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Abstract: The energy and iota energy of signed digraphs are respectively defined by E(S) =
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1. Introduction

If every arc of a digraph is assigned a weight +1 or —1 then it is called a signed digraph (henceforth,
sidigraph). Each arc of a sidigraph is called a signed arc. We denote by uw, the arc from a vertex u
to a vertex w. The sign of the arc uw is denoted by ¢(u, w). A directed signed path P, is a sidigraph
on n vertices {w; | j=1,2,...,n} with signed arcs {w;w;.; | j=1,2,...,n— 1}. A signed directed
cycle C, of order n > 2 is a sidigraph with vertices {w; | j=1,2,...,n} and signed arcs {w;wj; | j=
1,2,...,n— 1} U {w,w;}. The product of sign of the arcs of a sidigraph S is called the sign of §. A
sidigraphs S 1is said to be a strongly connected sidigraph if for every pair of vertices v, w, a path from
v to w and a path from w to v exist.

A sidigraph with equal number of vertices and arcs and contains only one directed cycle is said to
be a unicyclic sidigraph. A sidigraph with connected underlying sigraph and has exactly two directed
cycles is said to be bicyclic sidigraph. We denote a positive (respectively, negative) cycle of order n
by C, (respectively, C,). A cycle of order n which is either positive or negative is denoted by C,. A
positive cycle is a cycle with positive sign and a negative cycle is a cycle with negative sign. We denote
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by D7, the class of vertex-disjoint bicyclic sidigraphs of a fixed order n.
Let S be an n-vertex sidigraphs. Then the adjacency matrix A(S) = [a;j].x, 0f S is given by:
B { @(w;,w;) if there is an arc from w; to w;,
“W=\ 0 otherwise.
The eigenvalues of A(S) are said to be the eigevalues of §.

Pefia and Rada [1] put forward the idea of digraph energy. Let py,...,p, are the eigenvalues of a
sidigraph S. Pirzada and Bhat [2] defined the energy of a sidigraph S as E(S) = };_, IRe(ox)|, where
Re(py) denotes the real value of the eigenvalue p,. Khan et al. [3] and Farooq et al. [4] put forward
the idea of iota energy of digraph (sidigraph) and defined iota energy as E.(S) = >;_, [Im(px)|, where
Im(p;) denotes the imaginary value of the eigenvalue p;. Khan et al. [5,6] found the extremal energy of
digraphs and sidigraphs among all vertex-disjoint bicyclic digraphs and sidigraphs of order n. Farooq
et al. [7,8] found the extremal iota energy of digraphs and sidigraphs among all vertex-disjoint bicyclic
digraphs and sidigraphs of order n. In 2016, Monslave and Rada [9] investigated the general class of
bicyclic digraphs and found extremal energy. Hafeez et al. [10] considered the class of all bicyclic
sidigraphs and finds extremal energy.

Recently, Yang and Wang [11] determined the energy and iota ordering of digraphs in O,, and found
the extremal energy and iota energy, where D, is the class of vertex-disjoint bicyclic digraphs of order
n. Yang and Wang [12] considered the problem of finding energy ordering in 9;, where both directed
cycles are of even length. Yang and Wang [13] also considered the problem of finding iota energy
ordering in O;, where both directed cycles are of even length. Motivated by Yang and Wang [11-13],
we consider the problem of finding the ordering of sidigraphs in 9; with respect to energy and also
investigate extremal energy of sidigraphs in this class, where O is the class of vertex-disjoint bicyclic

sidigraphs of order n. The results for the case, when both directed cycles are even are obtained in [12].
Therefore we have solved the remaining cases for energy ordering in ;.

2. Some results and notations

Let p,q > 2 and D;[p, q] be the disjoint union of directed cycles C,, and C, and D,|[p, q] be the
disjoint union of directed cycles C, and C,. Also suppose D;[p,g] denotes the disjoint union of
directed cycles C, and C, and D;[p, q] denotes the disjoint union of directed cycles C, and C, and
D;[p,q] denotes the disjoint union of directed cycles C, and C,. Let
D;[p.q] = {D;[p.ql, Dilp.q), D)Ip.ql, D;[p,ql}.

Let S be a sidigraph with eigenvalues p,...,p,. Then energy of S 1is defined as
E(S) = X ;- IRe(ox)l, where Re(py) represents the real value of py.

Relationship between energy of strong components of a sidigraph § and energy of S is given in the
following result.

Lemma 2.1 (Pirzada and Bhat [2]). Let Q,..., Qi are strong components of a sidigraph S. Then
k

ES)= 3 E(Q).
i=

Pirzada and Bhat [2] gave the following energy formulae for positive and negative directed cycles
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of order n > 2.
2cot? if n = 0(mod4)

E(C,) =4 2cscZ if n=2(mod4) 2.1
csc - if n = 1(mod2),

2cscif n = 0(mod4)
E(C,) =1 2cot? if n=2(mod4) (2.2)
csc o if n = 1(mod2).

For any § € D;, its strong components are: a sidigraph from the set D;[p, g] and few isolated vertices.
Therefore using Lemma 2.1, we can only use the energy of strong components to find the energy
ordering in D;.

Using Lemma 2.1, we give the following equations.

E(D,[p,q) = E(Cp)+ E(Cy),
ED,[p.q)) = E(C,)+ E(C,),
E(D,[p.q)) = E(C,)+E(C),
ED,[p.q) = E(Cy)+E(C,).

Let n > 4. In Lemmas 2.2~2.8, we give some results about the monotonicity of some functions
which will be used to find the energy ordering of sidigraphs in D;.

Lemma 2 2 (Farooq et al. [7]). Suppose f(z) = 2(cot§ + cot ni_z). Forz € [2,%], f(2) is increasing and
forz € [5,n—2], f(z)is decreasing.

Lemma 2.3 (Yang and Wang [11]). Let f(z) = 2(csc 7 I +cot %). Forz € [2,n—-2], f(z) is decreasing.

Lemma 2.4 (Yang and Wang [11]). Suppose f(z) = 2(csc - Fcse ) Forz € [2,5), f(2) is decreasing.

Lemma 2.5 (Farooq et al. [7]). Let f(z) = zsin E' For z € [2,0), f(2) is increasing.

Lemma 2.6 (Yang and Wang [11]). Suppose f(z) = 5 cos 2 csc? 2. Forz € [2,n-2], f(2) is increasing.
The proof of next lemma is similar to the proof of Lemma 2.6 and is thus omitted.

Lemma 2.7. Suppose f(z) = 2 cos - csc and gr) = 2 cos 2 csc2 I Forz € [2,00), f(z) and g(2)
are mcreasmg

Now we prove the following results.
Lemma 2.8. Suppose f(z) = 2(cot 7 + csc -%). Forz € [2,n = 2], f(2) is increasing.

Proof. To prove the result, we will show that for all z € [2,n — 2], f'(z) > 0.
Now
m Vi Vg

f@)= (— esc? = - 5 €se cot ) (2.3)
z? z (n-2) n-z n-z
To prove f’(z) > 0, we divide the interval in two parts. Firstly let z € [5,n — 2]. Then Z>2n-—2z. By

Lemma 2.6, we know that forz € [2 n-2],% Fcos? Tesc?Z 1s increasing. Therefore -2 )2 csc - cot =

(n—

e csc® Z-cos - < Zesc?ZeosE < & 0502 z Hence using (2.3), f'(z) > 0 forz € [2,n — 2]

n—-z
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Now let z € [2,37]. Then z < n —z. By Lemma 2.5, we know that zsin 7 is strictly increasing on

[2, 00). We have zsin Z < (n — z) sin -Z-. From this, we get £ csc 2= — - csc - > 0. Consider

n—z n—z
T, n , T 1 r 1 m o\l r 1 Vs
_ZCSC - - > CSC =m|l—CcSC— + CSC —CSC — — CSC .
Z z (mn—2) n—z Z zZ n-—zg n—zJ/\z Z n—z n-—z

— L ¢csc = > 0. Hence Z csc? £ — —% csc? X > 0. This
-z n—-z b4 (n—z) n—-z

Z
2 n bis 2 s 2r :
implies that )2 cse - Cot el —z)2 COs ;- esC” o5 < i CsC e < G eset T Hence using (2.3)

and all these facts f (z) > 0 for z € [2, 5]. Thus f"(z) > 0 for z € [2,n — 2]. This proves the result. O

Clearly csC T+ - CsC Lt > 0 and 1 -csc

Lemma 2.9. Let 7 € [2,n — 2]. The following holds.

(1) Ler f(z) = csc 3 - +CSCop 2( zs decreasmg on |2, ”] and i lncreasmg onl%,n-2].
(2) The function f(z) = 2(

(3) The function f(z) = csc 2 + 2 csc

3 ] and increasing on [%”, n-—2J.
lS decreasing on [2, 31 and increasing on [5,n — 2].

(n 2)
Proof. (1) To show that f(z) is decreasing on [2, %], it is sufficient to show that f"(z) < 0.
Since z < (n — z) for z € [2, 5], therefore using Lemma 2.7, we get

) = T o2 Zocos X - T s - cos—=
272 2z 2z 2(n-2)? 2(n—-72) 2(n—-7z)

n csc? d cos T _ n csc? d cos T
2(n — z)? 2(n —2z) 2n—2z2) 2(n-z)? 2(n —2) 2(n —2z)

Hence f(z) is decreasing on [2, 5].
Now we will show that f'(z) > 0. Since z > (n — z) for z € [5,n — 2], therefore using Lemma 2.7,
we obtain

(@ = T csc? 2 X cos X _ d csc? dl cos dl
22 2z 2z 2(n—z)>? 2(n —2z) 2(n—2)

dl C802 d COS d - dl 0802 dl COS d =
20-27" 2n-2)  2n-2) 20-2° 2m-2)  2n-2)

Hence f(z) is increasing on [5,n — 2].
(2) To show that f(z) is decreasing on [2, 2—3”], it is enough to prove that f'(z) < 0.

Since z < 2(n — z) for z € [2, %], therefore using Lemma 2.7, we get

2 ,m w T , T T
— Csc” —cos — — csc cos
22 2z 2n-2 2-2) 2n-2)

2n C802 dl COS dl dl CSC2 dl COS dl =
4n-z2f " 2n-2)  2n-2) 2n-2¢  20-2 2n-2)

'@

IA

Hence f(z) is decreasing on [2, 2]

Now we will show that f’(z) > 0. Since z > 2(n — z) for z € [%, n — 2], therefore using Lemma 2.7,
we obtain
Vi T , T Vi

(@ 2n csc? d cos csc cos
) = — —COoS — —
z z 7z 2n-z¢ 2zn-z2) 2(n-2)
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2r , T T T , T

s

-2 209 2=2 2= 212 P 2m-20

Hence f(z) is increasing on [%,n — 2].
Analogously (3) can be proved.

Lemma 2.10. Suppose f(z) =2 Cotf + csc 52—. Forz € [2,n — 2], f(2) is increasing.

2(n—2)"

Proof. We will show that f'(z) > 0 forz e [2,n - 2].

Since cos f <landz>2(n-2) forz e [%2,n— 2], therefore by Lemma 2.7, we have

, 2r . m n , T 4
7) = —cCs¢—— csc cos
) 2 z 2(n-2)? 2n-2)  2n-2)
> o esc? 2 cos © T es? — cos ——
< Z 7z 2(n-27)>? 2(n—7) 2(n —2)
2n , Vs n , T

2

T

An—-22 " 2= 2n-2 2m-22"F 2i-29 2n-2 _

Also —cos g >—-landz<2(n—-z) forz e |2, 2?"], therefore by proof of Lemma 2.4 [7], we see that

, 2r , 7w V4 , T V4
Z = —CSC" — — ——=CSC COS
A 7 z 2(n-2)? 2m-2)  2(n-2)
> n sl T 2 5.

—— CSC P
22 z 2(n-z)7? 2(n - z2)

Hence f(z) is increasing on [2,n — 2].

3. Energy ordering

Sidigraphs in O; are classified into three categories: the sidigraphs whose directed cycles are of
even length, the sidigraphs whose directed cycles are of odd length and the sidigraphs whose one
directed cycle is of even length and one is of odd length. Yang and Wang [12] investigated the energy
ordering in first category where both cycles are of even length. Therefore in the following section, we
separately investigate energy ordering in other two categories and find maximal energy.

3.1. Both cycles of even length

Yang and Wang [12] investigated the energy ordering of bicyclic sidigraphs in 97, where each

directed cycle is of even length. For details see [12].

Yang and Yang also proved the following theorem about the extremal energy of those bicyclic

sidigraphs in the class 97 whose both directed cycles are of even length.

Theorem 3.1 (Xang and Wang [12]). Suppose a sidigraph S € D;, has even directed cycles.

(i) Forn =0 (mod 4), the largest energy of S is obtained if S = D;[2,n —2].
(it) For n =1 (mod 4), the largest energy of S is obtained if S = D;[2,n — 3].
(iii) For n =2 (mod 4), the largest energy of S is obtained if S = D}[2,n — 2].
(iv) Forn =3 (mod 4), the largest energy of S is obtained if S = D}[2,n — 3].
(v) The smallest energy of S is obtained if S = D}[2,2].
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3.2. Both cycles of odd length

In this section, we find energy ordering of those bicyclic sidigraphs in ©; that contain directed
cycles of odd length. Note that for » = 1(mod 2), E(C,) = E(C,). Hence we only consider the case
when both directed cycles are positive.

Lemma 3.2. Let n > 5 and n = O(mod 4). Take r € [2,n — 2] satisfying r = 1(mod 2) and n —r =
1(mod 2). Then E(D;[r,n — r]) has maximum value at r = 3. Therefore the following energy ordering

holds:
n-2 n+2

E(D,[3,n-3]) > E(D,[5,n—=15]) > --- > E(D;[ )

D.
Proof. Using Eq (2.1), we get

S 3 T n
E(D,[r,n—r]) =csc P + csc n=n)’

By Part (1) of Lemma 2.9, we see that csc - + csc 2(:_r) is decreasing on [2, 7] and increasing on

[5,n — 2]. Therefore the smallest odd number in [2, 5] where E(D;[r,n — r]) has maximum value is

r = 3 and the largest odd number in [5, n — 2] where E(D;[r,n — r]) has maximum value is r = n — 3.

Thus we have

ED:B3,n-3]) > E(D[S,n—5]) > -+ >E(Dfl[g— 1,g+ 1])

The proof is complete. O

Similar to Lemma 3.2, the following result can be proved.

Lemma 3.3. Let n > 5 and n = 2(mod 4). Take r € [2,n — 2] satisfying r = 1(mod 2) and n —r =
I(mod 2). Then E(D;[r,n — r]) has maximum value at r = 3. Therefore the following energy ordering
holds:

nn
22

Lemma 3.4. Letn > 5 and n = 1(mod 4). Take r € [2,n — 2] satisfying r = 1(mod 2) andn—r—1 =
I(mod 2). Then E(D;[r,n — r — 1]) has maximum value at r = 3. Therefore the following energy
ordering holds:

E(D![3,n=3]) > E(D}[5,n=5]) > --- > E(D|

n-3 n+1

o D.
Proof. Since r = 1 (mod 2) and n = 1 (mod 4), therefore n — r — 1 = (mod 2). Using Eq (2.1), we
have

E(D,[3,n—4]) > E(D;[5,n—6]) > --- > E(D,[

E(Dfl[r,n —r— 1] = CSC % + CsC 2(n+r—l)
Hence by changing n to n — 1 is Lemma 3.2, we get the desired result. m|

By changing n in Lemma 3.3 to n — 1, the following result is obtained.

Lemma 3.5. Let n > 5 and n = 3(mod 4). Take r € [2,n — 2] satisfying r = 1(mod 2) andn—r—1 =
l(mod 2). Then E(D;[r,n — r — 1]) has maximum value at r = 3. Therefore the following energy
ordering holds:

n—-1n-1

E(D,[3,n—4]) > E(D;[5,n—6]) > --- > E(D,[ TR

D.
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Combining Lemmas 3.2 ~ 3.5, the following corollary is obtained.
Corollary 3.6. Suppose r = 1(mod 2) and n > 5.

(1) If n = O(mod 2) then E(D;[3,n —3]) > E(D;[r,n - r]).
(@) If n = 1(mod 2) then E(D;[3,n —4]) > E(D;[r,n —r — 1]).

Now we give the extremal energy of bicyclic sidigraphs in the class D).
Theorem 3.7. Let S € D; be a sidigraph with odd directed cycles.

(i) For n = O(mod 2), the maximal energy of S is attained if S = D;[3,n — 3].
(i1) For n = 1(mod 2), the maximal energy of S is attained if S = D;[3,n —4].
(iii) The minimal energy of S is attained if S = D;[3, 3].

Proof. The proof of Part (i) and (ii) follows from Corollary 3.6.
(iii). As for odd integers r; and r, with r; > r, > 3, it holds that E(C,,) > E(C,,). Hence the minimal
energy of § is attained if S = D;[3, 3]. O

In next theorem, we give the energy ordering of those bicyclic sidigraphs in 9; whose both directed
cycles are of odd length.

Theorem 3.8. Letn > 5andr e [2,n - 2].

(i) If n = O(mod 4) then we have the following energy ordering:

ED;i3.n =31 > ED}is.n = 5D > > EQS 2 2 > poy 20 122,
> ... > E(D[3, #]) > E(D:[3, %]) > E(D:[3, ”;—6]) > - > E(D[3,3]).
(ii) If n = 1(mod 4) then we have the following energy ordering:
ED}f3,n~4) > ED5,n~6) > > EO;" 2 22y > gy 5
> ... > E(D[3, %1) > E(D:[3, %]) > E(DY[3, 2 S T > oo > E(DY3,3)).
(iii) If n = 2(mod 4) then we have the following energy ordering:
E(D;3,n=3) > ED;[5.n =5 > - > ED}[5.5) > E(Dz[$, 3D
> ... > E(D[3, g]) > E(D![3, #]) > E(D[3, 2 > 8> > E(DI3,3)).
(iv) If n = 3(mod 4) then we have the following energy ordering:
ED:B.,n—4]) > ED)[S,n—-6]) > -+ > E(D;[”; L ”; Ly E(D;;[”;S, ”; I

-1 -5 -9 :
>+ > E(D}[3.%5=1) > E(D}[3,"5>1) > E(D[3, 5= > --- > E(D}3.3)).
Example 3.9. We illustrate Theorem 3.8 by considering sidigraphs of different order.

AIMS Mathematics Volume 5, Issue 6, 6693-6713.
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(i) Take n = 12, that is, n = 0(mod4). Then

E(D,[5,n - 15])
E(D;[3,n-3])
n-6 n+2
2 72 D
sia N—2
E(D,[3, > D

E(D,[3,3])

E(D,[

It follows that

n-2 n+2

E(D,[——.

2

1) = EWD,[5,7]) = 7.7300

E(D,[3,9]) = 7.7588

E(D;[3,5]) = 6.4940

EE(DS[3,5]) = 5.2361

4.

E(D;[3,9]) > E(D;[5,7]) > E(D;[3,5]) > E(D;[3,3]).
(i1) Take n = 17, that is, n = 1(mod4). Then

ED)[7,n="T])
E(D)[3,n—4])
E(D,[5,n - 6])
n—-7 n+1
27 2 D
E(D[3, n+1

2
n-—3

E(D;)[

D

E(D,[3,

D

n-717
E(D?
(D,[3, 3

n-—11
2

D

E(D,[3, D

Therefore we get,

“3 o+l
E(D:[- . ) = EDi7,9) = 10.2527
E(DY[3,13]) = 10.2962
E(DI[5,11]) = 10.2627
E(D[5,9]) = 8.9948
E(D[3,9]) = 7.7588
E(D}[3,7]) = 6.4940
E(D[3,5]) = 5.2361
E(D[3,3]) = 4.

E(D,[3,13]) > E(D,[5,11]) > E(D;[7,9]) > E(D,[5,9]) > E(D,[3,9])
> E(D;[3,7]) > E(D;[3,5]) > E(D,[3,3]).

(iti) Take n = 14, that is, n = 2(mod4). Then

ED,[7,n="T])

o n—8n
ED,l—5=3D
E(D,[3,n - 3])
E(D,[5,n-15])

n —

4
E(D) [~ gn

n—4

E(D;
(Dy[3. —

AIMS Mathematics

= EMD,[5,7])

= E(D,[3,5])

E(D;[g,g]) = E(DI[7,7]) = 8.9879

ED:[3, g]) = E(D)[3,7]) = 6.4940
E(DY[3,11]) = 9.0267
= EDII5,9))

8.9948
7.7300

5.2361

Volume 5, Issue 6, 6693-6713.
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n—38
E(D,[3, T]) = E(D,[3,3]) =
Hence we get,

E(D:[3,11]) > E(D[5,9]) > E(D}[7,7]) > E(D:[5,7) > E(D[3,7])
> E(D¥[3,5]) > E(D}[3,3)).

(iv) Taken = 19, that is, n = 3(mod4). Then

ED:9,n-9] = E(Ds[n;1 ”_1]):E(D;[9,9]) = 11.5175

E(D} ”;1]) = E(Ds[n_213 "Ly~ Ee,0n = 7.7588
E(DS[”ES,”;I]) = EDI[7.9]) = 10.2527
E(Ds[n;9 "_1]) = E(D:[5,9]) = 8.9948

E(D![3,n—4]) = ED:[3,15]) = 11.5688

E(DI[S,n—6]) = EDI[5,13]) = 11.5323

E(DI[7,n—8]) = EMD:[7,11]) = 11.5206

E(D;§[3,TS]) = E(DI[3,7]) = 6.4940

ED: ”;9]) = E(D[3,5]) = 5.2361

E(D! ”_213]) = EMD[3.3]) = 4.

Therefore, we obtain

E(D,[3,15]) > E(D;[5,13]) > E(D;[7,11]) > E(D,[9,9]) > E(D;[7,9])
> E(D,[5,9]) > E(D,[3,9]) > E(D,[3,7]) > E(D,[3,5]) > E(D,[3,3]).

3.3. One cycle of odd length and one cycle of even length

In this section, we find energy ordering of those bicyclic sidigraphs in 9; whose one directed cycle
is of even length and one is of odd length. For n = O(mod 2), if » = 1(mod 2) then n — r = 1(mod 2)
and if r = O(mod 2) then n — r = O(mod 2). So we only consider the case when n = 1(mod 2). Note
that for r = O(mod 2) and n — r = 1(mod 2) then E(D][r,n — r]) = E(D;[r,n — r]). Hence we only
have to give the energy ordering of those bicyclic sidigraphs in ©; whose both directed cycles are
positive or both directed cycles are negative. The proofs are similar to the proofs of Lemmas 3.2 ~ 3.5
and thus omitted.

Now we give the energy ordering of those bicyclic sidigraphs in 9} whose both directed cycles are
positive.

Lemma 3.10. Suppose n > 5, n = O(mod 3) and r € [2,n — 2] satisfying r = O(mod 2) and n — r =
1(mod 2). Then we have the following energy ordering:

AIMS Mathematics Volume 5, Issue 6, 6693-6713.
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(i) Let r = 2(mod 4).
(a) If r € [2, 2] then

E(D;[2,n~2]) > E(D,[6,n~6]) > -

(b) If re [%”,n —2]and n — 3 = 2(mod 4) then

E(D)[n-3,3]) > E(D)[n—17,7]) > - -~

(c) If re [%”,n —2]and n — 3 = 0(mod 4) then

E(D)[n-5,5]) > E(D)[n—9,9]) > - -~

(if) Let r = O(mod 4).
(@) If n — 3 = 2(mod 4) then

E(D)[n—5,5]) > E(D,[n—-9,9]) >
(b) If n — 3 = 0(mod 4) then

E(D[n-3,3]) > E(D}[n—1,7]) >

2
> E(D;‘,[?”, g])-

2n n

> E(Df,[?, 5])-

s 2n n

o> E(DS[4,n — 4)).

-« > E(D)[4,n —4]).

Lemma 3.11. Suppose n > 5, n = 1(mod 3) and r € [2,n — 2] satisfying r = O(mod 2) and n — r =

1(mod 2). Then we have the following energy ordering:

(i) Let r = 2(mod 4).
(a) If r € [2, 2] then

E(D)[2,n—-2]) > E(D}[6,n—6]) > ---
(b) If r € [2,n—2] and n — 3 = 2(mod 4) then

E(D;[n-3,3)> E(D,[n-17,7]) > ---
(©) Ifr € [2,n—2]andn -3 = 0(mod 4) then

E(D![n—5,5]) > E(D:[n—9,9]) > - -

(if) Let r = O(mod 4).
(@) If n —3 = 2(mod 4) then

2n—8 n+8
3 73

> E(D}[

2n+4 n-4
3 73

> E(D;[

2n+4 n-4
3 73

> E(D}]
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(b) If n —3 = 0(mod 4) then
E(Dy[n~3,3]) > E(D;[n~7,7]) > --- > E(D;[4,n ~ 4]).

Lemma 3.12. Suppose n > 5, n = 2(mod 3) and r € [2,n — 2] satisfying r = O(mod 2) and n — r =
1(mod 2). Then we have the following energy ordering:
(i) Let r = 2(mod 4).
(a) If r € [2,%] then

E(DI2,n—2]) > ED}[6,1 —6]) > --- > E(D;[z”S_ 4 n ; .
(b) If r € [2,n— 2] and n — 3 = 2(mod 4) then

E(D}[n-3,3]) > ED[n—-17,7]) > -+~ > E(D;;[2”3+ 8 n 3 5.
(¢c) If re[%,n—2]and n -3 = 0(mod 4) then

E(D[n-5,50) > E(D[n—9,9]) > -~ > 15(1);;[2”3+ 8 n . 5.

(i1) Let r = O(mod 4).
(a) If n — 3 = 2(mod 4) then

(b) If n — 3 = 0(mod 4) then

Now we give the energy ordering of those bicyclic sidigraphs in 9; whose both directed cycles are
negative.

Lemma 3.13. Suppose n > 5, n = O(mod 3) and r € [2,n — 2] satisfying r = O(mod 2) and n — r =
1(mod 2). Then we have the following energy ordering:
(i) Let r = O(mod 4).
(a) If r € [2, 2] then

E(D)[4.n—4))> E(D,[8,n—8]) > ---> E(D;[Z”; 6 n ; N
(b) If r € [3,n— 2] and n — 3 = 2(mod 4) then
E(D,)[n-5,5))> ED,[n—=9,9]) > --- > E(D;[Z";' 6’ n ; 6]).
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(c) Ifre [%”,n —2]and n — 3 = 0(mod 4) then

2n+6 n—-6
3 7 3

E(Di[n—-3,3))> E(D)[n="1,7]) > --- > E(D| D.

(if) Let r = 2(mod 4).
(a) If n — 3 = 2(mod 4) then

EDi[n—3,3]) > E(D[n—1,7]) > --- > E(D:[2,n — 2]).
(b) If n —3 = 0(mod 4) then
E(D}[n—5,5])> E(D}[n—-9,9]) > --- > E(D}[2,n — 2]).

Lemma 3.14. Suppose n > 5, n = 1(mod 3) and r € [2,n — 2] satisfying r = O(mod 2) and n —r =
1(mod 2). Then we have the following energy ordering:
(i) Let r = O(mod 4).
(a) If r € [2, 2] then

2n—-2 n+2

E(D}l4.n = 4)) > E(D}[8,n = 8)) > - > E(D} ===, ===).
(b) Ifr € [2,n - 2] and n— 3 = 2(mod 4) then
E(D'[n=5,5) > E(D[n=9,9)) > - - > E(D'[ 2" ; 10 n _310]).
(c) If re[%,n—2]and n -3 = 0(mod 4) then
E(Dn=3,3) > EDn=7,7) > - > ED[ 2" ; 10 n _310]).

(ii) Let r = 2(mod 4).
(a) Ifn —3 = 2(mod 4) then
E(D[n—3,3]) > E(Di[n—="1,7)) > --- > E(D[2,n = 2]).
(b) If n -3 = 0(mod 4) then
E(Di[n—5,5]) > E(D{[n—9,9]) > --- > E(D[2,n — 2]).

Lemma 3.15. Suppose n > 5, n = 2(mod 3) and r € [2,n — 2] satisfying r = O(mod 2) and n — r =
1(mod 2). Then we have the following energy ordering:
(i) Let r = O(mod 4).
(a) If r € [2, 2] then

2n—-10 n+ 10

3’3])'

ED)[4,n—-4])> ED,[8,n-8])>---> E(D;|
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(b) If r e [%”,n —2]and n — 3 = 2(mod 4) then

E(Di[n—5,5]) > E(D[n—9,9]) > -+ > E(D;[Z";’ 2n ; 2.
(c) Ifre[2,n—2]and n -3 = 0(mod 4) then
E(DSn=3,3)> EDin=1,7) > - > E(D;‘[Z"; 2n ; 2.

(if) Let r = 2(mod 4).
(@) If n — 3 = 2(mod 4) then

E(Di[n-3,3]) > E(D}[n="1,7]) > --- > E(D}[2,n — 2]).
(b) If n — 3 = 0(mod 4) then
E(Di[n-5,5]) > E(Di[n—9,9]) > --- > E(D[2,n — 2]).

Now we give the extremal energy of bicyclic sidigraphs in the class D;.

Theorem 3.16. Let S € D; be a sidigraph with one directed cycle of even length and one of odd
length.

(i) For n = 1(mod 2), the maximal energy of S is attained if S = D;[2,n —2].
(i) The minimal energy of S is attained if S = D;[2,3].

Proof. (i). For proof, see Theorem 7 [5].
(i7). Since for odd integers r; and r, with r; > r, > 3, it holds that E(C,,) > E(C,,) and E(C,) = 0.
Hence the minimal energy of § is attained if § = D}[2, 3]. O

In next theorem, we give the energy ordering of those bicyclic sidigraphs in 9; whose one directed
cycle is of even length and one is of odd length.

Theorem 3.17. Let nis odd withn > 5 andr € [2,n — 2].

(1) If n = O(mod 3) then we have the following energy ordering:
(i) Let r = 2(mod 4).
(a) If r € [2, 2] then

E(Di[2,n-2]) > E(D[6,n—6]) > -+ > E(Df,[23—n, g])

2n—-12 n 2n—-24 n
, =) > E(D,[  Z
3 3 3 3

> EDI[2, "3;6]) > E(D'[2, ”_le]) > o> E(D[2,3]).

> E(D D> > ED[2, gn
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b) If r e [%,n —2]and n —3 = 2(mod 4) then

E(D)[n-3,3) > E(D)[n-7,7) > -+ > E(D;[z_n )

3’3
2n n—6 2n n—12 2n
E(D’[— E(D![— o> E(D[—
> (n[3, 3 D> (n[3, 3 D>-> (n[3,3])

2012 o2 3 s s B2, 3)).

> E(D;[

(c) If re [%,n —2]and n — 3 = 0(mod 4) then

E(D:[n-5,5)) > ED’[n—-9,9]) > -+ > E(D;[23—”, g])
o 2n—12 n s 2n—=24 n sty 1
> E(D,[ 3 ,g])>E(Dn[ 3 ,3])> >E(Dn[2,3])

> ED[2, ”%6]) > E(D)[2, ”_le]) > o> E(DY[2,3)).
(d) If n -3 =2(mod 4) then

ED)[n-3,3))> E(D)[n—="1,7]) > --- > E(D;[2,n = 2])
> E(D;[2,n—-4]) > ED;[2,n—6])>---> E(D,[2,3]) > E(D,[2,2]).

(e) If n —3 = 0(mod 4) then

E(D![n—-5,5]) > E(D:[n—=9,9]) > --- > E(D}[2,n - 2])
> E(D’[2,n-4])> E(D![2,n - 6]) > --- > E(D}[2,3]) > E(D}[2,2)).

(i1) Let r = O(mod 4).
(a) If n —3 = 2(mod 4) then

E(D)[n—5,5]) > E(D)[n—9,9]) > --- > E(D;[4,n —4])
> E(D;[4,n—-6]) > E(D;[4,n—8]) > E(D,[4,3]) > E(D,[2,3]).

(b) If n — 3 = 0(mod 4) then

E(Dj[n-3,3)) > E(D}[n—1,5]) > --- > E(D[4,n - 4])
> E(D}[4,n—-6]) > E(D}[4,n - 8]) > E(D;[4,3]) > E(D}[2,3]).
(c) If r € [2,%] then

E(D;[4,n—4]) > E(D}[8,n - 8]) > --- > E(DZ[Zns_ - ; 5

2n—18 n+ 6 2n—-30 n+ 6 n+6
, > E(D? , > .- > E(D,[4,
3 3 D (D, [ 3 3 D (D,[ 3 D

> E(D[4, g]) > E(D’[4, == L E(D'[4,3]) > E(D:[2,3)).

> E(D[
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(d) If r e [2,n—2])and n -3 = 2(mod 4) then

E(Di[n-5,5)) > E(D[n—9,9]) > --- > E(D;[zn t6n-6,

3 3
2n—6 n—6 2n—-18 n—-6 n—=6
> E(D;, , >.--> E(D’[4, ——
3 3 D (D,[ 3 3 D (D[ 3 D

> E(D;[4, n_le]) > E(D;, [4 ]) >.--> E(D;[4,3]) > E(D)[2,3]).

> E(D;|

b

(e) If re [Z,n—2)and n — 3 = 0(mod 4) then

EDn-3,3)>EDn—-77)> > E(D;[Z"S+ 6 n ; 6])
2n+6 n—-12 2n+6 n—-18
E DA‘ E DS
>(,,[3,3])>(,1[3,3])
> E(D’ 2n > E(DY[ 2n—18 0o s E(D[4,3]) > E(D’[2,3]).

(2) If n = 1(mod 3) then we have the following energy ordering:
(i) Let r = 2(mod 4).
(a) If r € [2, 2] then

E(D[2,n—2]) > E(D}[6,n—6]) > -- —8 ";8])
s 2n—20 n+38 o 2n—32 n+38 sin N8
> ED,[ 3 3 D > EWD,[ 33 D >--->ED,[2, 3 ),

> EO2 "2 > B, S0 > > ED;2.3).

(b) Ifr € [2,n—2] and n—3 = 2(mod 4) then
E(D}[n—3,3]) > EDn—"1,7]) > -+~ > E(Dfl[zn; 4 - )
> E(Df,[z”; i - > ey S S - s s B0, - )
> E(D)[2, ”_3—10]) > E(D}[2, "_3—16]) > o> E(DY[2,3]).
(¢) Ifre[#,n—2]and n -3 = 0(mod 4) then
E(Dn—5,5]) > E(D}[n—9,9]) > --- > E(D} [2” taon- . i)
- [2n+4 n 310])>E(D;[2n3+4’n—316])> >E(D2[2n3+4’3])

2n - 20
3

> E(DZ[TS,?)]) > E(D;[ ,3D) > -+ > E(D;[2,3]).
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(d) If n — 3 = 2(mod 4) then
ED)[n-3,3])) > E(D)[n—="1,7]) > --- > E(D;[2,n - 2])
> E(D;[2,n—-4]) > ED,[2,n - 6]) > ---> E(D,[2,3]).
(e) If n —3 = 0(mod 4) then
E(D,[n-5,5]) > E(D,[n—9,9]) > --- > E(D;[2,n - 2])
> E(D;[2,n—-4])> ED;[2,n—-6])>---> E(D;[2,3]).
(i1) Let r = O(mod 4).
(a) If n — 3 = 2(mod 4) then
E(D)[n—-5,5]) > E(D,[n—9,9]) > --- > E(D;[4,n —4])
> E(D;[4,n—-6]) > E(D;[4,n—8]) > E(D,[4,3]) > E(D,[2,3]).
(b) If n— 3 = 0(mod 4) then
E(D,In—-3,3]) > E(D;[n—"7,7]) > --- > E(D,[4,n - 4])
> E(D;[4,n—-6]) > E(D;[4,n—8]) > E(D;[4,3]) > E(D,[2,3]).

(c) If r € [2,%] then

ED)[4,n—-4]) > ED;[8,n—-8])>--- > E(sz[zn; 2, n -:: 2])
o 2n—14 n+2 2n—=26 n+2 Cn+2
> E(D][ 3 3 1) > E(D}[ 3 3 D) >---> E(DI[4, 3 D
> E(D,[4, n-— 4]) > E(D![4, n- 10]) > ... > E(D'[4,3]) > E(D’[2,3)).

3 3
(d) Ifre[%,n-2]andn -3 = 2(mod 4) then

E(D)[n-5,5]))> E(D)[n —9,9]) > --- > E(D;[Zn +10 n- 10])

3 7 3
-2 n—1 2n—14 n—-1 ~1
> E(D] "3 I . 0])>E(D‘,‘;[ ”3 = . 0])>-~->E(D‘,‘;[4,n 0

n 18 b0, P22 s s B3] > E(DI2,3).

D

> E(D;[4,

(e) If re [%,n —2]land n — 3 = 0(mod 4) then

2n+10 n-10
3 7 3
2n+10 n—16 2n+10 n—22 2n + 10
> E(D,[ , 1) > E(D,[ , 1) > E(D,[
3 3 3 3
- 14

E(D;[n-3,3]) > E(D,[n=7,7]) > --- > E(D,[

;3D

> E(DZ[?,S]) > E(D;[Z" 3D > - > E(DS[4,3]) > E(D[2,3)).
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(3) If n = 2(mod 3) then we have the following energy ordering:
(i) Let r = 2(mod 4).
(a) If r € (2, 23—”] then

-4 n+d
ED:[2,n-2]) > ED)[6,n—6]) > --- > E(D[ ”3 ";
Mm—16 n+4 M =26 n+4 n+ 4
> ED,| R D) > ED,[ 3 ])>--->E(D;[2,T])

> EDR "2 > B, ) > ED1230,

b) If r e [%,n —2]land n — 3 = 2(mod 4) then

EDn-3,3) > ED[n=77) > -+ > E(Df,[Z”;r 8 n ; %)

2n—4 n-238 2n—16 n—8 n—28
E(D? --> E(D[2
3 3 1) > ED,[ T3 D>--->EWD,[2, 3

> ED2, #]) > E(DS[2, " _320]) > ... > E(D[2,3)).

(c) If re[%#,n—2)and n—3 = 0(mod 4) then

> E(D}

D

EDin-5,5]) > ED[n—9,9]) > - > E(D,§[2”;r 8 - 5

2n+8 n—14 2n+8 n-20 2n + 8
E(D? o> E(D?
3 3 1) > EWD,[ 33 D>--->EWD,[ 3

> E(D;[2"3—_4,3]) > E(D;[Z"; 0 s> E(D[2,3)).

> E(D|

,3D)

(d) If n —3 =2(mod 4) then

ED)[n-3,3])) > E(D)[n—="1,7]) > --- > E(D;[2,n = 2])
> E(D;[2,n—-4])> ED;[2,n—-6]) > ---> E(D,[2,3]).

(e) If n — 3 = 0(mod 4) then

E(D![n—-5,5]) > E(D:[n—=9,9]) > --- > E(D}[2,n - 2])
> E(D)[2,n-4])> E(D}[2,n - 6]) > --- > E(D’[2,3)]).

(i) Let r = O(mod 4).
(a) If n — 3 = 2(mod 4) then

E(D)[n—5,5]) > E(D,[n—9,9]) > --- > E(D;[4,n —4])
> E(D;[4,n—-6]) > E(D;[4,n—8]) > E(D,[4,3]) > E(D,[2,3]).

(b) Ifn — 3 = 0(mod 4) then
E(Di[n-3,3]) > EDi[n—"17,7]) > --- > E(D}[4,n — 4])
> E(D[4,n-6]) > E(D:[4,n - 8]) > E(D[4,3]) > E(D:[2,3]).
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(c) If r € [2,%] then

2n—-10 n+10

E(D,[4,n—4]) > E(D,[8,n—8]) > --- > E(D,]| 3 3 1))

2n—-22 n+10 2n—-34 n+ 10 n+10

> E(D,[ 3 3 D> EWD,] 3 3 D>--->ED,4, D
> E(D[4, "T”]) > E(D![4, "T_Z]) > ... > E(DY[4,3]) > E(D[2,3]).
(d) Ifr € [2,n—2]and n -3 = 2(mod 4) then
E(Di[n - 5,5)) > E(D[n—9,9]) > --- > 15(1);[2"3+ 2 n ; 2)
> B0y - 10 n : 2> By - 2 1 : 2> Dy, ”T_ZD
> E(D[4,2 ; %) > Eia, ™ _314]) > . > E(DY[4,3]) > E(DX[2,3)).
(e) If re [#,n—2]and n—3 = 0(mod 4) then
E(Di[n-3,3)> EDn—-"77)> - > E(D,§[2"3+ 2 n ; 2)
> BTS2 R0 5 BT TR s s B 3)

3 3

3
2n-10 2n - 22

> E(D,[ ;3D > E(DZ[TJ]) > .-+ > E(D,[4,3]) > E(D,[2,3)).

Example 3.18. We illustrate Theorem 3.17 by considering sidigraphs of different order.
(1) Take n = 15, that is, n = 0(mod3) and n — 3 = 0(mod4).

(i) Let r = 2(mod4).
(a) Let r € [2,%] = [2,10]. Then

2
E(DI[10,n - 10] = E(DZ[?H,g]):E(D;[loj]) — 97082
2n — 24
E(D,[ n3 ,g]) = E(D,]2, g]) = E(D![2,5]) = 5.2361
2n—12 n

EDI=5—.3) = ED;[6.5]) = 72361
E(DI[2,n-2]) = EDI[2,13]) = 10.2962
E(Di[6,n—6]) = E(D![6,9]) = 9.7588

ED. 20 = ED2.3) = 4
Above calculations yield.

E(D;[2,13]) > E(D;[6,9]) > E(D,[10,5]) > E(D,[6,5]) > E(D,[2,5]) > E(D;][2, 3]).
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(b) Let r € [2,%] = [10, 13]. Then

EDn-33] = E(D;[é—n,g]):E(D;[IO,S]) _ 97082

E(D;[Z”; 12,%]) = E(D’[2, g]) = E(D:[2,5]) = 5.2361
E(D;‘l[zn;u,g]) = ED[6,5]) = 7.2361
E(D:[2, #]) = E(D![2,3]) = 4.

It follows that
E(D;[10,5]) > E(D;[6,5]) > E(D;,[2,5]) > E(D;][2, 3]).
(¢) Since n —3 =12 = 0(mod4). Therefore we have

E(D,[n - 13,13)) E(D:[2,n-2)) = E(D[2,13]) = 8.2962
E(Di[n—5,5]) = E(D[10,5]) = 9.3914
E(Di[n-9,9]) = E(D:[6,9]) = 9.2229
E(D:[2,n—-4]) = E(D:[2,11]) = 7.0267
ED[2,n-6]) = E(D)[2,9]) = 5.7588
ED![2,n—8)) = E(DI[2,7]) = 4.4940
E(D![2,n=10]) = E(D:[2,5]) = 3.2361
E(Di[2,n—-12]) = E(D![2,3]) =2
E(D![2,2]) = O.

Hence we get,

E(D:[10,5]) > E(D[6,9]) > E(D:[2,13]) > E(D}[2,11]) > E(D}[2,9])
> E(D}[2,7]) > E(D}[2,5]) > E(D}[2,3]) > E(D}[2,2)).

(i) Let r = 0O(mod4).
(a) Sincen —3 =12 = 0(mod4). Therefore we have

EDi[n-11,111) = E(D[4,n—4]) = E(D:[4,11]) = 9.0267
E(Di[n-3,3]) = E(DI[12,3]) = 9.4641
E(Di[n—-1,7]) = E(DI[8,7]) = 9.3224
E(D[4,n—6]) = E(D:[4,9]) = 7.7588
E(Di[4,n—8]) = E(Di[4,7]) = 6.4940
E(D[4,n—10]) = E(D:[4,5]) = 5.2361
E(D}[4,n—12]) = E(D![4,3]) = 4
E(D}[2,3]) = 2.
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Above calculations yield,

E(D;[12,3]) > E(D,[8,7]) > E(D,[4,11]) > E(D,[4,9]) > E(D,[4,7])
> E(D;[4,5]) > E(D;[4,3]) > E(D,[2,3]).

(b) Let r € [2,%] = [2,10]. Then

E(D;[4,§]) E(D}[4,5]) = 6.0645

E(D,[8,n—8]) = E(D,i[zn 3_6,";'6]) = E(D:[8,7]) = 9.7202
E(D;i[zngls,"?]) = E(D[4,7] = 7.3224
E(D,i[4,n_6]) = E(D![4,3]) = 4.8284

E(D![4,n-4]) = ED:[4,11]) = 9.8551
E(DI[2,3]) = 2
E(D[2,2]) = O.

Therefore, we conclude

E(D:[4,11)) > E(D’[8,7]) > E(D}[4,7]) > E(D:[4,5])
> E(D:[4,3]) > E(D}[2,3]) > E(D}[2,2)).

(c) Letr € [2,n—2]=[10,13]. Then

E(Dn-3,3]) = E(D;[Z”;6," ;6]) = E(DY[12,3]) = 9.7274
ED=8 3 = Ei8,3]) = 7.2263
e =8 5 = EDa3) = 48284,

Hence,
E(D;[12,3]) > E(D,[8,3]) > E(D,[4,3]) > E(D;[2,3]) > E(D,[2,2]).
Analogously, for a fixed n, one can verify the energy ordering of Parts (2) and (3) of Theorem 3.17.

4. Conclusion

Let D, denotes the set of vertex-disjoint bicyclic digraphs of a fixed order n. We investigate the
energy ordering of signed digraphs in O; and find the maximal energy. The results for the case, when
both directed cycles are even are obtained in [12]. Therefore we have solved the remaining cases for
energy ordering in D).
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