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1. Introduction and main result

Let ABC be a triangle with circumradius R, inradius r and semiperimeter s. If ABC is an acute
(non-obtuse) triangle, then the following linear inequality holds:

s ≥ 2R + r, (1.1)

with equality if and only ABC is a right triangle.
Inequality (1.1) is a fundamental inequality for acute triangles. Ciamberlini [1] first noted that it

can be obtained clearly from the following identity:

s2 − (2R + r)2 = 4R2 cos A cos B cos C, (1.2)

where A, B,C are the angles of the triangle ABC.
In 1975, Walker [2] first proposed the following quadratic inequality:

s2 ≥ 2R2 + 8Rr + 3r2, (1.3)

with equality if and only if ABC is equilateral or right isosceles.
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The monograph [3,p.248] introduced a simple proof of Walker’s inequality (3) given by Klamkin,
which used a known trigonometric inequality. See [4] for another proof of Walker’s inequality (1.3).

In 1996, Yang [5] and Chen [6] obtained one parameter generalizations of Walker’s inequality at
almost the same time. In [5], Yang established the following inequality:

s2 ≥ 2(1 + k)R2 + 2
[
4 − (3 +

√
2 )k

]
Rr +

[
3 + 4(1 +

√
2 )k

]
r2, (1.4)

where k is a real number such that −1 ≤ k ≤ 1. In [6], Chen obtained the following result:

s2 ≥ λR2 +
[
2(7 +

√
2) − (3 +

√
2)λ

]
Rr −

[
(1 + 4

√
2) − 2(1 +

√
2)λ

]
r2, (1.5)

where λ is a real number such that 2(1 −
√

2) ≤ λ ≤ 4. Both equalities in (1.4) and (1.5) hold if and
only if the triangle ABC is equilateral or right isosceles.

It is easily shown that inequalities (1.4) and (1.5) are equivalent. Putting k = 0 in (1.4) or λ = 2
in (1.5), Walker’s inequality (1.3) follows immediately. From (1.4) or (1.5), some other inequalities
similar to Walker’s inequality are easily obtained. For example,

s2 ≥ R2 + (11 +
√

2)Rr + (1 − 2
√

2)r2, (1.6)

s2 ≥ 3R2 + (5 −
√

2)Rr + (5 + 2
√

2)r2, (1.7)

s2 ≥ 4R2 + (2 − 2
√

2)Rr + (7 + 4
√

2)r2, (1.8)

s2 ≥ (2 − 2
√

2)R2 + (12 + 6
√

2)Rr − (5 + 4
√

2)r2, (1.9)

etc.(see [5, 6]).
Walker’s inequality (1.3) is actually equivalent to the following beautiful trigonometric inequality:

(cos B + cos C)2 + (cos C + cos A)2 + (cos A + cos B)2 ≤ 3, (1.10)

which can be obtained from a sharped version of the famous Erdös-Mordell inequality (see [7]).
Recently, the author [8] obtained a weighted generalization of inequality (1.10).

In this paper, we present a further generalization of Walker’s inequality and give its applications.
Our main result is the following:

Theorem 1. For any non-negative real numbers m, n and an acute (non-obtuse) triangle ABC, we have

s2 ≥
4mR3 − 4(m − 4n)R2r − (7m + 3n)Rr2 − 2(m + 2n)r3

(m + n)R − 2mr
. (1.11)

If n = 0 and the triangle ABC is not equilateral, then the equality holds if and only if the triangle ABC
is a right triangle. In other cases, the equality holds if and only if the triangle ABC is equilateral or
right isosceles.

If −1 ≤ k ≤ 1, then it is easily shown that R + (
√

2− 1)r− k(R− 2r) > 0 by using Euler’s inequality:

R ≥ 2r, (1.12)

which is valid for any triangle ABC. Thus, in (1.11) we may put

m = (k + 1)R + (
√

2 − 1)r, n = R + (
√

2 − 1)r − k(R − 2r),
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and inequality (1.4) is obtained from (1.11) after simple calculations. Therefore, inequality (1.11) is a
generalization of (1.4) and (1.5).

In fact, a large number of inequalities of the form

s2 ≥ f (R, r) (1.13)

can be obtained from inequality (1.11), which is a further generalization of Walker’s inequality (1.3).
We shall discuss applications of inequality (1.11) in Sections 3–6.

Remark 1. In fact, inequality (1.11) is equivalent to the following inequality with one parameter:

s2 ≥
4λR3 − 4(λ − 4)R2r − (7λ + 3)Rr2 − 2(λ + 2)r3

(λ + 1)R − 2λr
, (1.14)

where λ is a non-negative real number. When λ→ +∞, the inequality becomes s2 ≥ (2R + r)2 which is
equivalent to (1.1).

2. Proof of Theorem 1

The proof of Theorem 1 will be used Ciamberlini’s inequality (1.1), Euler’s inequality (1.12) and
inequality (2.1) below.

Lemma 1. In an acute (non-obtuse) triangle ABC, we have

s2 ≥ 16Rr − 3r2 −
4r3

R
, (2.1)

with equality if and only if triangle ABC is equilateral or right isosceles.

Inequality (2.1) was established by the author in [9], where two proofs were given. One of the proof
used the following important result in any triangle (see [3, 10 –15]):

s2 ≥ 2R2 + 10Rr − r2 − 2(R − 2r)
√

R2 − 2Rr, (2.2)

with equality if and only if ABC is an isosceles triangle. Here, we present a new proof of inequality
(2.1), as follows:

Proof. Inequality (2.1) is equivalent to

s3 ≥ 16Rrs − sr2
(
3 +

4r
R

)
. (2.3)

We have the following well-known identities:

abc = 4Rrs, (2.4)
sr2 = (s − a)(s − b)(s − c), (2.5)
r
R

=
4(s − a)(s − b)(s − c)

abc
, (2.6)
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where a, b, c are the lengths of the sides of 4ABC. So, inequality (2.3) becomes

s3 ≥ 4abc − (s − a)(s − b)(s − c)
[
3 +

16(s − a)(s − b)(s − c)
abc

]
,

that is
abcs3 + 3abc(s − a)(s − b)(s − c) + 16(s − a)2(s − b)2(s − c)2 − 4(abc)2 ≥ 0.

Since s = (a + b + c)/2, one sees that the above inequality is equivalent to

abc(a + b + c)3 + 3abc(b + c − a)(c + a − b)(a + b − c)
+ 2(b + c − a)2(c + a − b)2(a + b − c)2 − 32(abc)2 ≥ 0.

Dividing both sides of the above inequality by 2 and expanding out gives

Q0 ≡
∑

a6 − 2
∑

a(b5 + c5) −
∑

a2(b4 + c4) + 5abc
∑

a3

− abc
∑

a(b2 + c2) + 4
∑

b3c3 − 6(abc)2 ≥ 0, (2.7)

where the symbols
∑

denote cyclic sums over the triple (a, b, c).
In order to prove Q0 ≥ 0, we may assume that a ≥ b and a ≥ c. Then b2 + c2 ≥ a2 (since ABC is

acute-angled). After analyzing, we find that Q0 can be rewritten in the form:

Q0 =a(b + c − a)(a − b)(a − c)(b2 + c2 − a2)
+ (b + c)(c + a − b)(a + b − c)(2a − b − c)(b − c)2

+ a(b + c − a)[a2 + b(a − c) + c(a − b)](b − c)2. (2.8)

Thus, we conclude that Q0 ≥ 0 holds for a non-obtuse triangle ABC by the hypothesis. Hence,
inequality (2.1) is proved. Also, from identity (2.8), we see that the equality holds exactly under the
conditions of the statement of Lemma 1. This completes the proof of Lemma 1. �

Next, we shall prove Theorem 1.

Proof. According to Euler’s inequality (1.12), Ciamberlini’s inequality (1.1) and inequality (2.1), one
sees that if m ≥ 0 and n ≥ 0 then

m(R − 2r)
[
s2 − (2R + r)2

]
+ n(Rs2 − 16R2r + 3Rr2 + 4r3) ≥ 0, (2.9)

which is equivalent to

(mR + nR − 2mr)s2 − 4mR3 + 4(m − 4n)R2r + (7m + 3n)Rr2 + 2(m + 2n)r3 ≥ 0.

Therefore, we conclude that inequality (1.11) holds.
It is known that the equality of Euler’s inequality occurs only when the triangle is equilateral. Thus,

by the equality conditions of (1.1) and (2.1), we know that the equality in (1.11) holds under the exact
conditions mentioned in Theorem 1. This completes the proof of Theorem 1. �
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Remark 2. Based on Lemma 1, we have another proof of Theorem 1, as follows: Let H be the value
of the right hand side of (1.11). And, let H1 = (2R + r)2 and H2 = 16Rr − 3r2 − 4r3/R. Then, it is easy
to check the following identities:

H1 − H =
4n(R − r)(R2 − Rr − r2)

(m + n)R − 2mr
, (2.10)

H2 − H =
−4m(R − r)(R − 2r)(R2 − Rr − r2)

R[(m + n)R − 2mr]
. (2.11)

If R2 − Rr − r2 ≥ 0, then by m ≥ 0, n ≥ 0, inequality (1.1) and Euler’s inequality (1.12) we see that
s2 ≥ H1 ≥ H. If R2 − Rr − r2 < 0, then by m ≥ 0, n ≥ 0, inequality (2.1) and Euler’s inequality (1.12)
we see that s2 ≥ H2 ≥ H. Therefore, for all acute triangles we have s2 ≥ H, i.e., inequality (1.11)
holds . Also, it is easy to determine the equality condition of (1.11) from (2.10) and (2.11).

3. Applications of Theorem 1 (I)

In this section and in the next three sections, we shall mainly discuss applications of Theorem 1.
Let us denote the inequality mentioned in Theorem 1 as follows:

s2 ≥
N
M
, (3.1)

where

M =(m + n)R − 2mr,

N =4mR3 − 4(m − 4n)R2r − (7m + 3n)Rr2 − 2(m + 2n)r3.

Let p and q be arbitrary non-negative real numbers (not both zero). By Euler’s inequality (1.12) we
may put m = pR and n = q(R − r) + pr in (3.1), then M = (p + q)R(R − r) and a simple calculation
gives

N = (R − r)
[
4pR3 + 16qR2r + 3(3p − q)Rr2 + 4(p − q)r3

]
.

Therefore, we obtain the following corollary:

Corollary 1. For any non-negative real numbers p, q and an acute triangle ABC, we have

s2 ≥
4pR3 + 16qR2r + 3(3p − q)Rr2 + 4(p − q)r3

(p + q)R
. (3.2)

For p = q, the above inequality becomes Walker’s inequality (1.3).

Remark 3. In this section and in the next two sections, all the conditions for equality in the inequalities
given in the corollaries are the same as those of Walker’s inequality, i.e., the equalities hold if and only
if the triangle ABC is equilateral or right isosceles.

Remark 4. Walker’s inequality (1.3) can be obtained from the following identity:∑
(c2 + a2 − b2)(a2 + b2 − c2)(b − c)2 = 32r2s2(s2 − 2R2 − 8Rr − 3r2), (3.3)

which can be easily proved by using known identities (See [3, 16]), we omit the details here.

AIMS Mathematics Volume 5, Issue 6, 6657–6672.



6662

Remark 5. The following sharpened version of Walker’s inequality

s2 ≥ 2R2 + 8Rr + 3r2 +
2(R − 2r)

[
R − (

√
2 + 1)r

]2

R
(3.4)

was proved by Wu and Chu in [14]. This inequality can easily be proved by using Theorem 1, as
follows:

If R ≥ (
√

2 + 1)r, then we have (
√

2 + 1)R − (3 + 2
√

2)r > 0. Thus, in (3.1) we may put

m = R
[
R − (

√
2 + 1)r

]
, n = r

[
(
√

2 + 1)R − (3 + 2
√

2)r
]
.

And, it is easy to get that

M =R(R − r
√

2 − r)(R − r + r
√

2),

N =(R − r
√

2 − r)(R − r + r
√

2)
[
4R3 − 4

√
2R2r + (17 + 12

√
2)Rr2 − 4(3 + 2

√
2)r3

]
.

Thus, we have

s2 ≥
4R3 − 4

√
2R2r + (17 + 12

√
2)Rr2 − 4(3 + 2

√
2)r3

R
,

which is equivalent to (3.4).
If R < (

√
2 + 1)r, then we have (

√
2 + 1)R − (3 + 2

√
2)r < 0. In this case, in (3.1) we may put

m = −R
[
R − (

√
2 + 1)r

]
, n = −r

[
(
√

2 + 1)R − (3 + 2
√

2)r
]
,

and inequality (3.4) is obtained, too. Therefore, inequality (3.4) is valid for any acute triangle ABC.

Inequality (3.2) given in Corollary 1 is an obvious generalization of Walker’s inequality (1.3). We
shall discuss its applications in the rest of this section.

In (3.2), we take (p, q) = (1, 0), (1, 3), (3, 1), (5, 3), (3, 2), (4, 3), (1, 6) respectively, then the
following seven inequalities are obtained immediately.

Corollary 2. Let ABC be an acute triangle, then

s2 ≥ 4R2 + 9r2 +
4r3

R
. (3.5)

s2 ≥ R2 + 12Rr −
2r3

R
, (3.6)

s2 ≥ 3R2 + 4Rr + 6r2 +
2r3

R
, (3.7)

s2 ≥
(5R + 2r)(R + r)2

2R
, (3.8)

s2 ≥
(2R + r)(6R2 + 13Rr + 4r2)

5R
, (3.9)

s2 ≥
(4R + r)(4R2 + 11Rr + 4r2)

7R
, (3.10)

s2 ≥
(2R − r)(2R2 + 49Rr + 20r2)

7R
. (3.11)
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Remark 6. In fact, inequality (3.2) in Corollary 1 can be easily obtained from the following linear
combined inequality:

p(Rs2 − 4R3 − 9Rr2 − 4r3) + q(Rs2 − 16R2r + 3Rr2 + 4r3) ≥ 0, (3.12)

which is true by p ≥ 0, q ≥ 0, inequalities (3.5) and (2.1). We therefore know that the result of
Corollary 1 contains inequality (2.1).

Remark 7. By inequality (3.6) and Euler’s inequality R ≥ 2r, it is easy to obtain the following
quadratic inequality

s2 ≥ R2 + 12Rr − r2, (3.13)

which is given in [6].

According to Euler’s inequality, we may take (p, q) = (4R − r, r), (3R − r,R + r), (r, 2R − r) in
Corollary 1. Then, it is not difficult to obtain the following three inequalities:

Corollary 3. Let ABC be an acute triangle, then

s2 ≥ 4R2 − Rr + 13r2 +
(R − 2r)r3

R2 , (3.14)

s2 ≥ 3R2 + 3Rr + 10r2 −
(R + 2r)r3

R2 , (3.15)

s2 ≥ 18Rr − 11r2 +
2(R + 2r)r3

R2 . (3.16)

Remark 8. Euler’s inequality R ≥ 2r shows that inequality (3.14) is stronger than

s2 ≥ 4R2 − Rr + 13r2, (3.17)

which is given in [6]. By inequality (3.15) and Euler’s inequality, it is easy to show that

s2 ≥ 3R2 + 3Rr + 9r2, (3.18)

which is also given in [6].

Remark 9. By inequality (3.16) and Euler’s inequality, it is easy to prove that

s2 ≥ 18Rr − 12r2 +
6r3

R
. (3.19)

Furthermore, by combining (1.1) and (3.19) in the same way used to prove inequality (1.11), we obtain
the following inequality

s2 ≥
4mR3 − 2(2m − 9n)R2r − (7m + 12n)Rr2 − 2(m − 3n)r3

(m + n)R − 2mr
, (3.20)

where the equality holds if and only if 4ABC is equilateral.
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4. Applications of Theorem 1 (II)

In view of Euler’s inequality (1.12), we may put m = 2p(R − r) + qr and n = qr in inequality (3.1).
Then, it is easy to obtain that

M =2(R − r)
[
pR − (2p − q)r

]
,

N =2(R − r)
[
4pR3 − 2(2p − q)R2r − (7p − 8q)Rr2 − (2p − 3q)r3

]
.

Therefore, we have

Corollary 4. For any non-negative real numbers p, q and an acute triangle ABC, we have

s2 ≥
4pR3 − 2(2p − q)R2r − (7p − 8q)Rr2 − (2p − 3q)r3

pR − (2p − q)r
. (4.1)

Remark 10. The above inequality can be easily obtained from the following

p(R − 2r)
[
s2 − (2R + r)2

]
+ qr(s2 − 2R2 − 8Rr − 3r2) ≥ 0, (4.2)

which is true by inequalities (1.1),(1.3) and (1.12). Incidentally, it is easily shown that if m > n then
inequality (4.1) is equivalent to inequality (1.11).

In (4.1), for (p, q) = (1, 1), (2, 1), (3, 2), (8, 7), we get the following four inequalities respectively:

Corollary 5. Let ABC be an acute triangle, then

s2 ≥
4R3 − 2R2r + Rr2 + r3

R − r
, (4.3)

s2 ≥
(4R + r)(2R2 − 2Rr − r2)

2R − 3r
, (4.4)

s2 ≥
R(12R2 − 8Rr − 5r2)

3R − 4r
, (4.5)

s2 ≥
32R3 − 18R2r + 5r3

8R − 9r
. (4.6)

Remark 11. Inequality (4.3) and inequality (4.4) can be obtained from the following two identities
respectively: ∑

bc(b + c − a)(c2 + a2 − b2)(a2 + b2 − c2)(b − c)2

= 128r3s3
[
(R − r)s2 − 4R3 + 2R2r − Rr2 − r3

]
, (4.7)

∑
(c2 + a2 − b2)(a2 + b2 − c2)(b − c)2(b + c − a)2

= 128s2r3
[
(2R − 3r)s2 − (4R + r)(2R2 − 2Rr − r2)

]
, (4.8)

which are both easily proved by using known identities (cf. [3, 16]). Also, inequality (4.5) can be easily
obtained from (4.3) and (4.4).
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In (4.1), if we take (p, q) = (r,R), (r,R+r), (29r, 9R+22r), (4r, 5R+r), (8R+8r, 8R+5r) in inequality
(4.1) respectively, then it is easy to obtain the following five inequalities:

Corollary 6. Let ABC be an acute triangle, then

s2 ≥
(R + r)(3R2 − Rr − r2)

R − r
, (4.9)

s2 ≥
6R3 + 6R2r + 4Rr2 + r3

2R − r
, (4.10)

s2 ≥
67R3 + 4r3

19R − 18r
, (4.11)

s2 ≥
(R + r)(26R2 − 5r2)

9R − 7r
, (4.12)

s2 ≥
(2R2 − r2)(4R + r)2

8R2 − 11r2 . (4.13)

Remark 12. Inequality (4.10) can be obtained from the following identity:∑
bc(b+c)(c2+a2−b2)(a2+b2−c2)(b−c)2 = 128r3s3

[
(2R − r)s2 − (6R3 + 6R2r + 4Rr2 + r3)

]
. (4.14)

We now turn back to Theorem 1. Note that inequality (1.11) is equivalent to (3.1). By Euler’s
inequality we may take m = (6p + q)R − 4pr and n = qR + 2pr in (3.1), then it is easy to get

M =2(R − r)
[
(3p + q)R − 4pr

]
,

N =2R(R − r)
[
2(6p + q)R2 − 8(p − q)Rr − (5p − 3q)r2

]
,

and we thus have the following corollary:

Corollary 7. For any non-negative real numbers p, q and an acute triangle ABC, we have

s2 ≥
R

[
2(6p + q)R2 − 8(p − q)Rr − (5p − 3q)r2

]
(3p + q)R − 4pr

. (4.15)

Remark 13. The above inequality can be obtained from the following inequality:

p
[
(3R − 4r)s2 − R(12R2 − 8Rr − 5r2)

]
+ qR(s2 − 2R2 − 8Rr − 3r2) ≥ 0, (4.16)

which is clearly true by inequality (4.5) and Walker’s inequality (1.3).

In inequality (4.15), putting (p, q) = (1, 1), (1, 2), (3, 5), (1, 4), we get the following inequalities
respectively:

Corollary 8. Let ABC be an acute triangle, then

s2 ≥
R(7R2 − r2)

2(R − r)
, (4.17)
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s2 ≥
R(4R + r)2

5R − 4r
, (4.18)

s2 ≥
(23R + 8r)R2

7R − 6r
, (4.19)

s2 ≥
R(10R + 7r)(2R + r)

7R − 4r
. (4.20)

Remark 14. The above inequality (4.17) can be easily obtained by (4.3) and (4.9) or (4.4) and (4.10).
In addition, we have the following simple proof. Since

2(R − r)s2 − R(7R2 − r2) = 2r(s2 − 2R2 − 8Rr − 3r2) + (R − 2r)(2s2 − 7R2 − 10Rr − 3r2), (4.21)

we conclude that the value of the right hand is non-negative by Walker’s inequality (1.3), Euler’s
inequality (1.12) and inequality (6.4) below. Hence, inequality (4.17) holds.

Remark 15. A simple proof of inequality (4.18) is as follows: Note that

(5R − 4r)s2 − R(4R + r)2 = 6r(s2 − 2R2 − 8Rr − 3r2) + (R − 2r)(5s2 − 16R2 − 28Rr − 9r2). (4.22)

We thus conclude that the value of the right hand is non-negative by Walker’s inequality (1.3),
Euler’s inequality (1.12) and inequality (6.5) below. Hence, inequality (4.18) holds.

5. Applications of Theorem 1 (III)

We now derive a result similar to Corollary 23 from Theorem 1.
For any non-negative p and q, we may put m = qr and n = 2p(R − r) + qr in inequality (3.1), then

it is easy to get

M =2(R − r)(pR + qr),

N =2r(R − r)
[
(16p + 2q)R2 − (3p − 8q)Rr − (4p − 3q)r2

]
.

Thus, we have the following corollary:

Corollary 9. For any non-negative real numbers p, q and an acute triangle ABC, we have that

s2 ≥
r
[
(16p + 2q)R2 − (3p − 8q)Rr − (4p − 3q)r2

]
pR + qr

. (5.1)

Remark 16. This inequality can be easily obtained from the following inequality:

p(Rs2 − 16R2r + 3Rr2 + 4r3) + qr(s2 − 2R2 − 8Rr − 3r2) ≥ 0, (5.2)

which follows from Walker’s inequality and the result of Lemma 1.

In (5.1), for (p, q) = (1, 2), (1, 3), (3, 4), (8, 3) respectively, we get the following inequalities:
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Corollary 10. Let ABC be an acute triangle, then

s2 ≥
r(4R + r)(5R + 2r)

R + 2r
. (5.3)

s2 ≥
r(2R + r)(11R + 5r)

R + 3r
. (5.4)

s2 ≥
(56R + 23r)Rr

3R + 4r
. (5.5)

s2 ≥
r(134R2 − 23r2)

8R + 3r
. (5.6)

Remark 17. Inequality (5.3) can be obtained from the following identity:∑
(c2 + a2 − b2)(a2 + b2 − c2)(b − c)2a2 = 64Rr2s2[(R + 2r)s2 − r(5R + 2r)(4R + r)]. (5.7)

In addition, it is easily shown that∑
(a − b)(a − c)(b2 + c2 − a2)a = 8rs

[
(R + 2r)s2 − r(5R + 2r)(4R + r)

]
. (5.8)

So, by inequality (5.3), we have the following inequality involving the sides of the acute triangle ABC:

Corollary 11. Let ABC be an acute triangle, then∑
(a − b)(a − c)(b2 + c2 − a2)a ≥ 0. (5.9)

We now derive another inequality similar to (5.9). It is easy to prove the following identity:∑
(a − b)(a − c)(b2 + c2 − a2) = 2

[
s4 − 8r(2R − r)s2 − r2(4R + r)2

]
. (5.10)

On the other hand, we have

s4 − 8r(2R − r)s2 − r2(4R + r)2 = s2
(
s2 − 16Rr + 3r2 +

4r3

R

)
+

r2

R

[
(5R − 4r)s2 − R(4R + r)2

]
.

Thus, by inequality (2.1) and inequalities (4.18), we have

s4 − 8r(2R − r)s2 − r2(4R + r)2 ≥ 0. (5.11)

Therefore, by identity (5.10) we obtain

Corollary 12. Let ABC be an acute triangle, then∑
(a − b)(a − c)(b2 + c2 − a2) ≥ 0. (5.12)

Now, we return to Theorem 1. In inequality (3.1) (which is equivalent to (1.11)), we take m =

2p(2R − r) + qr and n = (p + q)R + pr, then it is easy to get that

M = (R − r)
[
(5p + q)R − 2(2p − q)r

]
,

N = (4R + r)(R − r)
[
4pR2 + (p + 5q)Rr + 2qr2

]
.

Hence, we have
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Corollary 13. For any non-negative real numbers p, q and an acute triangle ABC, we have

s2 ≥
(4R + r)

[
4pR2 + (p + 5q)Rr + 2qr2

]
(5p + q)R − 2(2p − q)r

. (5.13)

Remark 18. The above inequality can be easily obtained from the following inequality:

p
[
(5R − 4r)s2 − R(4R + r)2

]
+ q

[
(R + 2r)s2 − r(5R + 2r)(4R + r)

]
≥ 0, (5.14)

which is clearly true by inequalities (4.18) and (5.3).

Putting (p, q) = (1, 1), (6, 5) in (5.13) respectively, gives the following two inequalities:

Corollary 14. Let ABC be an acute triangle, then

s2 ≥
(R + r)(2R + r)(4R + r)

3R − r
, (5.15)

s2 ≥
(4R + r)(3R + 2r)(8R + 5r)

7(5R − 2r)
. (5.16)

Remark 19. Inequality (5.15) can be obtained from the following identity:∑
bc(c2 + a2 − b2)(a2 + b2 − c2)(b − c)2 = 64s2r3

[
(3R − r)s2 − (4R + r)(2R + r)(R + r)

]
. (5.17)

If we take (p, q) = (r, 3R), (11R + 2r, 9R), (21R + 6r, 23R + 8r) in (5.13), then we can obtain the
following three inequalities:

Corollary 15. Let ABC be an acute triangle, then

s2 ≥
Rr(4R + r)(19R + 7r)

(R + 4r)(3R − r)
. (5.18)

s2 ≥
R(R + r)(11R + 5r)

2(2R − r)
. (5.19)

s2 ≥
(R + r)(3R + r)(7R + 4r)

2(4R − r)
. (5.20)

We close this section giving another result obtained using Theorem 1.
By Euler’s inequality R ≥ 2r we may take m = p(2R− r) and n = 2q(R− r) + pr in Theorem 1, after

the computations we get the following inequality:

Corollary 16. For any non-negative real numbers p, q and acute triangle ABC, it holds that

s2 ≥
4pR3 − 2(p − 8q)R2r + (p − 3q)Rr2 + (p − 4q)r3

(p + q)R − pr
. (5.21)

Remark 20. This inequality can also be obtained from the following linear combined inequality

p
[
(R − r)s2 − (4R3 − 2R2r + Rr2 + r3)

]
+ q(Rs2 − 16R2r + 3Rr2 + 4r3) ≥ 0, (5.22)

which follows from the previous inequality (4.3) and Lemma 1.
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Remark 21. We remark that the inequalities without parameters given in the previous corollaries
(except inequalities (4.4), (4.5), (4.13)) can be derived from inequality (5.21). For example, if we take
(p, q) = (4, 1), (2r, 2R + r), (4r, 6R + r), (11R − 4r, 5R − r) in (5.21), then we can obtain inequalities
(4.18),(5.3), (5.5), (5.19), respectively. In fact, it is easily shown that if 2m > n then inequality (5.21)
is equivalent to inequality (1.11).

Remark 22. We have the following obvious conclusion. If s2 ≥ f1(R, r) and s2 ≥ f2(R, r) hold for an
acute triangle ABC, then for any non-negative real numbers p and q we have

s2 ≥
p f1(R, r) + q f2(R, r)

p + q
. (5.23)

According to this conclusion, we can establish new inequalities from two known inequalities of
type s2 ≥ f (R, r) in acute triangles. The main result of this paper is actually established in this way.
The author finds that this kind of inequalities are a consequence of Theorem 1 in many cases.

6. Applications of Theorem 1 (IV)

In this section, we shall continue to derive some inequalities from Theorem 1. All the equalities in
these inequalities only occur in the case when the triangle ABC is right isosceles.

Let k > 0 be a positive number, then we may put m = 2k(R− r) + R− 2r and n = R− 2r in Theorem
1 by Euler’s inequality R ≥ 2r, and simple calculations gives the following inequality:

Corollary 17. For any positive number k and an acute triangle ABC we have

s2 ≥
2(2k + 1)R2 + 4(k + 2)Rr + (k + 3)r2

k + 1
. (6.1)

Remark 23. The above inequality can be easily obtained from Walker’ inequality (1.3) and
Ciamberlini’s inequality (1.1),i.e., it follows from that

s2 − (2R2 + 8Rr + 3r2) + k
[
s2 − (2R + r)2

]
≥ 0. (6.2)

Clearly, inequality (6.1) can be regarded as a generalization of Walker’s inequality if we allow k = 0.

In (6.1), putting k = 1, 3, 2/3 respectively, we then obtain the following three inequalities similar to
Walker’s result (1.1).

Corollary 18. Let ABC be an acute triangle, then

s2 ≥ 3R2 + 6Rr + 2r2, (6.3)

2s2 ≥ 7R2 + 10Rr + 3r2, (6.4)

5s2 ≥ 16R2 + 28Rr + 9r2. (6.5)

Let k > 0 and let t ≥ 0. In Theorem 1, for m = 2k(R−r)r+(R−2r)r and n = 2(R−r)(R−2r)t+(R−2r)r,
then it is easy to obtain the following corollary:
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Corollary 19. If k > 0 and t ≥ 0, then for an acute triangle ABC we have

s2 ≥
r
[
(16t + 4k + 2)R2 − (3t − 4k − 8)Rr − (4t − k − 3)r2

]
tR + (k + 1)r

. (6.6)

Remark 24. In fact, the above inequality can be obtained from Lemma 1 and Corollary 17. More
precisely, it follows easily from

t
[
Rs2 − (16R2r − 3Rr2 − 4r3)

]
+ r

[
(k + 1)s2 − 2(2k + 1)R2 − 4(k + 2)Rr − (k + 3)r2

]
≥ 0. (6.7)

For t = (k + 3)/4, (4k + 8)/3 in (6.6) respectively, we obtain

s2 ≥
rR [(32k + 56)R + (13k + 23)r]

(k + 3)R + 4(k + 1)r
, (6.8)

s2 ≥
r
[
(76k + 134)R2 − (13k + 23)r2

]
(4k + 8)R + 3(k + 1)r

. (6.9)

Putting k = 1 in the above two inequalities, we get

Corollary 20. Let ABC be an acute triangle, then

s2 ≥
rR(22R + 9r)

R + 2r
, (6.10)

s2 ≥
r(35R2 − 6r2)

2R + r
. (6.11)

In (6.6), for (k, t) =

(
1,

2
3

)
,

(
1,

1
3

)
,

(
1,

2R
r

)
respectively, we can obtain the following three

inequalities.

Corollary 21. Let ABC be an acute triangle, then

s2 ≥
r(5R + r)(5R + 2r)

R + 3r
, (6.12)

s2 ≥
r(2R + r)(17R + 8r)

R + 6r
, (6.13)

s2 ≥
2r(8R3 + Rr2 + r3)

R2 + r2 . (6.14)

Finally, we give three inequalities which are obtained directly from Theorem 1.

Corollary 22. Let ABC be an acute triangle, then

s2 ≥ 2R2 + 9Rr + r2 −
r3

R
, (6.15)

s2 ≥
9R3 + 9R2r − r3

3R − 2r
, (6.16)

s2 ≥
R(2R + r)(3R + 2r)

2R − r
. (6.17)

In fact, by Euler’s inequality R ≥ 2r we may take

(m, n) =(2R2 − 3Rr, 2R2 − 5Rr + 2r2), (9R2 − 21Rr + 8r2, 3R2 − 5Rr − 2r2),
(6R2 − 13Rr + 4r2, 2R2 − 3Rr − 2r2)

in Theorem 1 respectively, and then inequalities (6.15), (6.16) and (6.17) are easily obtained.
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7. Three open problems

In any triangle ABC, we have the following identity:∑
(a − b)(a − c)(b2 + c2 − a2)a2 = 16r2s2(s2 − 2R2 − 8Rr − 3r2). (7.1)

Thus by Walker’s inequality (1.3) we conclude that the following inequality∑
(a − b)(a − c)(b2 + c2 − a2)a2 ≥ 0 (7.2)

holds for the acute triangle ABC.
Considering generalizations of inequality (7.2) and the previous inequality (5.9), we present the

following conjecture as an open problem:

Conjecture 1. Let k be a real number such that k ≤ 4, then for an acute triangle ABC we have∑
(a − b)(a − c)(b2 + c2 − a2)ak ≥ 0. (7.3)

Similarly, we present the following two conjectures checked by a computer:

Conjecture 2. Let k be a real number such that k ≥ −10, then for an acute triangle ABC we have∑
(a − b)(a − c)(b2 + c2 − a2)(b + c)k ≥ 0. (7.4)

Conjecture 3. Let k be a real number such that k ≥ −3, then for an acute triangle ABC we have∑
(a − b)(a − c)(b2 + c2 − a2)(b + c − a)k ≥ 0. (7.5)

8. Conclusions

We have obtained various parallel low bounds of s2 in terms of R and r for an acute triangle ABC
from Theorem 1. When R2−Rr−r2 < 0, the best low bound of these results is given by (2.1), which, as
a special case of Theorem 1 when m = 0, is just the result of Lemma 1. This shows that inequality (2.1)
is such a remarkable result that it might be used to prove some polynomial inequalities f (s,R, r) ≥ 0
in acute triangles.
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