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1. Introduction

The radial addition K+̃L of star sets K and L can be defined by

ρ(K+̃L, ·) = ρ(K, ·) + ρ(L, ·),

where a star set is a compact set that is star-shaped at o and contains o and ρ(K, ·) denotes the radial
function of star set K. The radial function is defined by

ρ(K, u) = max{c ≥ 0 : cu ∈ K}, (1.1)

for u ∈ S n−1, where S n−1 denotes the surface of the unit ball centered at the origin. The initial study
of the radial addition can be found in [1, p. 235]. K is called a star body if ρ(K, ·) is positive and
continuous, and let Sn denote the set of star bodies. The radial addition and volume are the basis

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020427


6640

and core of the dual Brunn-Minkowski theory (see, e.g., [2–10]). It is important that the dual Brunn-
Minkowski theory can count among its successes the solution of the Busemann-Petty problem in [3,11–
14]. Recently, it has turned to a study extending from Lp-dual Brunn-Minkowski theory to Orlicz
dual Brunn-Minkowski theory. The Orlicz dual Brunn-Minkowski theory and its dual have attracted
people’s attention [15–28].

For K ∈ Sn and u ∈ S n−1, the half chord of K in the direction u is defined by

d(K, u) =
1
2

(
ρ(K, u) + ρ(K,−u)

)
.

If there exists a constant λ > 0 such that d(K, u) = λd(L, u), for all u ∈ S n−1, then star bodies K, L
are said to have similar chord (see Gardner [1] or Schneider [29]). Lu [30] introduced the i-th chord
integral of star bodies: For K ∈ Sn and 0 ≤ i < n, the i-th chord integral of K, is denoted by Bi(K), is
defined by

Bi(K) =
1
n

∫
S n−1

d(K, u)n−idS (u). (1.2)

Obviously, for i = 0, Bi(K) becomes the chord integral B(K).
The main aim of the present article is to generalize the chord integrals to Orlicz space. We introduce

a new affine geometric quantity which we shall call Orlicz mixed chord integrals. The fundamental
notions and conclusions of the chord integral and related isoperimetric inequalities for the chord
integral are extended to an Orlicz setting. The new inequalities in special cases yield the Lp-dual
Minkowski and Lp-dual Brunn-Minkowski inequalities for the Lp-mixed chord integrals. The related
concepts and inequalities of Lp-mixed chord integrals are derived. As extensions, Orlicz multiple
mixed chord integrals and Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord
integrals are also derived.

In Section 3, we introduce the following new notion of Orlicz chord addition of star bodies.
Orlicz chord addition Let K and L be star bodies, the Orlicz chord addition of K and L, is denoted

by K+̌φL, is defined by

φ

(
d(K, u)

d(K+̌φL, u)
,

d(L, u)
d(K+̌φL, u)

)
= 1, (1.3)

where u ∈ S n−1, and φ ∈ Φ2, which is the set of convex functions φ : [0,∞)2 → (0,∞) that are
decreasing in each variable and satisfy φ(0, 0) = ∞ and φ(∞, 1) = φ(1,∞) = 1.

The particular instance of interest corresponds to using (1.3) with φ(x1, x2) = φ1(x1) + εφ2(x2) for
ε > 0 and some φ1, φ2 ∈ Φ, which are the sets of convex functions φ1, φ2 : [0,∞) → (0,∞) that are
decreasing and satisfy φ1(0) = φ2(0) = ∞, φ1(∞) = φ2(∞) = 0 and φ1(1) = φ2(1) = 1.

In accordance with the spirit of Aleksandrov [31], Fenchel and Jessen’s [32] introduction of mixed
quermassintegrals, and introduction of Lutwak’s [33] Lp-mixed quermassintegrals, we are based on the
study of first-order variations of the chord integrals. In Section 4, we prove that the first order Orlicz
variation of the mixed chord integral can be expressed as: For K, L ∈ Sn, φ1, φ2 ∈ Φ, 0 ≤ i < n and
ε > 0,

d
dε

∣∣∣∣∣
ε=0+

Bi(K+̌φε · L) = (n − i) ·
1

(φ1)′r(1)
· Bφ2,i(K, L), (1.4)

where (φ1)′r(1) denotes the value of the right derivative of convex function φ1 at point 1. In this first
order variational equation (1.4), we find a new geometric quantity. Based on this, we extract the
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required geometric quantity, denoted by Bφ,i(K, L) which we shall call Orlicz mixed chord integrals of
K and L, as follows

Bφ2,i(K, L) =
1

n − i
· (φ1)′r(1) ·

d
dε

∣∣∣∣∣
ε=0+

Bi(K+̌φε · L). (1.5)

We show also that the new affine geometric quantity has an integral representation as follows:

Bφ,i(K, L) =
1
n

∫
S n−1

φ

(
d(L, u)
d(K, u)

)
d(K, u)n−idS (u). (1.6)

When φ(t) = t−p and p ≥ 1, the new affine geometric quantity becomes a new Lp-mixed chord integrals
of K and L, denoted by Bp,i(K, L), which as is in (2.7).

In Section 5, we establish an Orlicz Minkowski inequality for the mixed chord and Orlicz mixed
chord integrals.

Orlicz Minkowski inequality for the Orlicz mixed chord integrals If K, L ∈ Sn, 0 ≤ i < n and
φ ∈ Φ, then

Bφ,i(K, L) ≥ Bi(K) · φ
( Bi(L)

Bi(K)

)1/(n−i) . (1.7)

If φ is strictly convex, the equality holds if and only if K and L are similar chord.
When φ(t) = t−p and p ≥ 1, (1.7) becomes a new Lp-Minkowski inequality (2.8) for the Lp-mixed

chord integrals.
In Section 6, as an application, we establish an Orlicz Brunn-Minkowski inequality for the Orlicz

chord additions and the mixed chord integrals:
Orlicz Brunn-Minkowski inequality for the Orlicz chord additions If K, L ∈ Sn, 0 ≤ i < n and

φ ∈ Φ2, then

1 ≥ φ
( Bi(K)

Bi(K+̌φL)

)1/(n−i)

,

(
Bi(L)

Bi(K+̌φL)

)1/(n−i) . (1.8)

If φ is strictly convex, the equality holds if and only if K and L are similar chord.
When φ(t) = t−p and p ≥ 1, (1.8) becomes a new Lp-Brunn-Minkowski inequality (2.9) for the

mixed chord integrals.
A new isoperimetric inequality for the chord integrals is given in Section 7. In Section 8, Orlicz

multiple mixed chord integrals is introduced and Orlicz-Aleksandrov-Fenchel inequality for the Orlicz
multiple mixed chord integrals is established.

2. Preliminaries

The setting for this paper is n-dimensional Euclidean space Rn. A body in Rn is a compact set equal
to the closure of its interior. For a compact set K ⊂ Rn, we write V(K) for the (n-dimensional) Lebesgue
measure of K and call this the volume of K. Associated with a compact subset K of Rn which is star-
shaped with respect to the origin and contains the origin, its radial function is ρ(K, ·) : S n−1 → [0,∞)
is defined by

ρ(K, u) = max{λ ≥ 0 : λu ∈ K}.

Note that the class (star sets) is closed under union, intersection, and intersection with subspace. The
radial function is homogeneous of degree −1, that is (see e.g. [1]),

ρ(K, ru) = r−1ρ(K, u),
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for all u ∈ S n−1 and r > 0. Let δ̃ denote the radial Hausdorff metric, as follows: if K, L ∈ Sn, then

δ̃(K, L) = |ρ(K, u) − ρ(L, u)|∞.

From the definition of the radial function, it follows immediately that for A ∈ GL(n) the radial function
of the image AK = {Ay : y ∈ K} of K is given by (see e.g. [29])

ρ(AK, x) = ρ(K, A−1x), (2.1)

for all x ∈ Rn.
For Ki ∈ S

n, i = 1, . . . ,m, define the real numbers RKi and rKi by

RKi = max
u∈S n−1

d(Ki, u), and rKi = min
u∈S n−1

d(Ki, u). (2.2)

Obviously, 0 < rKi < RKi , for all Ki ∈ S
n. Writing R = max{RKi} and r = min{rKi}, where i = 1, . . . ,m.

2.1. Mixed chord integrals

If K1, . . . ,Kn ∈ S
n, the mixed chord integral of K1, . . . ,Kn, is denoted by B(K1, . . . ,Kn), is defined

by (see [30])

B(K1, . . . ,Kn) =
1
n

∫
S n−1

d(K1, u) · · · d(Kn, u)dS (u).

If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L, the mixed chord integral B(K1, . . . ,Kn) is written as
Bi(K, L). If L = B (B is the unit ball centered at the origin), the mixed chord integral Bi(K, L) = Bi(K, B)
is written as Bi(K) and called the i-th chord integral of K. Obviously, For K ∈ Sn and 0 ≤ i < n, we
have

Bi(K) =
1
n

∫
S n−1

d(K, u)n−idS (u). (2.3)

If K1 = · · · = Kn−i−1 = K, Kn−i = · · · = Kn−1 = B and Kn = L, the mixed chord integral
B(K, . . . ,K︸    ︷︷    ︸

n−i−1

, B, . . . , B︸   ︷︷   ︸
i

, L) is written as Bi(K, L) and called the i-th mixed chord integral of K and L.

For K, L ∈ Sn and 0 ≤ i < n, it is easy to see that

Bi(K, L) =
1
n

∫
S n−1

d(K, u)n−i−1d(L, u)dS (u). (2.4)

This integral representation (2.4), together with the Hölder inequality, immediately give the Minkowski
inequality for the i-th mixed chord integral: If K, L ∈ Sn and 0 ≤ i < n, then

Bi(K, L)n−i ≤ Bi(K)n−i−1Bi(L), (2.5)

with equality if and only if K and L are similar chord.
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2.2. Lp-mixed chord integrals

Definition 2.1 (The Lp-chord addition) Let K, L ∈ Sn and p ≥ 1, the Lp chord addition +̌p of star
bodies K and L, is defined by

d(K+̌pL, u)−p = d(K, u)−p + d(L, u)−p, (2.6)

for u ∈ S n−1.
Obviously, putting φ(x1, x2) = x−p

1 + x−p
2 and p ≥ 1 in (1.3), (1.3) becomes (2.6). The following

result follows immediately from (2.6) with p ≥ 1.

−
np

n − i
lim
ε→0+

Bi(K+̌pε · L) − Bi(L)
ε

=
1
n

∫
S n−1

d(K, u)n−i+pd(L, u)−pdS (u).

Definition 2.2 (The Lp-mixed chord integrals) Let K, L ∈ Sn, 0 ≤ i < n and p ≥ 1, the Lp-mixed
chord integral of star K and L, denoted by Bp,i(K, L), is defined by

Bp,i(K, L) =
1
n

∫
S n−1

d(K, u)n−i+pd(L, u)−pdS (u). (2.7)

Obviously, when K = L, the Lp-mixed chord integral Bp,i(K,K) becomes the i-th chord integral Bi(K).
This integral representation (2.7), together with the Hölder inequality, immediately gives:

Proposition 2.3 If K, L ∈ Sn, 0 ≤ i < n and p ≥ 1, then

Bp,i(K, L)n−i ≥ Bi(K)n−i+pBi(L)−p, (2.8)

with equality if and only if K and L are similar chord.

Proposition 2.4 If K, L ∈ Sn, 0 ≤ i < n and p ≥ 1, then

Bi(K+̌pL)−p/(n−i) ≥ Bi(K)−p/(n−i) + Bi(L)−p/(n−i), (2.9)

with equality if and only if K and L are similar chord.
Proof From (2.6) and (2.7), it is easily seen that the Lp-chord integrals is linear with respect to the
Lp-chord addition, and together with inequality (2.8), we have for p ≥ 1

Bp,i(Q,K+̌pL) = Bp,i(Q,K) + Bp,i(Q, L)
≥ Bi(Q)(n−i+p)/(n−i)(Bi(K)−p/(n−i) + Bi(L)−p/(n−i)),

with equality if and only if K and L are similar chord.
Take K+̌pL for Q, recall that Bp,i(Q,Q) = Bi(Q), inequality (2.9) follows easily. �

3. Orlicz chord addition

Throughout this paper, the standard orthonormal basis for Rn will be {e1, . . . , en}. Let Φn, n ∈ N,
denote the set of convex functions φ : [0,∞)n → (0,∞) that are strictly decreasing in each variable and
satisfy φ(0) = ∞ and φ(e j) = 1, j = 1, . . . , n. When n = 1, we shall write Φ instead of Φ1. The left
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derivative and right derivative of a real-valued function f are denoted by ( f )′l and ( f )′r, respectively.
We first define the Orlicz chord addition.
Definition 3.1 (The Orlicz chord addition) Let m ≥ 2, φ ∈ Φm, K j ∈ S

n and j = 1, . . . ,m, the Orlicz
chord addition of K1, . . . ,Km, is denoted by +̌φ(K1, . . . ,Km), is defined by

d(+̌φ(K1, . . . ,Km), u) = sup
{
λ > 0 : φ

(
d(K1, u)

λ
, . . . ,

d(Km, u)
λ

)
≤ 1

}
, (3.1)

for u ∈ S n−1. Equivalently, the Orlicz chord addition +̌φ(K1, . . . ,Km) can be defined implicitly by

φ

(
d(K1, u)

d(+̌φ(K1, . . . ,Km), u)
, . . . ,

d(Km, u)
d(+̌φ(K1, . . . ,Km), u)

)
= 1, (3.2)

for all u ∈ S n−1.
An important special case is obtained when

φ(x1, . . . , xm) =

m∑
j=1

φ j(x j),

for some fixed φ j ∈ Φ such that φ1(1) = · · · = φm(1) = 1. We then write +̌φ(K1, . . . ,Km) =

K1+̌φ · · · +̌φKm. This means that K1+̌φ · · · +̌φKm is defined either by

d(K1+̌φ · · · +̌φKm, u) = sup

λ > 0 :
m∑

j=1

φ j

(
d(K j, u)

λ

)
≤ 1

 , (3.3)

for all u ∈ S n−1, or by the corresponding special case of (3.2).
Lemma 3.2 The Orlicz chord addition +̌φ : (Sn)m → Sn is monotonic.
Proof This follows immediately from (3.1). �

Lemma 3.3 The Orlicz chord addition +̌φ : (Sn)m → Sn is GL(n) covariant.
Proof From (2.1), (3.1) and let A ∈ GL(n), we obtain

d(+̌φ(AK1, AK2 . . . , AKm), u)

= sup
{
λ > 0 : φ

(
d(AK1, u)

λ
,

d(AK2, u)
λ

, . . . ,
d(AKm, u)

λ

)
≤ 1

}
= sup

{
λ > 0 : φ

(
d(K1, A−1u)

λ
,

d(K2, A−1u)
λ

, . . . ,
d(Km, A−1u)

λ

)
≤ 1

}
= d(+̌φ(K1, . . . ,Km), A−1u)
= d(+̌φ(K1, . . . ,Km), u).

This shows Orlicz chord addition +̌φ is GL(n) covariant. �

Lemma 3.4 Suppose K1, . . . ,Km ∈ S
n. If φ ∈ Φ, then

φ

(
d(K1, u)

t

)
+ · · · + φ

(
d(Km, u)

t

)
= 1
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if and only if
d(+̌φ(K1, . . . ,Km), u) = t

Proof This follows immediately from Definition 3.1. �

Lemma 3.5 Suppose Km, . . . ,Km ∈ S
n. If φ ∈ Φ, then

r
φ−1( 1

m )
≤ d(+̌φ(K1, . . . ,Km), u) ≤

R
φ−1( 1

m )
.

Proof Suppose d(+̌φ(K1, . . . ,Km), u) = t, from Lemma 3.4 and noting that φ is strictly deceasing on
(0,∞), we have

1 = φ

(
d(K1, u)

t

)
+ · · · + φ

(
d(Km, u)

t

)
≤ φ

(rK1

t

)
+ · · · + φ

(rKm

t

)
= mφ

(r
t

)
.

Noting that the inverse φ−1 is strictly deceasing on (0,∞), we obtain the lower bound for
d(+̌φ(K1, . . . ,Km), u):

t ≥
r

φ−1( 1
m )
.

To obtain the upper estimate, observe the fact from the Lemma 3.4, together with the convexity and
the fact φ is strictly deceasing on (0,∞), we have

1 = φ

(
d(K1, u)

t

)
+ · · · + φ

(
d(Km, u)

t

)
≥ mφ

(
d(K1, u) + · · · + d(Km, u)

mt

)
≥ mφ

(R
t

)
.

Then we obtain the upper estimate:

t ≤
R

φ−1( 1
m )
.

�

Lemma 3.6 The Orlicz chord addition +̌φ : (Sn)m → Sn is continuous.
Proof To see this, indeed, let Ki j ∈ S

n, i ∈ N∪ {0}, j = 1, . . . ,m, be such that Ki j → K0 j as i→ ∞. Let

d(+̌φ(Ki1, . . . ,Kim), u) = ti.

Then Lemma 3.5 shows
ri j

φ−1( 1
m )
≤ ti ≤

Ri j

φ−1( 1
m )
,

where ri j = min{rKi j} and Ri j = max{RKi j}. Since Ki j → K0 j, we have RKi j → RK0 j < ∞ and rKi j →

rK0 j > 0, and thus there exist a, b such that 0 < a ≤ ti ≤ b < ∞ for all i. To show that the bounded
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sequence {ti} converges to d(+̌φ(K01, . . . ,K0m), u), we show that every convergent subsequence of {ti}

converges to d(+̌φ(K01, . . . ,K0m), u). Denote any subsequence of {ti} by {ti} as well, and suppose that
for this subsequence, we have

ti → t∗.

Obviously a ≤ t∗ ≤ b. Noting that φ is a continuous function, we obtain

t∗ → sup
{

t∗ > 0 : φ
(
d(K01, u)

t∗
, . . . ,

d(K0m, u)
t∗

)
≤ 1

}
= d(+̌φ(K01, . . . ,K0m), u).

Hence
d(+̌φ(Ki1, . . . ,Kim), u)→ d(+̌φ(K01, . . . ,K0m), u)

as i→ ∞.
This shows that the Orlicz chord addition +̌φ : (Sn)m → Sn is continuous. �
Next, we define the Orlicz chord linear combination for the case m = 2.

Definition 3.7 (The Orlicz chord linear combination) The Orlicz chord linear combination, denoted
by +̌φ(K, L, α, β) for K, L ∈ Sn, and α, β ≥ 0 (not both zero), is defined by

α · φ1

(
d(K, u)

d(+̌φ(K, L, α, β), u)

)
+ β · φ2

(
d(L, u)

d(+̌φ(K, L, α, β), u)

)
= 1, (3.4)

for φ1, φ2 ∈ Φ and all u ∈ S n−1.
We shall write K+̌φε ·L instead of +̌φ(K, L, 1, ε), for ε ≥ 0 and assume throughout that this is defined

by (3.1), if α = 1, β = ε and φ ∈ Φ. We shall write K+̌φL instead of +̌φ(K, L, 1, 1) and call it the Orlicz
chord addition of K and L.

4. Orlicz mixed chord integrals

In order to define Orlicz mixed chord integrals, we need the following Lemmas 4.1-4.4.
Lemma 4.1 Let φ ∈ Φ and ε > 0. If K, L ∈ Sn, then K+̌φε · L ∈ Sn.

Proof Let u0 ∈ S n−1, and {ui} ⊂ S n−1 be any subsequence such that ui → u0 as i→ ∞.
Let

d(K+̌φL, ui) = λi.

Then Lemma 3.5 shows
r

φ−1( 1
2 )
≤ λi ≤

R
φ−1(1

2 )
,

where R = max{RK ,RL} and r = min{rK , rL}.

Since K, L ∈ Sn, we have 0 < rK ≤ RK < ∞ and 0 < rL ≤ RL < ∞, and thus there exist a, b such that
0 < a ≤ λi ≤ b < ∞ for all i. To show that the bounded sequence {λi} converges to d(K+̌φε · L, u0), we
show that every convergent subsequence of {λi} converges to d(K+̌φε · L, u0). Denote any subsequence
of {λi} by {λi} as well, and suppose that for this subsequence, we have

λi → λ0.
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Obviously a ≤ λ0 ≤ b. From (3.4) and note that φ1, φ2 are continuous functions, so φ−1
1 is continuous,

we obtain
λi →

d(K, u0)

φ−1
1

(
1 − εφ2

(
d(L, u0)
λ0

))
as i→ ∞. Hence

φ1

(
d(K, u0)
λ0

)
+ εφ2

(
d(L, u0)
λ0

)
= 1.

Therefore
λ0 = d(K+̌φε · L, u0).

That is
d(K+̌φε · L, ui)→ d(K+̌φε · L, u0).

as i→ ∞.
This shows that K+̌φε · L ∈ Sn. �

Lemma 4.2 If K, L ∈ Sn, ε > 0 and φ ∈ Φ, then

K+̌φε · L→ K (4.1)

as ε→ 0+.
Proof This follows immediately from (3.4). �

Lemma 4.3 If K, L ∈ Sn, 0 ≤ i < n and φ1, φ2 ∈ Φ, then

d
dε

∣∣∣∣∣
ε=0+

d(K+̌φε · L, u)n−i =
n − i

(φ1)′r(1)
· φ2

(
d(L, u)
d(K, u)

)
· d(K, u)n−i. (4.2)

Proof From (3.4), Lemma 4.2 and notice that φ−1
1 , φ2 are continuous functions, we obtain for 0 ≤ i < n

d
dε

∣∣∣∣∣
ε=0+

d(K+̌φε · L, u)n−i

= lim
ε→0+

(n − i)d(K, u)n−i−1
(
d(K, u)φ2

(
d(L, u)

d(K+̌φε · L, u)

))
× lim

y→1−

φ−1
1 (y) − φ−1

1 (1)
y − 1

=
n − i

(φ1)′r(1)
· φ2

(
d(L, u)
d(K, u)

)
· d(K, u)n−i,

where

y = 1 − εφ2

(
d(L, u)

d(K+̌φε · L, u)

)
,

and note that y→ 1− as ε→ 0+. �

Lemma 4.4 If φ ∈ Φ2, 0 ≤ i < n and K, L ∈ Sn, then

(φ1)′r(1)
n − i

·
d
dε

∣∣∣∣∣
ε=0+

Bi(K+̌φε · L) =
1
n

∫
S n−1

φ2

(
d(L, u)
d(K, u)

)
· d(K, u)n−idS (u). (4.3)
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Proof This follows immediately from (2.1) and Lemma 4.3. �
Denoting by Bφ,i(K, L), for any φ ∈ Φ and 0 ≤ i < n, the integral on the right-hand side of (4.3) with

φ2 replaced by φ, we see that either side of the equation (4.3) is equal to Bφ2,i(K, L) and hence this new
Orlicz mixed chord integrals Bφ,i(K, L) has been born.
Definition 4.5 (The Orlicz mixed chord integral) For φ ∈ Φ and 0 ≤ i < n, Orlicz mixed chord integral
of star bodies K and L, Bφ,i(K, L), is defined by

Bφ,i(K, L) =:
1
n

∫
S n−1

φ

(
d(L, u)
d(K, u)

)
· d(K, u)n−idS (u). (4.4)

Lemma 4.6 If φ1, φ2 ∈ Φ, 0 ≤ i < n and K, L ∈ Sn, then

Bφ2,i(K, L) =
(φ1)′r(1)

n − i
lim
ε→0+

Bi(K+̌φε · L) − Bi(K)
ε

. (4.5)

Proof This follows immediately from Lemma 4.4 and (4.4). �

Lemma 4.7 If K, L ∈ Sn, φ ∈ Φ and any A ∈ S L(n), then for ε > 0

A(K+̌φε · L) = (AK)+̌φε · (AL). (4.6)

Proof This follows immediately from (2.1) and (3.3). �
We find easily that Bφ,i(K, L) is invariant under simultaneous unimodular centro-affine

transformation.
Lemma 4.8 If φ ∈ Φ, 0 ≤ i < n and K, L ∈ Sn, then for A ∈ S L(n),

Bφ,i(AK, AL) = Bφ,i(K, L). (4.7)

Proof This follows immediately from Lemmas 4.6 and 4.7. �

5. Orlicz chord Minkowski inequality

In this section, we will define a Borel measure in S n−1, denoted by Bn,i(K, υ), which we shall call
the chord measure of star body K.
Definition 5.1 (The chord measure) Let K ∈ Sn and 0 ≤ i < n, the chord measure of star body K,
denoted by Bn,i(K, υ), is defined by

dBn,i(K, υ) =
1
n
·

d(K, υ)n−i

Bi(K)
dS (υ). (5.1)

Lemma 5.2 (Jensen’s inequality) Let µ be a probability measure on a space X and g : X → I ⊂ R be
a µ-integrable function, where I is a possibly infinite interval. If ψ : I → R is a convex function, then∫

X
ψ(g(x))dµ(x) ≥ ψ

(∫
X

g(x)dµ(x)
)
. (5.2)

If ψ is strictly convex, the equality holds if and only if g(x) is constant for µ-almost all x ∈ X (see [34,
p. 165]).
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Lemma 5.3 Suppose that φ : [0,∞) → (0,∞) is decreasing and convex with φ(0) = ∞. If K, L ∈ Sn

and 0 ≤ i < n, then

1
nBi(K)

∫
S n−1

φ

(
d(L, u)
d(K, u)

)
d(K, u)n−idS (u) ≥ φ

( Bi(L)
Bi(K)

)1/(n−i) . (5.3)

If φ is strictly convex, the equality holds if and only if K and L are similar chord.

Proof For K ∈ Sn−1, 0 ≤ i < n and any u ∈ S n−1, the chord measure d(K, u)n−i

nBi(K) dS (u) is a probability

measure on S n−1. Hence, from (2.4), (2.5), (5.1) and by using Jensen’s inequality, and in view of φ is
decreasing, we obtain

1
nBi(K)

∫
S n−1

φ

(
d(L, u)
d(K, u)

)
d(K, u)n−idS (u)

=

∫
S n−1

φ

(
d(L, u)
d(K, u)

)
dBn,i(K, u)

≥ φ

(
Bi(K, L)
Bi(K)

)
≥ φ

( Bi(L)
Bi(K)

)1/(n−i) .
Next, we discuss the equality in (5.3). If φ is strictly convex, suppose the equality holds in (5.3),
form the equality necessary conditions of Jensen’s inequality and (2.5), it follows that d(L, u)/d(K, u)
is constant, and K and L are similar chord, respectively. This yields that there exists r > 0 such that
d(L, u) = rd(K, u), for all u ∈ S n−1. On the other hand, suppose that K and L are similar chord, i.e.
there exists λ > 0 such that d(L, u) = λd(K, u) for all u ∈ S n−1. Hence

1
nBi(K)

∫
S n−1

φ

(
d(L, u)
d(K, u)

)
d(K, u)n−idS (u)

=
1

nBi(K)

∫
S n−1

φ

( Bi(L)
Bi(K)

)1/(n−i) d(K, u)n−idS (u)

= φ

( Bi(L)
Bi(K)

)1/(n−i) .
This implies the equality in (5.3) holds. �

Theorem 5.4 (Orlicz chord Minkowski inequality) If K, L ∈ Sn, 0 ≤ i < n and φ ∈ Φ, then

Bφ,i(K, L) ≥ Bi(K) · φ
( Bi(L)

Bi(K)

)1/(n−i) . (5.4)

If φ is strictly convex, the equality holds if and only if K and L are similar chord.
Proof This follows immediately from (4.4) and Lemma 5.3. �
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Corollary 5.5 If K, L ∈ Sn, 0 ≤ i < n and p ≥ 1, then

Bp,i(K, L)n−i ≥ Bi(K)n−i+pBi(L)−p, (5.5)

with equality if and only if K and L are similar chord.
Proof This follows immediately from Theorem 5.4 with φ1(t) = φ2(t) = t−p and p ≥ 1. �

Taking i = 0 in (5.5), this yields Lp-Minkowski inequality: If K, L ∈ Sn and p ≥ 1, then

Bp(K, L)n ≥ B(K)n+pB(L)−p,

with equality if and only if K and L are similar chord.
Corollary 5.6 Let K, L ∈ M ⊂ Sn, 0 ≤ i < n and φ ∈ Φ, and if either

Bφ,i(Q,K) = Bφ,i(Q, L), for all Q ∈ M (5.6)

or
Bφ,i(K,Q)

Bi(K)
=

Bφ,i(L,Q)
Bi(L)

, for all Q ∈ M, (5.7)

then K = L.
Proof Suppose (5.6) holds. Taking K for Q, then from (2.3), (4.4) and (5.3), we obtain

Bi(K) = Bφ,i(K, L) ≥ Bi(K)φ
( Bi(L)

Bi(K)

)1/(n−i)
with equality if and only if K and L are similar chord. Hence

Bi(K) ≤ Bi(L),

with equality if and only if K and L are similar chord. On the other hand, if taking L for Q, by similar
arguments, we get Bi(K) ≥ Bi(L), with equality if and only if K and L are similar chord. Hence
Bi(K) = Bi(L), and K and L are similar chord, it follows that K and L must be equal.

Suppose (5.7) holds. Taking L for Q, then from from (2.3), (4.4) and (5.3), we obtain

1 =
Bφ,i(K, L)

Bi(K)
≥ φ

( Bi(L)
Bi(K)

)1/(n−i) ,
with equality if and only if K and L are similar chord. Hence

Bi(K) ≤ Bi(L),

with equality if and only if K and L are similar chord. On the other hand, if taking K for Q, by similar
arguments, we get Bi(K) ≥ Bi(L), with equality if and only if K and L are similar chord. Hence
Bi(K) = Bi(L), and K and L have similar chord, it follows that K and L must be equal. �

When φ1(t) = φ2(t) = t−p and p ≥ 1, Corollary 5.6 becomes the following result.
Corollary 5.7 Let K, L ∈ M ⊂ Sn, 0 ≤ i < n and p ≥ 1, and if either

Bp,i(K,Q) = Bp,i(L,Q), for all Q ∈ M

or
Bp,i(K,Q)

Bi(K)
=

Bp,i(L,Q)
Bi(L)

, for all Q ∈ M,

then K = L.
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6. Orlicz chord Brunn-Minkowski inequality

Lemma 6.1 If K, L ∈ Sn, 0 ≤ i < n, and φ1, φ2 ∈ Φ, then

Bi(K+̌φL) = Bφ1,i(K+̌φL,K) + Bφ2,i(K+̌φL, L). (6.1)

Proof From (3.1), (3.4) and (4.4), we have for K+̌φL = Q ∈ Sn

Bφ1,i(Q,K) + Bφ2,i(Q, L)

=
1
n

∫
S n−1

φ

(
d(K, u)
d(Q, u)

,
d(L, u)
d(Q, u)

)
d(Q, u)n−idS (u)

= Bi(Q). (6.2)

The completes the proof. �

Lemma 6.2 Let K, L ∈ Sn, ε > 0 and φ ∈ Φ.
(1) If K and L are similar chord, then K and K+̌φε · L are similar chord.
(2) If K and K+̌φε · L are similar chord, then K and L are similar chord.

Proof Suppose exist a constant λ > 0 such that d(L, u) = λd(K, u), we have

φ

(
d(K, u)

d(K+̌φε · L, u)

)
+ εφ

(
λd(K, u)

d(K+̌φε · L, u)

)
= 1.

On the other hand, the exist unique constant δ > 0 such that

φ

(
d(K, u)
d(δK, u)

)
+ εφ

(
λd(K, u)
d(δK, u)

)
= 1,

where δ satisfies that

φ

(
1
δ

)
+ εφ

(
λ

δ

)
= 1.

This shows that d(K+̌φε · L, u) = δd(K, u).
Suppose exist a constant λ > 0 such that d(K+̌φε · L, u) = λd(K, u). Then

φ

(
1
λ

)
+ εφ

(
d(L, u)

d(K+̌φε · L, u)

)
= 1.

This shows that
d(L, u)

d(K+̌φε · L, u)

is a constant. This yields that K+̌φε · L and L are similar chord. Namely K and L are similar chord. �
Theorem 6.3 (Orlicz chord Brunn-Minkowski inequality) If K, L ∈ Sn, 0 ≤ i < n and φ ∈ Φ2, then

1 ≥ φ
( Bi(K)

Bi(K+̌φL)

)1/(n−i)

,

(
Bi(L)

Bi(K+̌φL)

)1/(n−i) . (6.3)

If φ is strictly convex, the equality holds if and only if K and L are similar chord.
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Proof From (5.4) and Lemma 6.1, we have

Bi(K+̌φL) = Bφ1,i(K+̌φL,K) + Bφ2,i(K+̌φL, L)

≥ Bi(K+̌φL)
φ1

( Bi(K)
Bi(K+̌φL)

)1/(n−i) + φ2

( Bi(L)
kBi(K+̌φL)

)1/(n−i)
= Bi(K+̌φL)φ

( Bi(K)
Bi(K+̌φL)

)1/(n−i)

,

(
Bi(L)

Bi(K+̌φL)

)1/(n−i) .
This is just inequality (6.3). From the equality condition of (5.4) and Lemma 6.3, it yields that if φ is
strictly convex, equality in (6.3) holds if and only if K and L are similar chord. �

Corollary 6.4 If K, L ∈ Sn, 0 ≤ i < n and p ≥ 1, then

Bi(K+̌pL)−p/(n−i) ≥ Bi(K)−p/(n−i) + Bi(L)−p/(n−i), (6.4)

with equality if and only if K and L are similar chord.
Proof This follows immediately from Theorem 6.2 with φ(x1, x2) = x−p

1 + x−p
2 and p ≥ 1. �

Taking i = 0 in (6.4), this yields the Lp-Brunn-Minkowski inequality for the chord integrals. If
K, L ∈ Sn and p ≥ 1, then

B(K+̌pL)−p/n ≥ B(K)−p/n + B(L)−p/n,

with equality if and only if K and L are similar chord.

7. The isoperimetric inequality for chord integrals

As a application, in the section, we give a new isoperimetric inequality for chord integrals. As we
all know, the isoperimetric inequality for convex bodies can be stated below (see e.g. [26], p. 318).

The isoperimetric inequality If K is convex body in Rn, then(
V(K)
V(B)

)n−1

≤

(
S (K)
S (B)

)n

, (7.1)

with equality if and only if K is an n-ball.
Here B is the unit ball centered at the origin, V(K) denotes the volume of K and S (K) is the surface

area of K, defined by (see [26], p. 318)

S (K) = lim
ε→0

V(K + εB) − V(K)
ε

= nV1(K, B),

where + the usual Minkowski sum. Here, the mixed volume of convex bodies K and L, V1(K, L),
defined by (see e.g. [1])

V1(K, L) =
1
n

∫
S n−1

h(L, u)dS (K, u). (7.2)

Next, we give some new isoperimetric inequalities for mixed chord integrals by using the Orlicz
chord Minkowski inequality established in Section 5.
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Theorem 7.1 (The Lp-isoperimetric inequality for mixed chord integrals) If K ∈ Sn, 0 ≤ i < n and
p ≥ 1, then  B̃p,i(K)

S (B)

n−i

≥

(
Bi(K)
V(B)

)n−i+p

, (7.3)

with equality if and only if K is an n-ball, where B̃p,i(K) = nBp,i(K, B).
Proof Putting L = B, φ(t) = t−p and p ≥ 1 in Orlicz chord Minkowski inequality (5.4)

Bp,i(K, B)
Bi(K)

≥

(
Bi(B)
Bi(K)

)−p/(n−i)

.

That is (
Bp,i(K, B)

Bi(K)

)n−i

≥

(
Bi(K)
V(B)

)p

.

Hence (
nBp,i(K, B)

S (B)

)n−i

≥

(
Bi(K)
V(B)

)n−i+p

.

From the equality of (5.4), we find that the equality in (7.3) holds if and only if K and B are similar
chord. This yields that the equality in (7.3) holds if and only if K is an n-ball. �

Theorem 7.2 (The isoperimetric inequality for the chord integrals) If K ∈ Sn, then B̃(K)
S (B)

n

≥

(
B(K)
V(B)

)n+1

, (7.4)

with equality if and only if K is an n-ball, where B̃(K) = nB1(K, B).
Proof This follows immediately from (7.3) with p = 1 and i = 0. �

This is just a similar form of the classical isoperimetric inequality (7.1).

8. Extensions

As extensions, in the Section, the Orlicz mixed chord integral of K and L, Bφ(K, L), is generalized
into Orlicz multiple mixed chord integral of (n + 1) star bodies L1,K1, . . . ,Kn. Further, we generalize
the Orlicz-Minklowski inequality into Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple
mixed chord integrals.

Theorem 8.1 If L1,K1, . . . ,Kn ∈ S
n and φ1, φ2 ∈ Φ, then

d
dε

∣∣∣∣∣
ε=0+

B(L1+̌φε · K1,K2, · · · ,Kn) =
1

n(φ1)′r(1)

×

∫
S n−1

φ2

(
d(K1, u)
d(L1, u)

)
d(L1, u)d(K2, u) · · · d(Kn, u)dS (u). (8.1)

Proof This may yield by using a generalized idea and method of proving Lemma 4.4. Here, we omit
the details. �
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Obviously, (4.3) is a special case of (8.1). Moreover, from Theorem 8.1, we can find the following
definition:

Definition 8.2 (Orlicz multiple mixed chord integrals) Let L1,K1, . . . ,Kn ∈ S
n and φ ∈ Φ, the Orlicz

multiple mixed chord integral of (n + 1) star bodies L1,K1, . . . ,Kn, is denoted by Bφ(L1,K1, . . . ,Kn), is
defined by

Bφ(L1,K1, . . . ,Kn) =
1
n

∫
S n−1

φ

(
d(K1, u)
d(L1, u)

)
d(L1, u)d(K2, u) · · · d(Kn, u)dS (u). (8.2)

When L1 = K1, Bφ(L1,K1, . . . ,Kn) becomes the well-known mixed chord integral B(K1, . . . ,Kn).
Obviously, for 0 ≤ i < n, Bφ,i(K, L) is also a special case of Bφ(L1,K1, . . . ,Kn).

Corollary 8.3 If L1,K1, . . . ,Kn ∈ S
n and φ1, φ2 ∈ Φ, then

Bφ2(L1,K1, . . . ,Kn) = (φ1)
′

r(1) ·
d
dε

∣∣∣∣
ε=0

B(L1 +φ ε · K1,K2, . . . ,Kn). (8.3)

Proof This yields immediately from (8.1) and (8.2). �
Similar to the proof of Theorem 5.4, we may establish an Orlicz-Aleksandrov-Fenchel inequality

as follows:

Theorem 8.4 (Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals) If
L1,K1, . . . ,Kn ∈ S

n, φ ∈ Φ and 1 ≤ r ≤ n, then

Bφ(L1,K1,K2, · · · ,Kn) ≥ B(L1,K2, · · · ,Kn) · φ

∏r
i=1 B(Ki . . . ,Ki,Kr+1, . . . ,Kn)

1
r

B(L1,K2 . . . ,Kn)

 . (8.4)

If φ is strictly convex, equality holds if and only if L1,K1, . . . ,Kr are all of similar chord.
Proof This yields immediately by using a generalized idea and method of proving Theorem 5.4. Here,
we omit the details. �

Obviously, the Orlicz-Minklowski inequality (5.4) is a special case of the Orlicz-Aleksandrov-
Fenchel inequality (8.4). Moreover, when L1 = K1, (8.4) becomes the following Aleksandrov-Fenchel
inequality for the mixed chords.

Corollary 8.5 (Aleksandrov-Fenchel inequality for the mixed chord integrals) If K1, . . . ,Kn ∈ S
n and

1 ≤ r ≤ n, then

B(K1, · · · ,Kn) ≤
r∏

i=1

B(Ki . . . ,Ki,Kr+1, . . . ,Kn)
1
r . (8.5)

with equality if and only if K1, . . . ,Kr are all of similar chord.
Finally, it is worth mentioning: when φ(t) = t−p and p ≥ 1, Bφ(L1,K1, . . . ,Kn) written as

Bp(L1,K1, . . . ,Kn) and call it Lp-multiple mixed chord integrals of (n + 1) star bodies L1,K1, . . . ,Kn.
So, the new concept of Lp-multiple mixed chord integrals and Lp-Aleksandrov-Fenchel inequality for
the Lp-multiple mixed chord integrals may be also derived. Here, we omit the details of all derivations.
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