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1. Introduction

Linear functions are considered as simplest functions in linear spaces. The class of functions and
sets that are just a step more complicated then linear ones namely convex functions and convex sets.
The subset C of R" is said to be convex if

px+qyeC

Vx,y € C, p € (0,1)and ¢ = 1 — p. The function f : R" — R is said to be convex if its epigraph
is convex subset of R.The convexity of sets and functions are the the objects of many studies during
the past few decades. The convexity of a function and set make it so special because of its interesting
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properties like convex function has global minima, it has non-empty relative interior and convex set is
connected having feasible directions at any point.

Some of early contributions to convex analysis were made by Holder, Jensen and Minkowski. The
importance of convex analysis is well known in optimization theory [2,3], inspite of many applications,
many recent problems in economics and engineering the notion of convexity does not longer suffices.
Hence it is always necessary to extend the notion of convexity to some general form to meet recent
problems see [4—10], for further reading on fractional integral inequalities we refer [11-17]. Moreover,
the new inequalities in analysis is always appreciable. The present paper is organized as follow: in
the second section, we give some preliminary material. In the third section, we derive some fractional
integral inequalities for generalized strongly modified s-convex function, whereas in the fourth section.
we present applications of results to the mean. Finally, we conclude our results.

2. Preliminaries

We start from some preliminaries material and basic definitions.

Definition 2.1. [18] Let f : ¢ — R be an extended-real-valued function define on a convex set ¢ C R”.
Then the function f is convex on ¢ if

Sf(by + (1 = 0)by) < tf(by) + (1 — 1) f(b2), (2.1)
for all by,b, € pand t € (0, 1).

Definition 2.2. [19] Choose the functions f,h : / ¢ R — R are non-negative. Then f is called
h-convex function if

Jby + (1 = 0ba) < (@) f(b1) + h(1 = 1) f(b2), (2.2)
for all b, b, € Jand 1 € [0, 1].

Definition 2.3. [20] Choose the functions f,h : J € R — R are non-negative. Then f is called
modified A-convex function if

f(tby + (1 = 0)by) < W) f(by) + (1 = k(D)) f(b2), (2.3)
for all by,b, € Jand t € [0, 1].

Definition 2.4. [21] Let ¢ be an interval in real line R. A function f : ¢ = [b;,b,] — R is said to be
generalized convex with respect to an arbitrary bifunction n(by, b,) : EXE — F where E, F € R if

Jf(by + (1 = 0)by) < f(b2) + m (f(b1), f(D2)), (2.4)
for all by, b, € @, t € [0, 1].

Definition 2.5. A function f : ¢ = [by, b,] — R is called 1, convex function if

fby + (1 = 0)by) < f(b2) + h(On (f(b1), f(b2)), (2.5)

for all by, by € p,t € [0,1] and h : J — R is a non-negative function.
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Definition 2.6. [22] A function f : ¢ = [by, b,] — R is called strongly convex function with modulus
uon @, where u > 0 if

f(tby + (1 = Dby) < 1f(by) + (1 = 1) f(by) — ut(1 = 1)(by — by)’, (2.6)
for all by,b, € pand t € [0, 1].

Definition 2.7. [23] A function f : J ¢ R — R is said to be strongly n-convex function with respect
ton:EXE — Fwhere E, F € R and modulus u > 0, if

fby + (1 = Dby) < f(ba) + m(f(by), f(b2)) — ut(1 = 1)(by = ba), (2.7)
for all by,b, € J,t € [0, 1].

Definition 2.8. [24] Choose the functions f,h : J € R — R are non-negative. Then f is called
generalized strongly modified h-convex function if

fthy + (1 = Dby) < f(b) + h(On(f(b), f(b2)) — put(1 = 1)(by — by)?, (2.8)
for all b1,b, € Jand t € [0, 1].

Definition 2.9. [25] Let 0 < s < 1. A function f : J C R — R is called s-¢ -convex with respect to
bifunction ¢ : E X E — F where E, F' € R (briefly ¢-convex) if

f@by + (1 = 0by) < f(ba) + ¢ (f(b1), f(b2)), (2.9)
The next remark provides the relations among the convexities.

Remark 1. 1. If n(by, by) = by — b, then,(2.4) reduces to (2.1);

. If h(?) = t then, (2.5) reduces to (2.4);

. If h(t) = t and n(by, by) = by — b, then,(2.5) reduces to(2.1);

. If n(by, by) = by — b, then, (2.5) reduces to (2.3);

. If u = 0and n(by, by) = by — b, then,(2.8) reduces to (2.3);

Afu =0, n(by,by) = by — by and h(t) = t then,(2.8) reduces to(2.1);
. If u = 0 then,(2.8) reduces to (2.5);

. If h(¢) = t then, (2.8) reduces to (2.7);

. If u = 0 and h(¢) = ¢’ then, (2.8) reduces to (2.9).

O 00 N Lt W IN

Utilization of more complicated convex functions

Most of the modern problems in engineering and other applied sciences are non-convex in nature.
So it is difficult to reach at favorite results by only the classical convexity. That’s why the convexity is
generalized in many directions. To understand the generalization of convexity it may categorize as:

Some generalization are made to change the form of defining e.g. quasi convex [26], pseudo
convex [27] and strongly convex [28].

Some generalizations are made by expanding the domain e.g. [29] and some generalization are
made by changing the range set of convex functions e.g. [30]. So generalizations the convex is always
appreciable.

The next lemmas are useful in proving the main results.
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Lemma 2.10. [31] Let f : J C R — R, be a differentiable mapping on J such that f’ € L'[by,b,],
where by, by € J withb) < by. If a, 8 € R, then

af(b))+Bf(by) 2—-a—-B (b +b; 1 by
- d
2 A S T A
b -b by +b b, +b
-2 1f [(1 —t)f’(tb1+(1—t) 1; 2)+(,6’—t)f'(t%+(1—t)bz)](2.10)
Lemma 2.11. [3]] For s > 0and 0 < & < 1, we have
1 P (1 - 8)s+1
— 1’ dt = 2.11
j;ls i° dt 1 ; (2.11)
1 s+2 _ s+1
ft|8—t|sdl=8 +(s+1+e)(1-¢) (2.12)
0 s+ 1

f 2 2= (L= s+ (s +3) =201 = ) (s +3) + 21— )7
, Clemih= G+ D(s+2)(s +3) ‘

Lemma 2.12. [32] Let f : J — R, J C R be a differentiable mapping on J with f" € L'[by, b,], where
by,b, € J,by < b,, then

o :2 foodx - f (b‘ : bz)
_ %UO 2f”( +(1-nb) )dr +f (t—17 f”(tbz+(1 -1 l+b2)df]-
(2.13)
Lemma 2.13. [23] If f" for neN exists and is integrable on [by, b>], then
SO0+ 1) _ . ! - :2 Feodx -z & 21(>k (zizl—)' b
= % fo | ' (n=20) 7 (tby + (1 = Dby dt. (2.14)

Lemma 2.14. [25] Suppose that f : [by,by] — R is a differentiable function, g : [b;,b,] > R* isa
continuous function and symmetric about 2 '”’2 and f’ is an integrable function on by, b,]. Then

b) b)
w sdx— | F)gdx

1-t 1+t

_b —b ThtTh 1+¢ 1-1¢

z f g(u)du f’( by + b2)dt
|+tb +l tbz 2 2

1 %b1+%b2 1— 1 ¢
+ f ( f g(u)du) f’( ', +;b2)d
0 Liby+15h, 2 2
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3. Fractional integral inequalities

Theorem 3.1. Let f : J — R, J C R be a differentiable mapping on J with ' € L'[by,b,], where
bi,by € J,by < by. If |f'(0)|? forq > 1 and 0 < a,B < 1, is generalized strongly modified h-convex
function on [by, by)], then

af(b))+Bf(by) 2—-a-B b +by 1 b2
G SR |

f(x)dx

< (b2 - ) @) {(1 ~20422%) B (1 =20 +22) IF o)

! 1
+j; 1 —a—1 (h(%t)n(lf’(bl)l" + |f'(b2)|q)) dt

1
q

+(1-28+ 2ﬁ2)1_é

—2a*+8a°-8a+5
- L —b2>2( )

12

1 1
X |5 (1=28+26°)If )l + fo 8= G (GOl 1 Bl dr
! L (<28" +88° 88+ 5\
- 7 (b1 =b2) ( > ) } G.D

Proof. The proof begins with f’(x) € [b;, b,], then using Lemma (2.10), and power mean inequality
we have for g > 1

a’f(bl);'ﬁf(bz)_'_2—(21'—18f(b1+b2)_ 1 sz

2 by — b,
by—b !
< =2 ‘U I —a-—1
4 0

_ I -
<cmh {(f |1—a/—t|dt)
4 0

f(x)dx
by

1
dt +f 1B — 1|
0
1
f 11— a—1 (|f’<bz>|" th (17”)
0

|

i (zb‘ b —t)bz)

f’(tb1 f(1-pl +b2) -

2

1 1 e =
X (U GO BN - i ’(1 -= t)(bl —b2>2dt) +( f LB—tIdt)
0
1 1
x fo I,B—tl(lf’(bz)l"+h(é)n(|f’(b1)lq,If’(bz)lq) —u%(l—%)(bl—bz)zdr)]"}. (3.2)

Using Lemma (2.11), we have

! 1+2\(1—-1¢ —20*+8a°-8a+5
,U(bl—bz)Zf|1—Q—f|(T)(T)df=%(b1—bz)z( B ) (3.3)
0

And

1 3
5 t 1, M ,(-28*+83° -8B +5
u(bl—bafow—ﬂi(l—i)dt—z(bl—bz)( ~ ) (3.4)
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Substituting values from Eqs (3.3), (3.4) in inequality (3.2), we obtain

a’f(bl)"'ﬁf(bZ) z_a—ﬁ b1+b2 1 b2
5 +— )—bz_blff(x)dx

(b2 )(2) {( —2a+ 2a2)1_é B (1= 2e +20%) |f ()l

f |1 —a—tl( ( )n(lf ol +1f’ (bz)lq))df

—2a* +8a/3—801+5) g

. (1 —2ﬁ+2[32)1_é

- ‘—‘<b1 —bz)z(

| =

(1-26+28°) 17 (o)l + f 8~ 1A (1 GI L b)) di

For g = 1, using Lemma (2.10) and Lemma (2.11), we have

b
R
by

2 by — b,
(bz—b

-lkl“:

234 3 _
® 1—b2)2( A3 +8,?2 8,3+5)

1
){2(1—2a+2a)|f'(b2)|
-2a*+8a*-8ax+5
fn— —r|(( )n(lf(b1)| If(bz)l))df——(bl bzf( —

(1—2ﬁ+2ﬂ)|f (bo)l + f 8= 1A (F Bl 1f b)) di

23"+ 88 —88+5
> )} (3.5)

~ 7 (bl - bz)z(

This completes the proof. O
Remark 2. If we take h(f) = t and u = 0 then inequality (3.1) reduces to inequality (13) in [33].
Taking @ = 8 in Theorem (3.1), we have following corollary.

Corollary 1. Let f : J — R, J C R be a differentiable mapping on J with f’ € L'[by,b,], where
bi,by € J,by < by. If |f'(x)|? for g > 1 is generalized strongly modified h-convex function on [by, b,]
and 0 < a,B < 1, then
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@ by + b, 1 »
210+ s+ (-7 (25 2) - L [ s

by —bi\(1-2a+2a%\'"" ([(1-2a+2d7\ !
S( 4 )( ) ) {[(f)lf(bz)lq+fo‘ll—a/—t|

—2a4+8a3—8a+5) g

12

[(1 —2a/+2a/2)
+ -
2

1 2 +8x -8a+5 i
< ’(b”'q)*f '“‘t'h(é)”(lf’(borf,|f'<bz>|q)dt—’ﬁ(bl—bzf( o )] }
0

1+
X h( )U(If OO, If b)) dt - —(b1 bz)z(

12

1 _ 2 1
(b2 )(2) (1 —2a+ 2052)17 {[(M) |f" (bl + f 1-a-t
2 0

g [(1 —20/+2a2)
+ -
2
1

1 20 +8a% - 8a + 5\|¢
x (I (b2)I") + fo |a—t|h<§>n(|f'(b1>|q,|f'<b2)|‘1)dt-ﬁf(bl—bz)Z( QT e )] }

—20*+8a2°-8a+5
12

1
h( . )ﬂ(lf oI, x1f’ (bZ)Iq)dt__(bl bz)z(

12
(3.6)

Remark 3. If we take A(r) = ¢t and u = 0 then inequality (3.6) reduces to inequality (16) in [33].
By choosing @ = 8 = 5 % in Theorem (3.1) respectively, we obtain following corollary.

Corollary 2. Let f : J — R, J C R be a differentiable mapping on J with f' € L'[by, by], where
bi,by € J,by < by. If |f'(x)|? for g > 1 is generalized strongly modified h-convex function on [by, b;]

and 0 < a,B < 1, then
1 b2
— (x)dx
b b, fb !
1

LS + fbr) | by + o
2 2 2
1
2 t‘ h (TH) n(f @I 1f b)) di

(=) [

1 5
+Z|f’<bz>|‘f—§<b1 b,)? (128)

q

__,‘

1 1
clyuream+ [

q} (3.7)

5
n(5)nQF ot 1r @l dr = & b - b2 (128)
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and

| [f(bo v fb) +4f(b1 ”’2)

1 b2
- b, j;:. f(x)dx
7 1
. t‘ (h (%t) n(f' G, |f’(b2)|”)) dt

5 18\« ([ 5 12
Sﬁ(bz_bl)(?) {[1—8|f/(bz)|q+f(;

3
211 1 g
L2 by - oY - |( (5)n0r@or. 17 @) —@mbl b2>2] }

324 *

5 .
1_8|f D) +

(3.8)

Remark 4. Setting g = 1 in Corollary (2), we have the following result.

Corollary 3. Let f : J — R, J C R be a differentiable mapping on J with ' € L'[b,b,], where
bi,by € I,by < by. If |f'(x)|? for q > 1 is generalized strongly modified h-convex function on [by, b;]

and 0 < a,B < 1, then
1 b2
- - fb f(x)dx

l[f(bl)+f(b2) +f(b1+b2)
by—b\ (1 , , (1 +1 n\] |1 u 5
s( - ){5If(bz)l+n(|f(b1)|,|f(bz)l)j;[h(7)+h(§)] 5~ ar-5n- ”2)(128)}

‘ 2 2 2

3.9
and
| [f(b1)+f(b2)+4f(b1+b2) _bzibl bzf(x)dx
S(’”;bl){ G+ (f By, If(bz)l)[ f (%’)‘%-t‘dt
+f01h(;); ‘dt_% (b - b2)2]}- (3.10)

Remark 5. If we take h(f) = t and ¢ = O then inequalities (3.7)—(3.10) reduce to inequalities (17)
and (18) in [33].

Theorem 3.2. Let f : J C [0,1) — R be a differentiable mapping on J with £ € L'[by, by], where
by,by € J and by < by. If |f"| is genarilized strongly modified h-convex on [by, b,), then

b] +b2 1 b2 ( 1) 7 : 2
(2] o [ s < LS wor [ e
2
‘f”(b”bz) If"(bl)l)dt—— (”1”’2 )]+ ! "(”‘;’92)
)dt — (az—b‘;’bz)]}. 3.11)

2 3
+ f (t— 1)> h(t)y (If”(bz)l ; ‘f” (
0
AIMS Mathematics Volume 5, Issue 6, 6620-6638.
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Proof. From Lemma (2.12), we have

b
|f(b1+b2 ! ff(x)dx

by — b,
(bl +(1—t)b)

(b = Dy)
S1—6[f0t dt+f(t—1)

Since |f”’| is generalized strongly modified 4 convex function, so

by
'f(b1+b2 1 ff(x)dx
by

1+b2)

f” (tb2 +(1-1)

|

by — b

_ 1
< % [ fo 2 (" (b)) +h(r)n(

b 2
,If”(bl)l) u(@) (1 —t)( 2 —bl) )dt

. b] +b2
2

L) snfronlr P2 oo 252

:%[ (Bl + f | zh(t)n( "(b‘;bz) ,If”(bl)l)dt

—/J(—bl-l-b;_Zbl) fo t3(1—t)dt+% f"(#) +f01(t—1)2

Xh(t)n If"(bz)l 'f" bz))dt+y(W)2 ﬁl t-1)>° tdt]. (3.12)
And

‘f b‘”’z) o f " fd

. 1 (b, +b, :
|f (b)l)dt—%ﬂ( > _bl)l

b, 2 b
s%{[ If” (b)) + f £h(t) 7 |f" bt 2)

1 by + by b, + by 1 b+ by
_ _ 1 4 4 _ _ .
*13 ( ) f (t—1) h(t)n Lf7 (2l lf ) )a’f oM (bz > )]}
This completes the proof. O

Remark 6. If we take h(7) = t and u = 0 then inequality (3.11) reduces to inequality (24) in [33].

Theorem 3.3. Let f : J C [0,1) = R be a differentiable mapping on J with f”' € L'[by,b,], where
by,by € J and by < by If |f"|? for g = 1 with 1—17 + é = 1 is generelized strongly modified h-convx on
(b1, bs], then
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6629

by + b, 1 b
‘f( ) — fb Fdx
N
1Sy >|q) di - iu(’” _ bl) )

(by= b1 (17 [(1 ., L
31—6(5) {(3 lf bl + fo th(t)n( T
2];}

5]

. b1+b2
r(37)

1 b, + by 1 by, — b,
() - Jo-m(25)
Proof. Suppose that p> 1, using Lemma (2.12) and power mean inequality, we have

b
‘f bl +b2) 1 f f(x)dx

b, — b,

(by— b))’ by +
ST[‘];I ( > (l—l)b)
1 (b12b2+(1—t)b)

(bz—b1)2(fl 2 )"(fl
< — d

< 16 Ot 1 Ol
(bz—bl)z(fl 2 );(‘[1 2
- - Dd -1
+ T o(t )"dt o(t )

Since |f”'|? is generalized strongly modified #-convex, then we have
1
L
0
1 1
< f 2 byl dt + f tzh(t)n(
0 0

f (t= D2 h() n(lf" Bl

dt+f(t—1)2
q );

by + b,
2

7 (tbz r(1-pt +b2)

|

|
, L
dt)q.

i (rb2 +(1-1)

q

by +b
”(t%+(1—t)b1) dt

. b1+b2q
57

1 b b 2
,If"(bl)lq)dt— f u(l—r)rzr(%—bl) di
0

1 7 12 7 b1+b 7’ 1 bz—b12
ng |bl|q+f0 th(t)n( ( 5 ) 7 (by )I”)dt—z—o ( 7 ) :
And
1 q
f(t—l)z f”( bz) dt
0
1 q 1 q
< [a- el (P52 ) e [amvmon(irer (252 a
0 0

1 2
—f ,u(t—l)zt(l—t)(bz—bl+b2) dt
. 2

(b1+b2) )d—i (bz—bl)z
20"\ 2 '

AIMS Mathematics Volume 5, Issue 6, 6620-6638.
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After simplification, we have

b1+b2 1 b2
(25)- ot [ s
o= b (1N (1,0 0 (s by + by
S1—6(§) {(5 L@l +[) fh(f)ﬂ( (T)

b, +b by +b L (by— b, \2V
+(§ ( Lt 2) f(t—l) h(t)n(lf"(bz)lq f”( hb 2) )d —2—0u( 2 1)] }

Which completes the proof. O

; 1 (by— b\
f (b)lq)dt—%( > ))

Remark 7. If we take h(t) = ¢t and u = 0, then inequality (3.13) reduces to inequality (25) in [33].

Theorem 3.4. Let f : J C R — R be a n-times differentiable generalized strongly modified h-convex,
function on J where by, b, € J with b, < by and f e L'[by,bl. If|f'|p is generalized strongly modified
h-convex, function with u > 1, then forn > 2 and p > 1, we have

JO)+fb) 1 k=1) (bz *)
| b2 _ bl f(x)d k 2 2(k f (b )

(by — b)) (n—1 ) . ) )
<= (n " 1) 1 S fo ey (n = 20dm (| f G| 1 B)P?)

(n—1)

2
—ﬂm(x -y ] : (3.14)

Proof. Case-i: Since it is known that | f'| is generalized strongly modified s-convex function, then
using the property of modules, and Lemma (2.13), we have following inequality for p = 1

f(b1)+ f(b>) b2 Cen 1(k 1)(b2 1)" ©
| bz_blf s - gt EE 2 o

(bz_ 1) fzﬂ (n=20)[f (thy + (1 = 1)by)| d. (3.15)

Using the definition of generalized strongly modified 4-convex function, we have

f(bl)+f(b2) » B n](k 1)([92 *)
‘ e R e s

< (by = by)"

5 f (n =20 |If" )l + hOn (" BD)]L | B2)D) = px = y)°1(1 = 1) dt

b, — by)"
< % [lf"(bz)l f £ n = 20dt + ("Bl 1 (o)) f h(or' (n = 20)dt
: 0 0
1
—u(x — y)? f (1 - H(n - 2t)dt] . (3.16)
0
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1
f N — 20t = (3.17)
0

n+1
n—1

1
f (1 -0(n-20dt =
0

Substituting (3.17) and (3.18) in (3.16), we have

-1D(b,-b
2(k+ D!

b b 1 b2 k
‘f( D ; fby) Feodx - i1

1)k (k)
b
by—b, ), A 1)‘

1

< (b —by)" |n—

2n!
n-—1

s Dn+3)

1 1
FOWB)| +n(f" GO b)) fo h(O" (n — 20)dt

n+1

(x+ y)z] .

Case-ii For p > 1 applying Holder inequality, we have

fb)+fb) 1 ” k=D =b)*
‘ 2 b J, T Ha Ty S
n 1 1_% 1 %
<o b) [ f " (n —2t)dt] [ f (= 20| F© (b + (1 - t)b2)|pdt] .
2n! 0 0

Using definition of generalized strongly modified s-convex function, we have

fO)+f) L (M k= Db g
‘ 2 bz—blfbl SO = Zo =gy
by = by (n—1\"7 !
s S (n ) [If(’”@z)l” f ¢ n = 20)dt + ("Bl (62D
n! n+1 B

1 1
f hO (n = 26)dt — u(x — y)* f "(n - 2)(1 - t)dt]
0 0

fo)+fb) 1 (7 w1 (k=1 by =b)*
2 ‘bz—blfhl A T A

L (ba=b)) (n— 1)1‘5

X

O\ b))

2n! n+1
=D
Ko+ Dn+3)

=1 P fl R
n+1|f bo)| + ; h(H)t"(n 2t)dtn(

(x - y)z] :
Which completes the proof. m|

Remark 8. If we take /(¢) = t then Theorem (3.13) reduces to Theorem (2.5) in [23].
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Theorem 3.5. Suppose that f : [b1,b] — R is a differentiable function, g : [by,b,] — R is a
continuous function and symmetric about h‘%”z and |f’| is a generalized strongly modified h-convex
function. Then

bo by
2 by by
b _b 1 %hﬁ—%bz
<2 [2 F BN+ Kn(1f GOl B = 51 = 2)by - bz)2]f g(u)dudt
4 2 0 Jitp 415,

(3.19)
where k = max.epo.y [9(0] and g(t) = h(51) + h ().

Proof. From Lemma (2.14) and the fact that |f’| is generalized strongly modified #-convex, we have

by by
’f(b1)+f(bz) s~ [ s
b b jbﬁﬁbz 1 1 — 1 1
: 1 f f+tb]+12tb2 g(”)[ ( ;tb] + 5 tbz) + ,(Ttbl + ;t 2) ]dudt
bz - b bt 1+
f fb oy, SO <bz>l+h( )n(lf(bm /(b))
1 1- 1-
—H ( - I)( )(”1 b2y’ +h( )n(lf GOl (bz)l)]dudt
_b —b o+t 1 1—
T f f,, o 8<u>(2|f’<bz>l+ h(Tﬂ)+h(7t)]n(lf’(b1)l,If’(bz)l)

—5(1 — )by - by) )dudt

b, — 1 1-
= (2 I (D)l + ( ; )+h( )]U(If CHRVECY) R (1 - )b, —bz)z)
ubl+';’bz
f f g(uw)dudt
Lipy+452h,
b Liby+42h,
< 22221 Bl + Kn(F G0 F G2 = 50 = 2306y = o) f f oy, SO
where k = max,cjo;|g(t)| and g(1) = ( ) + h(”’) o

Remark 9. If we take u = 0, h(t) = ¢° then Theorem (3.15) reduces to Theorem (3) in [25].

Corollary 4. In theorem (3.15) if we choose h(t) = t then k = 1 and u = 0, we have the inequality of
the theorem (2) (Gordji, Dragomir and Delaver).

by b
M f g0da = | - fgodx

b ubl+ thz

<P o e+ U B L B f f oGdud. (3.20)

]-H‘b1+ lzz‘b2
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Corollary 5. In corollary (3.17) if we choose g = 1,n(x,y) = x — y, we have the following inequality

fby) + f(b2) 1 b2
2 _bz—blfb, flxdx

by — b
8

<

Lf"() + f(2)] - (3.21)

for convex functions that is equivalent to Theorem (1.2) in [1].
4. Application to means

For two positive numbers b; > 0 and b, > 0, define

A(bl,bz) — sz—bz’
G(bla b2) = m,
2b1b
Hbr.b2) = le—bi’ 1
bx+1_bx+1 3
L(bl» b2) = [m] s bl ;ﬁ b2
1 bgz ﬁ 4.1)
I(by,by) =14 ¢ (@) b #b
b17 bl - b2
HW’S(bbbz) = [ w2 ] s s#0
m9 s = O

for 0 < w < co. These means are respectively called the arithematic, geometric, harmonic, generalized
logarithmic, identric and Heronian means of two positive numbers b, and b,.

Applying Theorem (3.1) to f(x) = x® for s # 0 and x > O result in the following inequalities
for means.

Theorem 4.1. Let by > 0, b, >0, g > 1, either s > 1 and (s — 1)g > 1 or s < 0. Then

2—-a-p

‘A(ab‘, BbS) + A%(by, by) — L'(by, by)

2
(b2 S b ) Q) {(1 ~2a + 2a2)1_é [% (1= 20+ 207)|s57"|f

1
+ I) 1 —a—{ (h (1T+t) 77(|sb7‘1 sbé—llq)) dt

—2a* + 8a° —8a+5) g

<

q

b

+(1-28+ 2,32)1_é

_HEb by
7 & bz)( B

X

1 . : t .
5 (1-28+26°)|sb3 1|‘1+f0 1B = #1h(o)n (|sbi™
-28" + 8p° —8/3+5) ‘l’} 4.2)

12
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Taking f(x) = Inx for x > 0 in Theorem (3.1) results in the following inequality for means.

Theorem 4.2. For by > 0, b, > 0, by # by and g > 1, we have

InG*(b?, b)) L2-a-p
2 2

S(b2 )(2) {(1—2(1/+2012)1 ‘1’[;(1—2a+2a) !

SURSEIRIN T

InA(by, by) — Inl(by, b)

q

q

bil b,

20" +8a° —8a +5\|7 s
—‘g(bl—bz)z( ¢ ‘1”2 ar ) +(1-28+28) "
1 7114
x|5 (1~ flﬁ—tlh( )n(‘b1 5 )d
u ) —2,84+8ﬁ3—8,8+5 ]
_Z( 1—[92)( B ) }

Finally, we can establish an inequality for the Heronian mean as follows.

Theorem 4.3. Forb, >b; >0, b1 #b,w>0and s >4 0r0 # s < 1, we have

HS

w,s

l‘lfv,s(bl,bz)Jr 541 b2+b1 . LB, b2) |
H(b},b3) wGHO\by by’ G%(by,by)’

< (bz—bl)A(bl,bz){ 3l (G2<s—1> (b2, bi)+ G2 (bz, 1))
1

2G?(by, by) w+2 2 b,

5| 2s-1) 1 1 | 2s-1) 1 w1 1
(G20 p,, <3 b (G2 by, — |+ 2651 by, —
+’7(w+2(G y +2G R | R S R L
Xf [h(lgt) . )] (b - bz)A(bl,bz))z}.
0

G*(by, by)
Proof. Let f(x) = “tw-+l +Wx2“ forx > 0and s ¢ (1,4). Then

By corollary (3.6) it follows that

——t‘dt—(—) (

)

4.3)

4.4)
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2 bh _h
by by T b

| —

(b by by 4 bt n
f(b1)+f(b2) +f[b1 +bz]]_ 1 j;lf(X)dx

by b by | b2
(bl +b2) +w(b| +b2) +1

w+2

b5+ w(bi1by)? + b5 b5+ w(biby)? + b}
+
bi(w +2) b3(w +2)

I [ R et 2
SRR I R (GRS

s 2 1,2
_ H}, (b1, D7) + o by b - He L(by, b3) 1
H(b},b5) — wG*D “\G*(by, by)

| =
| =

(4.5)

On the other hand, we have

by b1

bk 1
4 2

f zzl))fol [h(lz”)”l( >]|"f|‘” (Z—b—) W}
:bfb:f{;wiz((i—f) j%(i—iY | |
wflall) Gl 56 )
[P bl - 5552 (5 )}

@

bib
_ (2= bDABLD) [ 3B (o (0 1) W ))
a " b 2

)l (2)

2G?(by, b)) w42

sl 2s-1) i s—1 sl 2s-1) 1 s—1 1
+n(w“+2(G (b“zb) 2G (b“bz) ww+2(G b, b, 2G bz’b1
xj‘PC;j M)]rﬁvr%—)ch bmwdm)} (4.6)

0

G*(b1, by)
Obviously (4.5) and (4.6) yield (4.4). ]

5. Conclusions

Fractional differential and integral equations play increasingly important roles in the modeling of
engineering and science problems. It has been established fact that, in many situations, these models
provide more suitable results than analogous models with integer derivatives. Fractional integral
inequality results when 0 < ¢ < 1 can be developed when the nonlinear term is increasing and
satisfies a one sided Lipschitz condition. Using the integral inequality result and the computation of
the solution of the linear fractional equation of variable coefficients, Gronwall inequality results can
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be established. In the present report, we developed the fractional integral inequalities for more
broader class of convex functions named as generalized strongly modified s-convex functions, we
also established some applications of derived inequalities to means. Our results extend and generalize
many existing results, for example [1,23,33-35].
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