=1$ and $v_{2}\left(U_{6}\right)=k-M+2$. By Lemma 2, for $p>2$ and $p \mid U_{n}$ we obtain

$$
v_{p}\left(U_{n m}\right)=v_{p}(m)+v_{p}\left(U_{n}\right)=v_{p}\left(U_{n}^{k}\right)+v_{p}\left(U_{n}\right)=v_{p}\left(U_{n}^{k+1}\right) .
$$

By Lemma 3, we have

$$
v_{2}(m)=v_{2}\left(U_{n}^{k}\right)-v_{2}\left(2^{k-M}\right)=k-k+M=M
$$

and

$$
v_{2}\left(U_{n m}\right)=v_{2}(m)+v_{2}\left(U_{6}\right)-1=M+k-M+2-1=v_{2}\left(U_{n}^{k+1}\right) .
$$

From these, we obtain $U_{n}^{k+1} \| U_{n m}$ and $U_{n}^{M} \| m$. Therefore k, m, n, a, b satisfy all the conditions in Theorem 12(vi).
Case 2. $k-M$ is even. Choose $a=1, b=\frac{5 \cdot 2^{k-M+1}-1}{3}$, and $m=\frac{U_{n}^{k}}{2^{k-M}}$. The verification is the same as that in Case 1. So we leave the details to the reader.

Substituting $a=b=1$ in Theorems 10 and 12, $\left(U_{n}\right)$ becomes the Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ and we obtain our previous results $[11,18]$ as a corollary.

Corollary 14. [18, Theorem 2] and [11, Theorem 3.2] Let $n \geq 3$. Then the following statements hold:
(i) if $F_{n}^{k} \| m$ and $n \not \equiv 3(\bmod 6)$, then $F_{n}^{k+1} \| F_{n m}$;
(ii) if $F_{n}^{k} \| m, n \equiv 3(\bmod 6)$ and $\frac{F_{n}^{k+1}}{2} \nmid m$, then $F_{n}^{k+1} \| F_{n m}$;
(iii) if $F_{n}^{k} \| m, n \equiv 3(\bmod 6)$ and $\left.\frac{F_{n}^{k+1}}{2} \right\rvert\, m$, then $F_{n}^{k+2} \| F_{n m}$;
(iv) if $F_{n}^{k+1} \| F_{n m}$ and $n \not \equiv 3(\bmod 6)$, then $F_{n}^{k} \| m$;
(v) if $F_{n}^{k+1} \| F_{n m}, n \equiv 3(\bmod 6)$, and $2^{k} \mid m$, then $F_{n}^{k} \| m$;
(vi) if $F_{n}^{k+1} \| F_{n m}, n \equiv 3(\bmod 6)$, and $2^{k} \nmid m$, then $F_{n}^{k-1} \| m$.

Substituting $a=6$ and $b=-1$, in our theorems, $\left(U_{n}\right)$ reduces to the sequence $\left(B_{n}\right)$ of balancing numbers and we obtain the results of Patra, Panda, and Khemaratchatakumthorn.
Corollary 15. [14, Theorem 9] For all $k \geq 1$ and $m, n \geq 2$, we obtain $B_{n}^{k} \| m$ if and only if $B_{n}^{k+1} \| B_{n m}$.
Similarly by, substituting $a=2$ and $b=1$ in our theorems, we obtain the exact divisibility results for the Pell sequence $\left(P_{n}\right)_{n \geq 0}$ as follows.
Corollary 16. For all $k \geq 1$ and $m, n \geq 2$, we obtain $P_{n}^{k} \| m$ if and only if $P_{n}^{k+1} \| P_{n m}$.
We also plan to solve this problem for the Lucas sequence of the second kind in the future. The answers will appear in our next article.

Acknowledgments

The authors would like to thank the referees for their comments and suggestions which improve the quality of this article. Kritkhajohn Onphaeng receives a scholarship from Development and Promotion for Science and Technology Talents Project (DPST). Prapanpong Pongsriiam received financial support jointly from the Thailand Research Fund and Faculty of Science Silpakorn University, grant number: RSA5980040.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

References

1. A. Benjamin and J. Rouse, When does F_{m}^{L} divide F_{n} ? A combinatorial solution, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, 194 (2003), 53-58.
2. P. Cubre and J. Rouse, Divisibility properties of the Fibonacci entry point, Proc. Amer. Math. Soc., 142 (2014), 3771-3785.
3. V. E. Hoggatt, Jr. and M. Bicknell-Johnson, Divisibility by Fibonacci and Lucas squares, Fibonacci Quart., 15 (1977), 3-8.
4. M. Jaidee and P. Pongsriiam, Arithmetic functions of Fibonacci and Lucas numbers, Fibonacci Quart., 57 (2019), 246-254.
5. N. Khaochim and P. Pongsriiam, The general case on the order of appearance of product of consecutive Lucas numbers, Acta Math. Univ. Comenian., 87 (2018), 277-289.
6. N. Khaochim and P. Pongsriiam, On the order of appearance of product of Fibonacci numbers, Contrib. Discrete Math., 13 (2018), 45-62.
7. J. V. Matijasevich, Enumerable Sets are Diophantine, Soviet Math. Dokl., 11 (1970), 354-358.
8. Y. Matijasevich, My collaboration with Julia Robison, Math. Intelligencer, 14 (1992), 38-45.
9. Y. Matijasevich, Hilbert's Tenth Problem, MIT Press, 1996.
10. K. Onphaeng and P. Pongsriiam, Subsequences and divisibility by powers of the Fibonacci numbers, Fibonacci Quart., 52 (2014), 163-171.
11. K. Onphaeng and P. Pongsriiam, The converse of exact divisibility by powers of the Fibonacci and Lucas numbers, Fibonacci Quart., 56 (2018), 296-302.
12. C. Panraksa, A. Tangboonduangjit, K. Wiboonton, Exact divisibility properties of some subsequence of Fibonacci numbers, Fibonacci Quart., 51 (2013), 307-318.
13. C. Panraksa and A. Tangboonduangjit, p-adic valuation of Lucas iteration sequences, Fibonacci Quart., 56 (2018), 348-353.
14. A. Patra, G. K. Panda, T. Khemaratchatakumthorn, Exact divisibility by powers of the balancing and Lucas-balancing numbers, Fibonacci Quart., accepted.
15. P. Phunphayap and P. Pongsriiam, Explicit formulas for the p-adic valuations of Fibonacci coefficients, J. Integer Seq., 21 (2018), Article 18.3.1.
16. P. Phunphayap and P. Pongsriiam, Explicit formulas for the p-adic valuations of Fibonomial coefficients II, AIMS Mathematics, 5 (2020), 5685-5699.
17. P. Pongsriiam, A complete formula for the order of appearance of the powers of Lucas numbers, Commun. Korean Math. Soc., 31 (2016), 447-450.
18. P. Pongsriiam, Exact divisibility by powers of the Fibonacci and Lucas numbers, J. Integer Seq., 17 (2014), Article 14.11.2.
19. P. Pongsriiam, Factorization of Fibonacci numbers into products of Lucas numbers and related results, JP Journal of Algebra, Number Theory and Applications, 38 (2016), 363-372.
20. P. Pongsriiam, Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation, Commun. Korean Math. Soc., 32 (2017), 511-522.
21. P. Pongsriiam, Fibonacci and Lucas Numbers which are one away from their products, Fibonacci Quart., 55 (2017), 29-40.
22. P. Pongsriiam, Fibonacci and Lucas numbers which have exactly three prime factors and some unique properties of F_{18} and L_{18}, Fibonacci Quart., 57 (2019), 130-144.
23. P. Pongsriiam, Integral values of the generating functions of Fibonacci and Lucas numbers, College Math. J., 48 (2017), 97-101.
24. M. K. Sahukar, G. K. Panda, Arithmetic functions of balancing numbers, Fibonacci Quart., 56 (2018), 246-251.
25. M. K. Sahukar, G. K. Panda, Diophantine equations with balancing-like sequences associated to Brocard-Ramanujan-type problem, Glas Mat., 54 (2019), 255-270.
26. C. Sanna, The p-adic valuation of Lucas sequences, Fibonacci Quart., 54 (2016), 118-124.
27. J. Seibert, P. Trojovský, On divisibility of a relation of the Fibonacci numbers, Int. J. Pure Appl. Math., 46 (2008), 443-448.
28. C. L. Stewart, On divisors of Lucas and Lehmer numbers, Acta Math., 211 (2013), 291-314.
29. A. Tangboonduangjit and K. Wiboonton, Divisibility properties of some subsequences of Fibonacci numbers, East-West J. Math., (2012), 331-336.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
