Mathematics

Research article

A unified treatment for the restricted solutions of the matrix equation $A X B=C$

Jiao Xu, Hairui Zhang, Lina Liu, Huiting Zhang and Yongxin Yuan*
School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China

* Correspondence: Email: yuanyx_703@163.com.

Abstract

In this paper, the Hermitian, skew-Hermitian, Re-nonnegative definite, Re-positive definite, Re-nonnegative definite least-rank and Re-positive definite least-rank solutions of the matrix equation $A X B=C$ are considered. The necessary and sufficient condition for the existence of such type of solution to the equation is provided and the explicit expression of the general solution is also given.

Keywords: matrix equation; Hermitian (skew-Hermitian) solution; Re-nonnegative (Re-positive) definite solution; Re-nonnegative (Re-positive) definite least-rank solution
Mathematics Subject Classification: 15A09, 15A24

1. Introduction

Throughout this paper, the complex $m \times n$ matrix space is denoted by $\mathbb{C}^{m \times n}$. The conjugate transpose, the Moore-Penrose inverse, the range space and the null space of a complex matrix $A \in \mathbb{C}^{m \times n}$ are denoted by $A^{\mathrm{H}}, A^{+}, \mathcal{R}(A)$ and $\mathcal{N}(A)$, respectively. I_{n} denotes the $n \times n$ identity matrix. $P_{\mathcal{L}}$ stands for the orthogonal projector on the subspace $\mathcal{L} \subset \mathbb{C}^{n}$. Furthermore, for a matrix $A \in \mathbb{C}^{m \times n}, E_{A}$ and F_{A} stand for two orthogonal projectors: $E_{A}=I_{m}-A A^{+}=P_{\mathcal{N}\left(A^{\mathrm{H})}\right.}, F_{A}=I_{n}-A^{+} A=P_{\mathcal{N}(A)}$.

A number of papers have been published for solving linear matrix equations. For example, Chen et al. [1] proposed LSQR iterative method to solve common symmetric solutions of matrix equations $A X B=E$ and $C X D=F$. Zak and Toutounian [2] studied the matrix equation of $A X B=C$ with nonsymmetric coefficient matrices by using nested splitting conjugate gradient (NSCG) iteration method. By applying a Hermitian and skew-Hermitian splitting (HSS) iteration method, Wang et al. [3] computed the solution of the matrix equation $A X B=C$. Tian et al. [4] obtained the solution of the matrix equation $A X B=C$ by applying the Jacobi and Gauss-Seidel-type iteration methods. Liu et al. [5] solved the matrix equation $A X B=C$ by employing stationary splitting iterative methods. In addition, some scholars studied matrix equations by direct methods. Yuan and Dai [6] obtained generalized reflexive solutions of the matrix equation $A X B=D$ and the optimal approximation solution
by using the generalized singular value decomposition. Zhang et al. [7] provided the explicit expression of the minimal norm least squares Hermitian solution of the complex matrix equation $A X B+C X D=E$ by using the structure of the real representations of complex matrices and the Moore-Penrose inverse. By means of the definitions of the rank and inertias of matrices, Song and Yu [8] obtained the existence conditions and expressions of the nonnegative (positive) definite and the Re-nonnegative (Re-positive) definite solutions to the matrix equations $A X A^{\mathrm{H}}=C$ and $B X B^{\mathrm{H}}=D$.

In this paper, we will focus on the restricted solutions to the following well-known linear matrix equation

$$
\begin{equation*}
A X B=C, \tag{1}
\end{equation*}
$$

where $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times p}$ and $C \in \mathbb{C}^{m \times p}$. We observe that the structured matrix, such as Hermitian matrix, skew-Hermitian matrix, Re-nonnegative definite matrix and Re-positive definite matrix, is of important applications in structural dynamics, numerical analysis, stability and robust stability analysis of control theory and so on [9-14]. Conditions for the existence of Hermitian solutions to Eq (1) were studied in [15-17]. A solvability criterion for the existence of Re-nonnegative definite solutions of Eq (1) by using generalized inner inverses was investigated by Cvetković-Ilić [19]. Recently, a direct method for solving Eq (1) by using the generalized inverses of matrices and orthogonal projectors was proposed by Yuan and Zuo [21]. In addition, the Re-nonnegative definite and Re-positive definite solutions to some special cases of Eq (1) were considered by Wu [22], Wu and Cain [23] and Groß [24]. In [25], necessary and sufficient conditions for the existence of common Re-nonnegative definite and Re-positive definite solutions to the matrix equations $A X=C, X B=D$ were discussed by virtue of the extremal ranks of matrix polynomials.

In this paper, necessary and sufficient conditions for the existence of Hermitian (skew-Hermitian), Re-nonnegative (Re-positive) definite, and Re-nonnegative (Re-positive) definite least-rank solutions to Eq (1) are deduced by using the Moore-Penrose inverse of matrices, and the explicit representations of the general solutions are given when the solvability conditions are satisfied. Compared with the approaches proposed in [18-21], the coefficient matrices of Eq (1) have no any constraints and the method in this paper is straightforward and easy to implement.

2. Preliminaries

Definition 1. A matrix $A \in \mathbb{C}^{n \times n}$ is said to be Re-nonnegative definite (Re-nnd) if $H(A):=\frac{1}{2}\left(A+A^{\mathrm{H}}\right)$ is Hermitian nonnegative definite (i.e., $H(A) \geq 0$), and A is said to be Re-positive definite (Re-pd) if $H(A)$ is Hermitian positive definite (i.e., $H(A)>0$). The set of all Re-nnd (Re-pd) matrices in $\mathbb{C}^{n \times n}$ is denoted by $\mathbb{R} \mathbb{N} \mathbb{D}^{n \times n}\left(\mathbb{R} \mathbb{P D}^{n \times n}\right)$.
Lemma 1. [26] Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times p}$ and $C \in \mathbb{C}^{m \times p}$. Then the matrix equation $A X B=C$ is solvable if and only if $A A^{+} C B^{+} B=C$. In this case, the general solution can be written in the following parametric form

$$
X=A^{+} C B^{+}+F_{A} L_{1}+L_{2} E_{B},
$$

where $L_{1}, L_{2} \in \mathbb{C}^{n \times n}$ are arbitrary matrices.
Lemma 2. [27,28] Let $B_{1} \in \mathbb{C}^{l \times q}, D_{1} \in \mathbb{C}^{1 \times l}$. Then the matrix equation

$$
Y B_{1}^{\mathrm{H}} \pm B_{1} Y^{\mathrm{H}}=D_{1},
$$

has a solution $Y \in \mathbb{C}^{l \times q}$ if and only if

$$
D_{1}= \pm D_{1}^{\mathrm{H}}, E_{B_{1}} D_{1} E_{B_{1}}=0
$$

In which case, the general solution is

$$
Y=\frac{1}{2} D_{1}\left(B_{1}^{+}\right)^{\mathrm{H}}+\frac{1}{2} E_{B_{1}} D_{1}\left(B_{1}^{+}\right)^{\mathrm{H}}+2 V-V B_{1}^{+} B_{1} \mp B_{1} V^{\mathrm{H}}\left(B_{1}^{+}\right)^{\mathrm{H}}-E_{B_{1}} V B_{1}^{+} B_{1},
$$

where $V \in \mathbb{C}^{l \times 9}$ is an arbitrary matrix.
Lemma 3. [29] Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{m \times p}$. Then the Moore-Penrose inverse of the matrix $[A, B]$ is

$$
[A, B]^{+}=\left[\begin{array}{c}
\left(I+T T^{\mathrm{H}}\right)^{-1}\left(A^{+}-A^{+} B C^{+}\right) \\
C^{+}+T^{\mathrm{H}}\left(I+T T^{\mathrm{H}}\right)^{-1}\left(A^{+}-A^{+} B C^{+}\right)
\end{array}\right],
$$

where $C=\left(I-A A^{+}\right) B$ and $T=A^{+} B\left(I-C^{+} C\right)$.
Lemma 4. [30] Suppose that a Hermitian matrix M is partitioned as

$$
M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{12}^{\mathrm{H}} & M_{22}
\end{array}\right],
$$

where M_{11}, M_{22} are square. Then
(i). M is Hermitian nonnegative definite if and only if

$$
M_{11} \geq 0, M_{11} M_{11}^{+} M_{12}=M_{12}, M_{22}-M_{12}^{\mathrm{H}} M_{11}^{+} M_{12} \triangleq H_{2} \geq 0 .
$$

In which case, M can be expressed as

$$
M=\left[\begin{array}{cc}
M_{11} & M_{11} H_{1} \\
H_{1}^{\mathrm{H}} M_{11} & H_{2}+H_{1}^{\mathrm{H}} M_{11} H_{1}
\end{array}\right],
$$

where H_{1} is an arbitrary matrix and H_{2} is an arbitrary Hermitian nonnegative definite matrix.
(ii). M is Hermitian positive definite if and only if

$$
M_{11}>0, M_{22}-M_{12}^{\mathrm{H}} M_{11}^{-1} M_{12} \triangleq H_{3}>0 .
$$

In the case, M can be expressed as

$$
M=\left[\begin{array}{cc}
M_{11} & M_{12} \\
M_{12}^{\mathrm{H}} & H_{3}+M_{12}^{\mathrm{H}} M_{11}^{-1} M_{12}
\end{array}\right],
$$

where H_{3} is an arbitrary Hermitian positive definite matrix.
Lemma 5. [31] Let

$$
M=\left[\begin{array}{cc}
C & A \\
B & 0
\end{array}\right], N=\left[\begin{array}{cc}
0 & I_{n}
\end{array}\right], S=\left[\begin{array}{c}
0 \\
I_{n}
\end{array}\right], N_{1}=N F_{M}, S_{1}=E_{M} S .
$$

Then the general least-rank solution to Eq.(1) can be written as

$$
X=-N M^{+} S+N_{1} R_{1}+R_{2} S_{1},
$$

where $R_{1} \in \mathbb{C}^{(p+n) \times n}, R_{2} \in \mathbb{C}^{n \times(m+n)}$ are arbitrary matrices.

3. The Hermitian and skew-Hermitian solutions of Eq (1)

Theorem 1. Eq (1) has a Hermitian solution X if and only if

$$
\begin{align*}
& A A^{+} C B^{+} B=C, \\
& P_{\mathcal{T}}\left(A^{+} C B^{+}-\left(A^{+} C B^{+}\right)^{\mathrm{H}}\right) P_{\mathcal{T}}=0, \tag{2}
\end{align*}
$$

where $\mathcal{T}=\mathcal{R}\left(A^{\mathrm{H}}\right) \cap \mathcal{R}(B)$. In which case, the general Hermitian solution of $E q(1)$ is

$$
\begin{equation*}
X=A^{+} C B^{+}+F_{A} L_{1}+L_{2} E_{B}, \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& L_{1}=-P_{1} D_{1}+\frac{1}{2} P_{1} D_{1} W_{1}^{\mathrm{H}}+2 V_{1}^{\mathrm{H}}-2 F_{A} Z_{1}^{\mathrm{H}}+P_{1}\left(V_{1} F_{A}-V_{2} E_{B}\right)+F_{A} Z_{1}^{\mathrm{H}} W_{1}^{\mathrm{H}}, \tag{4}\\
& L_{2}=D_{1} Q_{1}^{\mathrm{H}}-\frac{1}{2} W_{1} D_{1} Q_{1}^{\mathrm{H}}+2 V_{2}+2 Z_{1} E_{B}+\left(F_{A} V_{1}^{\mathrm{H}}-E_{B} V_{2}^{\mathrm{H}}\right) Q_{1}^{\mathrm{H}}-W_{1} Z_{1} E_{B}, \tag{5}\\
& \\
& D_{1}=A^{+} C B^{+}-\left(A^{+} C B^{+}\right)^{\mathrm{H}}, C_{1}=-\left(I-F_{A} F_{A}^{+}\right) E_{B}, T_{1}=-F_{A}^{+} E_{B}\left(I-C_{1}^{+} C_{1}\right), \\
& P_{1}=\left(I+T_{1} T_{1}^{\mathrm{H}}\right)^{-1}\left(F_{A}^{+}+F_{A}^{+} E_{B} C_{1}^{+}\right), Q_{1}=C_{1}^{+}+T_{1}^{\mathrm{H}} P_{1}, \\
& W_{1}=F_{A} P_{1}-E_{B} Q_{1}, Z_{1}=V_{1} P_{1}+V_{2} Q_{1},
\end{align*}
$$

and $V_{1}, V_{2} \in \mathbb{C}^{n \times n}$ are arbitrary matrices.
Proof. By Lemma 1, if the first condition of (2) holds, then the general solution of Eq (1) is given by (3). Now, we will find L_{1} and L_{2} such that $A X B=C$ has a Hermitian solution, that is,

$$
\begin{equation*}
A^{+} C B^{+}+F_{A} L_{1}+L_{2} E_{B}=\left(A^{+} C B^{+}\right)^{\mathrm{H}}+L_{1}^{\mathrm{H}} F_{A}+E_{B} L_{2}^{\mathrm{H}} . \tag{6}
\end{equation*}
$$

Clearly, Eq (6) can be equivalently written as

$$
\begin{equation*}
X_{1} A_{1}^{\mathrm{H}}-A_{1} X_{1}^{\mathrm{H}}=D_{1}, \tag{7}
\end{equation*}
$$

where $A_{1}=\left[F_{A},-E_{B}\right], X_{1}=\left[L_{1}^{\mathrm{H}}, L_{2}\right], D_{1}=A^{+} C B^{+}-\left(A^{+} C B^{+}\right)^{\mathrm{H}}$.
By Lemma 2, Eq (7) has a solution X_{1} if and only if

$$
\begin{equation*}
D_{1}=-D_{1}^{\mathrm{H}}, E_{A_{1}} D_{1} E_{A_{1}}=0 \tag{8}
\end{equation*}
$$

The first condition of (8) is obviously satisfied. And note that

$$
E_{A_{1}}=P_{\mathcal{N}\left(A_{1}^{\mathrm{H}}\right)}=P_{\mathcal{N}\left(F_{A}\right) \cap \mathcal{N}\left(E_{B}\right)}=P_{\mathcal{R}\left(A^{\mathrm{H}}\right) \cap \mathbb{R}(B)} .
$$

Thus, the second condition of (8) is equivalent to

$$
P_{\mathcal{T}} D_{1} P_{\mathcal{T}}=0
$$

where $\mathcal{T}=\mathcal{R}\left(A^{H}\right) \cap \mathcal{R}(B)$, which is the second condition of (2). In which case, the general solution of $\mathrm{Eq}(7)$ is

$$
\begin{equation*}
X_{1}=D_{1}\left(A_{1}^{+}\right)^{\mathrm{H}}-\frac{1}{2} A_{1} A_{1}^{+} D_{1}\left(A_{1}^{+}\right)^{\mathrm{H}}+2 V-2 V A_{1}^{+} A_{1}+A_{1} V^{\mathrm{H}}\left(A_{1}^{+}\right)^{\mathrm{H}}+A_{1} A_{1}^{+} V A_{1}^{+} A_{1} \tag{9}
\end{equation*}
$$

where $V=\left[V_{1}, V_{2}\right]$ is an arbitrary matrix. By Lemma 3, we have

$$
\left[F_{A},-E_{B}\right]^{+}=\left[\begin{array}{c}
\left(I+T_{1} T_{1}^{\mathrm{H}}\right)^{-1}\left(F_{A}^{+}+F_{A}^{+} E_{B} C_{1}^{+}\right) \tag{10}\\
C_{1}^{+}+T_{1}^{\mathrm{H}}\left(I+T_{1} T_{1}^{\mathrm{H}}\right)^{-1}\left(F_{A}^{+}+F_{A}^{+} E_{B} C_{1}^{+}\right)
\end{array}\right],
$$

where $C_{1}=-\left(I-F_{A} F_{A}^{+}\right) E_{B}$ and $T_{1}=-F_{A}^{+} E_{B}\left(I-C_{1}^{+} C_{1}\right)$. Upon substituting (10) into (9), we can get (4) and (5).

Corollary 1. Eq (1) has a skew-Hermitian solution X if and only if

$$
\begin{align*}
& A A^{+} C B^{+} B=C, \\
& P_{\mathcal{T}}\left(A^{+} C B^{+}+\left(A^{+} C B^{+}\right)^{\mathrm{H}}\right) P_{\mathcal{T}}=0, \tag{11}
\end{align*}
$$

where $\mathcal{T}=\mathcal{R}\left(A^{\mathrm{H}}\right) \cap \mathcal{R}(B)$. In which case, the general skew-Hermitian solution of $E q(1)$ is

$$
\begin{equation*}
X=A^{+} C B^{+}+F_{A} L_{3}+L_{4} E_{B}, \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& L_{3}=P_{2} D_{2}-\frac{1}{2} P_{2} D_{2} W_{2}^{\mathrm{H}}+2 V_{3}^{\mathrm{H}}-2 F_{A} Z_{2}^{\mathrm{H}}-P_{2}\left(V_{3} F_{A}+V_{4} E_{B}\right)+F_{A} Z_{2}^{\mathrm{H}} W_{2}^{\mathrm{H}}, \tag{13}\\
& L_{4}=D_{2} Q_{2}^{\mathrm{H}}-\frac{1}{2} W_{2} D_{2} Q_{2}^{\mathrm{H}}+2 V_{4}-2 Z_{2} E_{B}-\left(F_{A} V_{3}^{\mathrm{H}}+E_{B} V_{4}^{\mathrm{H}}\right) Q_{2}^{\mathrm{H}}+W_{2} Z_{2} E_{B}, \tag{14}\\
& \\
& \quad D_{2}=-A^{+} C B^{+}-\left(A^{+} C B^{+}\right)^{\mathrm{H}}, C_{2}=\left(I-F_{A} F_{A}^{+}\right) E_{B}, T_{2}=F_{A}^{+} E_{B}\left(I-C_{2}^{+} C_{2}\right), \\
& P_{2}=\left(I+T_{2} T_{2}^{\mathrm{H}}\right)^{-1}\left(F_{A}^{+}-F_{A}^{+} E_{B} C_{2}^{+}\right), Q_{2}=C_{2}^{+}+T_{2}^{\mathrm{H}} P_{2}, \\
& \\
& W_{2}=F_{A} P_{2}+E_{B} Q_{2}, Z_{2}=V_{3} P_{2}+V_{4} Q_{2},
\end{align*}
$$

and $V_{3}, V_{4} \in \mathbb{C}^{n \times n}$ are arbitrary matrices.

4. The Re-nnd and Re-pd solutions of Eq (1)

Theorem 2. Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times p}, C \in \mathbb{C}^{m \times p}$ and $\mathcal{T}=\mathcal{R}\left(A^{\mathrm{H}}\right) \cap \mathcal{R}(B)$. Assume that the spectral decomposition of $P_{\mathcal{T}}$ is

$$
P_{\mathcal{T}}=U\left[\begin{array}{cc}
I_{s} & 0 \tag{15}\\
0 & 0
\end{array}\right] U^{\mathrm{H}},
$$

where $U=\left[U_{1}, U_{2}\right] \in \mathbb{C}^{n \times n}$ is a unitary matrix and $s=\operatorname{dim}(\mathcal{T})$. Then
(a). $E q$ (1) has a Re-nnd solution if and only if

$$
\begin{equation*}
A A^{+} C B^{+} B=C, U_{1}^{\mathrm{H}} A^{+} C B^{+} U_{1} \in \mathbb{R} \mathbb{N}^{D} D^{s \times s} . \tag{16}
\end{equation*}
$$

In which case, the general Re-nnd solution of (1) is

$$
\begin{equation*}
X=A^{+} C B^{+}+F_{A} J_{1}+J_{2} E_{B}, \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{1}=P_{3} D_{3}-\frac{1}{2} P_{3} D_{3} W_{3}^{\mathrm{H}}+2 V_{5}^{\mathrm{H}}-2 F_{A} Z_{3}^{\mathrm{H}}-P_{3}\left(V_{5} F_{A}+V_{6} E_{B}\right)+F_{A} Z_{3}^{\mathrm{H}} W_{3}^{\mathrm{H}}, \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& J_{2}=D_{3} Q_{3}^{\mathrm{H}}-\frac{1}{2} W_{3} D_{3} Q_{3}^{\mathrm{H}}+2 V_{6}-2 Z_{3} E_{B}-\left(F_{A} V_{5}^{\mathrm{H}}+E_{B} V_{6}^{\mathrm{H}}\right) Q_{3}^{\mathrm{H}}+W_{3} Z_{3} E_{B}, \tag{19}\\
& D_{3}=K-A^{+} C B^{+}-\left(A^{+} C B^{+}\right)^{\mathrm{H}}, C_{3}=\left(I-F_{A} F_{A}^{+}\right) E_{B}, \\
& T_{3}=F_{A}^{+} E_{B}\left(I-C_{3}^{+} C_{3}\right), P_{3}=\left(I+T_{3} T_{3}^{\mathrm{H}}\right)^{-1}\left(F_{A}^{+}-F_{A}^{+} E_{B} C_{3}^{+}\right), Q_{3}=C_{3}^{+}+T_{3}^{\mathrm{H}} P_{3}, \\
& W_{3}=F_{A} P_{3}+E_{B} Q_{3}, Z_{3}=V_{5} P_{3}+V_{6} Q_{3}, K_{11}=U_{1}^{\mathrm{H}}\left(A^{+} C B^{+}+\left(A^{+} C B^{+}\right)^{\mathrm{H}}\right) U_{1}, \\
& K=U\left[\begin{array}{cc}
K_{11} & K_{11} H_{1} \\
H_{1}^{\mathrm{H}} K_{11} & H_{2}+H_{1}^{\mathrm{H}} K_{11} H_{1}
\end{array}\right] U^{\mathrm{H}},
\end{align*}
$$

$V_{5}, V_{6} \in \mathbb{C}^{n \times n}, H_{1} \in \mathbb{C}^{s \times(n-s)}$ are arbitrary matrices, and $H_{2} \in \mathbb{C}^{(n-s) \times(n-s)}$ is an arbitrary Hermitian nonnegative definite matrix.
(b). Eq (1) has a Re-pd solution if and only if

$$
\begin{equation*}
A A^{+} C B^{+} B=C, U_{1}^{\mathrm{H}} A^{+} C B^{+} U_{1} \in \mathbb{R} \mathbb{P} D^{s \times s} . \tag{20}
\end{equation*}
$$

In which case, the general Re-pd solution of (1) is

$$
\begin{equation*}
X=A^{+} C B^{+}+F_{A} J_{1}+J_{2} E_{B}, \tag{21}
\end{equation*}
$$

where

$$
K=U\left[\begin{array}{cc}
K_{11} & K_{12} \\
K_{12}^{\mathrm{H}} & H_{3}+K_{12}^{\mathrm{H}} K_{11}^{-1} K_{12}
\end{array}\right] U^{\mathrm{H}},
$$

$J_{1}, J_{2}, D_{3}, C_{3}, T_{3}, P_{3}, Q_{3}, W_{3}, Z_{3}$ and K_{11} are given by (18) and (19), $K_{12} \in \mathbb{C}^{s \times(n-s)}$ is an arbitrary matrix and $H_{3} \in \mathbb{C}^{(n-s) \times(n-s)}$ is an arbitrary Hermitian positive definite matrix.

Proof. By Lemma 1, if the first condition of (16) holds, then the general solution of Eq (1) is given by (17). Now, we will find J_{1} and J_{2} such that $A X B=C$ has a Re-nnd (Re-pd) solution, that is, we will choose suitable matrices J_{1} and J_{2} such that

$$
\begin{equation*}
A^{+} C B^{+}+\left(A^{+} C B^{+}\right)^{\mathrm{H}}+F_{A} J_{1}+J_{1}^{\mathrm{H}} F_{A}+J_{2} E_{B}+E_{B} J_{2}^{\mathrm{H}} \triangleq K \geq 0(K>0) . \tag{22}
\end{equation*}
$$

Clearly, Eq (22) can be equivalently written as

$$
\begin{equation*}
X_{3} A_{3}^{\mathrm{H}}+A_{3} X_{3}^{\mathrm{H}}=D_{3}, \tag{23}
\end{equation*}
$$

where $A_{3}=\left[F_{A}, E_{B}\right], X_{3}=\left[J_{1}^{\mathrm{H}}, J_{2}\right], D_{3}=K-A^{+} C B^{+}-\left(A^{+} C B^{+}\right)^{\mathrm{H}}$.
By Lemma 2, Eq (23) has a solution X_{1} if and only if

$$
\begin{equation*}
D_{3}=D_{3}^{\mathrm{H}}, E_{A_{3}} D_{3} E_{A_{3}}=0 \tag{24}
\end{equation*}
$$

The first condition of (24) is obviously satisfied. And note that

$$
E_{A_{3}}=P_{\mathcal{N}\left(A_{3}^{\mathrm{H}}\right)}=P_{\mathcal{N}\left(F_{A}\right) \cap \mathcal{N}\left(E_{B}\right)}=P_{\mathcal{R}\left(A^{\mathrm{H}}\right) \cap \mathcal{R}(B)} .
$$

Then the second condition of (24) is equivalent to

$$
P_{\mathcal{T}} D_{3} P_{\mathcal{T}}=0
$$

where $\mathcal{T}=\mathcal{R}\left(A^{\mathrm{H}}\right) \cap \mathcal{R}(B)$. By (15), we can obtain

$$
\left[\begin{array}{cc}
I_{s} & 0 \tag{25}\\
0 & 0
\end{array}\right] U^{\mathrm{H}} K U\left[\begin{array}{cc}
I_{s} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
I_{s} & 0 \\
0 & 0
\end{array}\right] U^{\mathrm{H}}\left(A^{+} C B^{+}+\left(A^{+} C B^{+}\right)^{\mathrm{H}}\right) U\left[\begin{array}{cc}
I_{s} & 0 \\
0 & 0
\end{array}\right],
$$

Let

$$
U^{\mathrm{H}} K U=\left[\begin{array}{ll}
K_{11} & K_{12} \tag{26}\\
K_{12}^{\mathrm{H}} & K_{22}
\end{array}\right],
$$

where $U=\left[U_{1}, U_{2}\right]$. By (25), we can obtain

$$
\begin{equation*}
K_{11}=U_{1}^{\mathrm{H}}\left(A^{+} C B^{+}+\left(A^{+} C B^{+}\right)^{\mathrm{H}}\right) U_{1}, \tag{27}
\end{equation*}
$$

it is easily known that $K \geq 0(K>0)$ if and only if $U^{\mathrm{H}} K U \geq 0\left(U^{\mathrm{H}} K U>0\right)$. And X is Re-nnd (Re-pd) if and only if $K \geq 0(K>0)$. Thus, by (26) and (27), we can get

$$
\begin{aligned}
& K \geq 0 \Longleftrightarrow K_{11}=U_{1}^{\mathrm{H}}\left(A^{+} C B^{+}+\left(A^{+} C B^{+}\right)^{\mathrm{H}}\right) U_{1} \geq 0, \\
& K>0 \Longleftrightarrow K_{11}=U_{1}^{\mathrm{H}}\left(A^{+} C B^{+}+\left(A^{+} C B^{+}\right)^{\mathrm{H}}\right) U_{1}>0,
\end{aligned}
$$

equivalently,

$$
\begin{aligned}
& K \geq 0 \Longleftrightarrow U_{1}^{\mathrm{H}} A^{+} C B^{+} U_{1} \in \mathbb{R} \mathbb{N D}^{s \times s}, \\
& K>0 \Longleftrightarrow U_{1}^{\mathrm{H}} A^{+} C B^{+} U_{1} \in \mathbb{R} \mathbb{P D}^{s \times s},
\end{aligned}
$$

which are the second conditions of (16) and (20). In which case, by Lemma 4,

$$
\begin{gathered}
K \geq 0 \Longleftrightarrow K=U\left[\begin{array}{cc}
K_{11} & K_{11} H_{1} \\
H_{1}^{\mathrm{H}} K_{11} & H_{2}+H_{1}^{\mathrm{H}} K_{11} H_{1}
\end{array}\right] U^{\mathrm{H}}, \\
K>0 \Longleftrightarrow K=U\left[\begin{array}{cc}
K_{11} & K_{12} \\
K_{12}^{\mathrm{H}} & H_{3}+K_{12}^{\mathrm{H}} K_{11}^{-1} K_{12}
\end{array}\right] U^{\mathrm{H}},
\end{gathered}
$$

where $H_{1} \in \mathbb{C}^{s \times(n-s)}$ is an arbitrary matrix, $H_{2} \in \mathbb{C}^{(n-s) \times(n-s)}$ is an arbitrary Hermitian nonnegative definite matrix and $H_{3} \in \mathbb{C}^{(n-s) \times(n-s)}$ is an arbitrary Hermitian positive definite matrix. And the general solution of Eq (23) is

$$
\begin{equation*}
X_{3}=D_{3}\left(A_{3}^{+}\right)^{\mathrm{H}}-\frac{1}{2} A_{3} A_{3}^{+} D_{3}\left(A_{3}^{+}\right)^{\mathrm{H}}+2 V-2 V A_{3}^{+} A_{3}-A_{3} V^{\mathrm{H}}\left(A_{3}^{+}\right)^{\mathrm{H}}+A_{3} A_{3}^{+} V A_{3}^{+} A_{3}, \tag{28}
\end{equation*}
$$

where $V=\left[V_{5}, V_{6}\right]$ is an arbitrary matrix. By Lemma 3, we have

$$
\left[F_{A}, E_{B}\right]^{+}=\left[\begin{array}{c}
\left(I+T_{3} T_{3}^{\mathrm{H}}\right)^{-1}\left(F_{A}^{+}-F_{A}^{+} E_{B} C_{3}^{+}\right) \tag{29}\\
C_{3}^{+}+T_{3}^{\mathrm{H}}\left(I+T_{3} T_{3}^{\mathrm{H}}\right)^{-1}\left(F_{A}^{+}-F_{A}^{+} E_{B} C_{3}^{+}\right)
\end{array}\right],
$$

where $C_{3}=\left(I-F_{A} F_{A}^{+}\right) E_{B}$ and $T_{3}=F_{A}^{+} E_{B}\left(I-C_{3}^{+} C_{3}\right)$. Upon substituting (29) into (28), we can get (18) and (19).

5. The Re-nnd and Re-pd least-rank solutions of Eq (1)

Theorem 3. Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times p}, C \in \mathbb{C}^{m \times p}$ and $\tilde{\mathcal{T}}=\mathcal{N}\left(N_{1}^{\mathrm{H}}\right) \cap \mathcal{N}\left(S_{1}\right)$. Assume that the spectral decomposition of $P_{\tilde{\mathcal{T}}}$ is

$$
P_{\tilde{\mathcal{T}}}=\tilde{U}\left[\begin{array}{cc}
I_{k} & 0 \tag{30}\\
0 & 0
\end{array}\right] \tilde{U}^{\mathrm{H}},
$$

where $\tilde{U}=\left[\tilde{U}_{1}, \tilde{U}_{2}\right] \in \mathbb{C}^{n \times n}$ is a unitary matrix and $k=\operatorname{dim}(\tilde{\mathcal{T}})$, and M, N, S, N_{1}, S_{1} are given by Lemma 5. Then
(a). Eq (1) has a Re-nnd least-rank solution if and only if

$$
\begin{equation*}
A A^{+} C B^{+} B=C, \tilde{U}_{1}^{\mathrm{H}}\left(-N M^{+} S\right) \tilde{U}_{1} \in \mathbb{R} \mathbb{N} \mathbb{D}^{k \times k} \tag{31}
\end{equation*}
$$

In which case, the general Re-nnd least-rank solution of Eq (1) is

$$
\begin{equation*}
X=-N M^{+} S+N_{1} R_{1}+R_{2} S_{1}, \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{1}=P_{4} D_{4}-\frac{1}{2} P_{4} D_{4} W_{4}^{\mathrm{H}}+2 V_{7}^{\mathrm{H}}-2 N_{1}^{\mathrm{H}} Z_{4}^{\mathrm{H}}-P_{4}\left(V_{7} N_{1}^{\mathrm{H}}+V_{8} S_{1}\right)+N_{1}^{\mathrm{H}} Z_{4}^{\mathrm{H}} W_{4}^{\mathrm{H}}, \tag{33}\\
& R_{2}=D_{4} Q_{4}^{\mathrm{H}}-\frac{1}{2} W_{4} D_{4} Q_{4}^{\mathrm{H}}+2 V_{8}-2 Z_{4} S_{1}^{\mathrm{H}}-\left(N_{1} V_{7}^{\mathrm{H}}+S_{1}^{\mathrm{H}} V_{8}^{\mathrm{H}}\right) Q_{4}^{\mathrm{H}}+W_{4} Z_{4} S_{1}^{\mathrm{H}}, \tag{34}\\
& D_{4}=\tilde{K}+N M^{+} S+\left(N M^{+} S\right)^{\mathrm{H}}, C_{4}=\left(I-N_{1} N_{1}^{+}\right) S_{1}^{\mathrm{H}}, T_{4}=N_{1}^{+} S_{1}^{\mathrm{H}}\left(I-C_{4}^{+} C_{4}\right), \\
& P_{4}=\left(I+T_{4} T_{4}^{\mathrm{H}}\right)^{-1}\left(N_{1}^{+}-N_{1}^{+} S_{1}^{\mathrm{H}} C_{4}^{+}\right), Q_{4}=C_{4}^{+}+T_{4}^{\mathrm{H}} P_{4}, \\
& W_{4}=N_{1} P_{4}+S_{1}^{\mathrm{H}} Q_{4}, Z_{4}=V_{7} P_{4}+V_{8} Q_{4}, \tilde{K}_{11}=\tilde{U}_{1}^{\mathrm{H}}\left(-N M^{+} S-\left(N M^{+} S\right)^{\mathrm{H}}\right) \tilde{U}_{1}, \\
& \tilde{K}=\tilde{U}\left[\begin{array}{cc}
\tilde{K}_{11} & \tilde{K}_{11} \tilde{H}_{1} \\
\tilde{H}_{1}^{\mathrm{H}} \tilde{K}_{11} & \tilde{H}_{2}+\tilde{H}_{1}^{\mathrm{H}} \tilde{K}_{11} \tilde{H}_{1}
\end{array}\right] \tilde{U}^{\mathrm{H}},
\end{align*}
$$

$V_{7} \in \mathbb{C}^{n \times(p+n)}, V_{8} \in \mathbb{C}^{n \times(m+n)}, \tilde{H}_{1} \in \mathbb{C}^{k \times(n-k)}$ are arbitrary matrices, and $\tilde{H}_{2} \in \mathbb{C}^{(n-k) \times(n-k)}$ is an arbitrary Hermitian nonnegative definite matrix.
(b). Eq (1) has a Re-pd least-rank solution if and only if

$$
\begin{equation*}
A A^{+} C B^{+} B=C, \tilde{U}_{1}^{\mathrm{H}}\left(-N M^{+} S\right) \tilde{U}_{1} \in \mathbb{R} \mathbb{P} \mathbb{D}^{k \times k} . \tag{35}
\end{equation*}
$$

In which case, the general Re-nnd least-rank solution of Eq (1) is

$$
\begin{equation*}
X=-N M^{+} S+N_{1} R_{1}+R_{2} S_{1}, \tag{36}
\end{equation*}
$$

where

$$
\tilde{K}=\tilde{U}\left[\begin{array}{cc}
\tilde{K}_{11} & \tilde{K}_{12} \\
\tilde{K}_{12}^{\mathrm{H}} & \tilde{H}_{3}+\tilde{K}_{12}^{\mathrm{H}} \tilde{K}_{11}^{-1} \tilde{K}_{12}
\end{array}\right] \tilde{U}^{\mathrm{H}},
$$

$R_{1}, R_{2}, D_{4}, C_{4}, T_{4}, P_{4}, Q_{4}, W_{4}, Z_{4}$ and \tilde{K}_{11} are given by (33) and (34), $\tilde{K}_{12} \in \mathbb{C}^{k \times(n-k)}$ is an arbitrary matrix and $\tilde{H}_{3} \in \mathbb{C}^{(n-k) \times(n-k)}$ is an arbitrary Hermitian positive definite matrix.

Proof. By Lemmas 1 and 5, if the first condition of (31) holds, then the least-rank solution of Eq (1) is given by (32). Now, we will find R_{1} and R_{2} such that $A X B=C$ has a Re-nnd (Re-pd) least-rank solution, that is, we will choose suitable matrices R_{1} and R_{2} such that

$$
\begin{equation*}
-N M^{+} S-\left(N M^{+} S\right)^{\mathrm{H}}+N_{1} R_{1}+R_{1}^{\mathrm{H}} N_{1}^{\mathrm{H}}+R_{2} S_{1}+S_{1}^{\mathrm{H}} R_{2}^{\mathrm{H}} \triangleq \tilde{K} \geq 0(\tilde{K}>0) . \tag{37}
\end{equation*}
$$

Clearly, Eq (37) can be equivalently written as

$$
\begin{equation*}
X_{4} A_{4}^{\mathrm{H}}+A_{4} X_{4}^{\mathrm{H}}=D_{4}, \tag{38}
\end{equation*}
$$

where $A_{4}=\left[N_{1}, S_{1}^{\mathrm{H}}\right], X_{4}=\left[R_{1}^{\mathrm{H}}, R_{2}\right], D_{4}=\tilde{K}+N M^{+} S+\left(N M^{+} S\right)^{\mathrm{H}}$.
By Lemma 2, Eq (38) has a solution X_{4} if and only if

$$
\begin{equation*}
D_{4}=D_{4}^{\mathrm{H}}, E_{A_{4}} D_{4} E_{A_{4}}=0 \tag{39}
\end{equation*}
$$

The first condition of (39) is obviously satisfied. And note that

$$
E_{A_{4}}=P_{\mathcal{N}\left(A_{4}^{\mathrm{H}}\right)}=P_{\mathcal{N}\left(N_{1}^{\mathrm{H}}\right) \cap \mathcal{N}\left(S_{1}\right)} .
$$

Thus, the second condition of (39) is equivalent to

$$
P_{\tilde{\mathcal{T}}} D_{4} P_{\tilde{\mathcal{T}}}=0,
$$

where $\tilde{\mathcal{T}}=\mathcal{N}\left(N_{1}^{\mathrm{H}}\right) \cap \mathcal{N}\left(S_{1}\right)$. By (30), we can obtain

$$
\left[\begin{array}{cc}
I_{k} & 0 \tag{40}\\
0 & 0
\end{array}\right] \tilde{U}^{\mathrm{H}} \tilde{K} \tilde{U}\left[\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right] \tilde{U}^{\mathrm{H}}\left(-N M^{+} S-\left(N M^{+} S\right)^{\mathrm{H}}\right) \tilde{U}\left[\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right],
$$

Let

$$
\tilde{U}^{\mathrm{H}} \tilde{K} \tilde{U}=\left[\begin{array}{ll}
\tilde{K}_{11} & \tilde{K}_{12} \tag{41}\\
\tilde{K}_{12}^{\mathrm{H}} & \tilde{K}_{22}
\end{array}\right]
$$

where $\tilde{U}=\left[\tilde{U}_{1}, \tilde{U}_{2}\right]$. By (40), we can obtain

$$
\begin{equation*}
\tilde{K}_{11}=\tilde{U}_{1}^{\mathrm{H}}\left(-N M^{+} S-\left(N M^{+} S\right)^{\mathrm{H}}\right) \tilde{U}_{1} \tag{42}
\end{equation*}
$$

it is easily known that $\tilde{K} \geq 0(\tilde{K}>0)$ if and only if $\tilde{U}^{\mathrm{H}} \tilde{K} \tilde{U} \geq 0\left(\tilde{U}^{\mathrm{H}} \tilde{K} \tilde{U}>0\right)$. And X is Re-nnd (Re-pd) least-rank solution if and only if $\tilde{K} \geq 0(\tilde{K}>0)$. Thus, by (41) and (42), we can get

$$
\begin{aligned}
& \tilde{K} \geq 0 \Longleftrightarrow \tilde{K}_{11}=\tilde{U}_{1}^{\mathrm{H}}\left(-N M^{+} S-\left(N M^{+} S\right)^{\mathrm{H}}\right) \tilde{U}_{1} \geq 0, \\
& \tilde{K}>0 \Longleftrightarrow \tilde{K}_{11}=\tilde{U}_{1}^{\mathrm{H}}\left(-N M^{+} S-\left(N M^{+} S\right)^{\mathrm{H}}\right) \tilde{U}_{1}>0,
\end{aligned}
$$

equivalently,

$$
\begin{aligned}
\tilde{K} \geq 0 & \Longleftrightarrow \tilde{U}_{1}^{\mathrm{H}}\left(-N M^{+} S\right) \tilde{U}_{1} \in \mathbb{R} \mathbb{N D}^{k \times k}, \\
\tilde{K}>0 & \Longleftrightarrow \tilde{U}_{1}^{\mathrm{H}}\left(-N M^{+} S\right) \tilde{U}_{1} \in \mathbb{R} \mathbb{P} \mathbb{D}^{k \times k},
\end{aligned}
$$

which are the second conditions of (31) and (35). In which case, by Lemma 4,

$$
\tilde{K} \geq 0 \Longleftrightarrow \tilde{K}=\tilde{U}\left[\begin{array}{cc}
\tilde{K}_{11} & \tilde{K}_{11} \tilde{H}_{1} \\
\tilde{H}_{1}^{\mathrm{H}} \tilde{K}_{11} & \tilde{H}_{2}+H_{1}^{\mathrm{H}} \tilde{K}_{11} \tilde{H}_{1}
\end{array}\right] \tilde{U}^{\mathrm{H}},
$$

$$
\tilde{K}>0 \Longleftrightarrow \tilde{K}=\tilde{U}\left[\begin{array}{cc}
\tilde{K}_{11} & \tilde{K}_{12} \\
\tilde{K}_{12}^{\mathrm{H}} & \tilde{H}_{3}+\tilde{K}_{12}^{\mathrm{H}} \tilde{K}_{11}^{-1} \tilde{K}_{12}
\end{array}\right] \tilde{U}^{\mathrm{H}}
$$

where $\tilde{H}_{1} \in \mathbb{C}^{k \times(n-k)}$ is an arbitrary matrix, $\tilde{H}_{2} \in \mathbb{C}^{(n-k) \times(n-k)}$ is an arbitrary Hermitian nonnegative definite matrix and $\tilde{H}_{3} \in \mathbb{C}^{(n-k) \times(n-k)}$ is an arbitrary Hermitian positive definite matrix. And the general solution of Eq (38) is

$$
\begin{equation*}
X_{4}=D_{4}\left(A_{4}^{+}\right)^{\mathrm{H}}-\frac{1}{2} A_{4} A_{4}^{+} D_{4}\left(A_{4}^{+}\right)^{\mathrm{H}}+2 V-2 V A_{4}^{+} A_{4}-A_{4} V^{\mathrm{H}}\left(A_{4}^{+}\right)^{\mathrm{H}}+A_{4} A_{4}^{+} V A_{4}^{+} A_{4}, \tag{43}
\end{equation*}
$$

where $V=\left[V_{7}, V_{8}\right]$ is an arbitrary matrix. By Lemma 3, we have

$$
\left[N_{1}, S_{1}^{\mathrm{H}}\right]^{+}=\left[\begin{array}{c}
\left(I+T_{4} T_{4}^{\mathrm{H}}\right)^{-1}\left(N_{1}^{+}-N_{1}^{+} S_{1}^{\mathrm{H}} C_{4}^{+}\right) \tag{44}\\
C_{4}^{+}+T_{4}^{\mathrm{H}}\left(I+T_{4} T_{4}^{\mathrm{H}}\right)^{-1}\left(N_{1}^{+}-N_{1}^{+} S_{1}^{\mathrm{H}} C_{4}^{+}\right)
\end{array}\right],
$$

where $C_{4}=\left(I-N_{1} N_{1}^{+}\right) S_{1}^{\mathrm{H}}$ and $T_{4}=N_{1}^{+} S_{1}^{\mathrm{H}}\left(I-C_{4}^{+} C_{4}\right)$. Upon substituting (44) into (43), we can get (33) and (34).

6. Numerical examples

The following example comes from [9].
Example 1. Consider a 7-DOF system modelled analytically with the first three measured modal data given by

$$
\Lambda=\operatorname{diag}(3.5498,101.1533,392.8443), X=\left[\begin{array}{rrr}
0.5585 & 0.4751 & -0.4241 \\
-0.0841 & -0.2353 & 0.2838 \\
0.3094 & -0.1717 & 0.2512 \\
-0.0800 & -0.1646 & 0.0852 \\
0.0996 & -0.3562 & -0.0508 \\
-0.0553 & 0.0404 & -0.2105 \\
0.0084 & -0.1788 & -0.4113
\end{array}\right]
$$

and the corrected symmetric mass matrix M and symmetric stiffness matrix K should satisfy the orthogonality conditions, that is,

$$
X^{\top} M X=I_{3}, X^{\top} K X=\Lambda .
$$

Since

$$
\begin{aligned}
& \left\|X^{\top}\left(X^{\top}\right)^{+} X^{+} X-I_{3}\right\|=1.5442 \times 10^{-15}, \\
& \left\|P_{\mathcal{T}}\left(\left(X^{\top}\right)^{+} X^{+}-\left(\left(X^{\top}\right)^{+} X^{+}\right)^{\top}\right) P_{\mathcal{T}}\right\|=0,
\end{aligned}
$$

which means that the conditions of (2) are satisfied. Choose $V_{1}=0, V_{2}=0$. Then, by the equation of (3), we can obtain a corrected mass matrix given by

$$
M=\left[\begin{array}{rrrrrrr}
1.1968 & -0.1073 & 0.8201 & -0.1678 & 0.1977 & -0.2079 & -0.1439 \\
-0.1073 & 0.3057 & 0.6292 & 0.0998 & 0.2953 & -0.2547 & -0.2095 \\
0.8201 & 0.6292 & 2.2748 & 0.1347 & 1.1398 & -0.7290 & -0.3249 \\
-0.1678 & 0.0998 & 0.1347 & 0.0998 & 0.3427 & 0.0177 & 0.2804 \\
0.1977 & 0.2953 & 1.1398 & 0.3427 & 1.8775 & 0.0370 & 1.4878 \\
-0.2079 & -0.2547 & -0.7290 & 0.0177 & 0.0370 & 0.3742 & 0.6461 \\
-0.1439 & -0.2095 & -0.3249 & 0.2804 & 1.4878 & 0.6461 & 2.1999
\end{array}\right],
$$

and

$$
\left\|X^{\top} M X-I_{3}\right\|=1.5016 \times 10^{-15}
$$

which implies that M is a symmetric solution of $X^{\top} M X=I_{3}$.
Since

$$
\begin{aligned}
& \left\|X^{\top}\left(X^{\top}\right)^{+} \Lambda X^{+} X-\Lambda\right\|=4.0942 \times 10^{-13}, \\
& \left\|P_{\mathcal{T}}\left(\left(X^{\top}\right)^{+} \Lambda X^{+}-\left(\left(X^{\top}\right)^{+} \Lambda X^{+}\right)^{\top}\right) P_{\mathcal{T}}\right\|=1.5051 \times 10^{-14},
\end{aligned}
$$

which means that the conditions of (2) are satisfied. Choose $V_{1}=0, V_{2}=0$. Then, by the equation of (3), we obtain a corrected stiffness matrix given by

$$
K=\left[\begin{array}{rrrrrrr}
50.0364 & -47.8369 & -66.1052 & 1.4621 & 21.6558 & 62.0904 & 44.8915 \\
-47.8369 & 93.9748 & 169.4007 & 41.9423 & 49.9653 & -78.9100 & -244.1315 \\
-66.1052 & 169.4007 & 176.9957 & -3.6625 & -103.7349 & -173.8782 & -169.8170 \\
1.4621 & 41.9423 & -3.6625 & 25.7528 & -2.6730 & -189.4986 & 98.3110 \\
21.6558 & 49.9653 & -103.7349 & -2.6730 & 95.3473 & -51.6395 & 446.8062 \\
62.0904 & -78.9100 & -173.8782 & -189.4986 & -51.6395 & 56.3200 & 448.6900 \\
44.8915 & -244.1315 & -169.8170 & 98.3110 & 446.8062 & 448.6900 & 394.1690
\end{array}\right],
$$

and

$$
\left\|X^{\top} K X-\Lambda\right\|=3.5473 \times 10^{-13},
$$

which implies that K is a symmetric solution of $X^{\top} K X=\Lambda$.
Example 2. Given matrices

$$
\begin{aligned}
& A=\left[\begin{array}{lrrrrrr}
7.9482 & 9.7975 & 1.3652 & 6.6144 & 5.8279 & 2.2595 \\
9.5684 & 2.7145 & 0.1176 & 2.8441 & 4.2350 & 5.7981 \\
5.2259 & 2.5233 & 8.9390 & 4.6922 & 5.1551 & 7.6037 \\
8.8014 & 8.7574 & 1.9914 & 0.6478 & 3.3395 & 5.2982 \\
1.7296 & 7.3731 & 2.9872 & 9.8833 & 4.3291 & 6.4053
\end{array}\right], \\
& B=\left[\begin{array}{lrrrrr}
1.9343 & 3.7837 & 8.2163 & 3.4119 & 3.7041 \\
6.8222 & 8.6001 & 6.4491 & 5.3408 & 7.0274 \\
3.0276 & 8.5366 & 8.1797 & 7.2711 & 5.4657 \\
5.4167 & 5.9356 & 6.6023 & 3.0929 & 4.4488 \\
1.5087 & 4.9655 & 3.4197 & 8.3850 & 6.9457 \\
6.9790 & 8.9977 & 2.8973 & 5.6807 & 6.2131
\end{array}\right], \\
& C=\left[\begin{array}{rrrrrr}
745.6317 & 1194.5543 & 1060.3913 & 995.6379 & 1010.8200 \\
535.5044 & 831.5304 & 791.3676 & 684.6897 & 711.7632 \\
845.4324 & 1338.1065 & 1123.7380 & 1077.0615 & 1096.2601 \\
629.0768 & 1006.4762 & 928.6566 & 804.5134 & 824.7220 \\
868.4158 & 1299.0559 & 995.0786 & 1012.7046 & 1054.9264
\end{array}\right] .
\end{aligned}
$$

Since $\left\|A A^{+} C B^{+} B-C\right\|=9.3907 \times 10^{-12}$, and the eigenvalues of K_{11} are

$$
\Lambda_{1}=\operatorname{diag}\{0.3561,11.0230,6.8922,5,3274\}
$$

which means that the conditions of (16) are satisfied. Choose V, H_{1} and H_{2} as

$$
V=\left[I_{6}, I_{6}\right], H_{1}=\left[\begin{array}{ll}
0.5211 & 0.6791 \\
0.2316 & 0.3955 \\
0.4889 & 0.3674 \\
0.6241 & 0.9880
\end{array}\right], H_{2}=\left[\begin{array}{ll}
6 & 0 \\
0 & 0
\end{array}\right] .
$$

Then, by the equation of (17), we get a solution of Eq (1):

$$
X=\left[\begin{array}{rrrrrr}
7.9305 & -1.8515 & -1.1364 & 0.5615 & 0.5411 & 1.2825 \\
-1.7228 & 2.3425 & 2.3029 & 1.4677 & 0.4975 & -0.4920 \\
0.8582 & 1.6817 & 2.5285 & 1.8325 & 1.0895 & -0.8095 \\
3.0514 & -0.8250 & -0.7922 & 3.3741 & 1.5249 & 1.6918 \\
-6.1787 & 3.8549 & 2.5294 & -2.6945 & 2.4568 & 0.6923 \\
-0.1968 & 1.0600 & 0.3214 & 0.6383 & -0.3125 & 3.2860
\end{array}\right]
$$

with corresponding residual

$$
\|A X B-C\|=6.4110 \times 10^{-12}
$$

Furthermore, it can be computed that the eigenvalues of $X+X^{\mathrm{H}}$ are

$$
\Lambda_{2}=\operatorname{diag}\{0,0.3555,3.9363,7.0892,11.1802,21.2758\}
$$

which implies that X is a Re-nnd solution of Eq (1).
Example 3. Let the matrices A and B be the same as those in Example 2 and the matrix C be given by

$$
C=\left[\begin{array}{llllll}
1841.2323 & 2726.8415 & 2555.2926 & 2172.7688 & 2365.3939 \\
1281.0788 & 1957.5932 & 1843.7252 & 1614.6211 & 1699.3985 \\
1826.1325 & 3077.6141 & 2600.8168 & 2539.0181 & 2467.3558 \\
1583.3543 & 2422.3169 & 2153.6625 & 1910.0156 & 2035.2123 \\
2065.8761 & 2950.7783 & 2362.0060 & 2197.7129 & 2389.1173
\end{array}\right] .
$$

Since $\left\|A A^{+} C B^{+} B-C\right\|=1.7944 \times 10^{-11}$, and the eigenvalues of K_{11} are

$$
\Lambda_{1}=\operatorname{diag}\{25.3998,20.3854,19.4050,19.0160\}
$$

which means that the conditions of (20) are satisfied. If select V, K_{12} and H_{3} as

$$
V=\left[I_{6}, I_{6}\right], K_{12}=\left[\begin{array}{ll}
0.5211 & 0.6791 \\
0.2316 & 0.3955 \\
0.4889 & 0.3674 \\
0.6241 & 0.9880
\end{array}\right], H_{3}=\left[\begin{array}{ll}
6 & 0 \\
0 & 8
\end{array}\right] .
$$

Then, by the equation of (21), we can achieve a Re-pd solution of Eq (1):

$$
X=\left[\begin{array}{rrrrrr}
7.0701 & 1.2500 & 0.8677 & 1.7685 & 2.7735 & -1.4689 \\
1.0152 & 9.9032 & 0.1535 & -0.4383 & -0.0571 & 1.2297 \\
0.8063 & 0.4874 & 10.0878 & -0.5956 & 2.0235 & 1.1426 \\
2.1662 & 0.0136 & -0.8364 & 8.2937 & 1.8721 & 2.5887 \\
1.6627 & 0.7279 & 1.2887 & 1.2198 & 5.6682 & 0.4925 \\
-1.6028 & 1.1737 & 1.8004 & 2.6718 & 0.2729 & 8.1489
\end{array}\right] \text {, }
$$

and the eigenvalues of $X+X^{\mathrm{H}}$ are

$$
\Lambda_{2}=\operatorname{diag}\{5.9780,7.9395,19.1387,19.4286,20.4585,25.4004\}
$$

Furthermore, it can be computed that

$$
\|A X B-C\|=1.7808 \times 10^{-11}
$$

7. Concluding remarks

In this paper, we mainly consider some special solutions of Eq (1). By imposing some constraints on the expression $X=A^{+} C B^{+}+F_{A} L_{1}+L_{2} E_{B}$, we succeed in obtaining a set of necessary and sufficient conditions for the existence of the Hermitian, skew-Hermitian, Re-nonnegative definite, Re-positive definite, Re-nonnegative definite least-rank and Re-positive definite least-rank solutions of Eq (1), respectively. Moreover, we give the explicit expressions for these special solutions, when the consistent conditions are satisfied.

Acknowledgments

The authors wish to give special thanks to the editor and the anonymous reviewers for their helpful comments and suggestions which have improved the presentation of the paper.

Conflict of interest

The authors declare no conflict of interest.

References

1. Y. Chen, Z. Peng, T. Zhou, LSQR iterative common symmetric solutions to matrix equations $A X B=$ E and $C X D=F$, Appl. Math. Comput., 217 (2010), 230-236.
2. M. K. Zak, F. Toutounian, Nested splitting conjugate gradient method for matrix equation $A X B=$ C and preconditioning, Comput. Math. Appl., 66 (2013), 269-278.
3. X. Wang, Y. Li, L. Dai, On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation $A X B=C$, Comput. Math. Appl., 65 (2013), 657-664.
4. Z. Tian, M. Tian, Z. Liu, et al., The Jacobi and Gauss-Seidel-type iteration methods for the matrix equation $A X B=C$, Appl. Math. Comput., 292 (2017), 63-75.
5. Z. Liu, Z. Li, C. Ferreira, et al., Stationary splitting iterative methods for the matrix equation $A X B=C$, Appl. Math. Comput., 378 (2020), 125195.
6. Y. Yuan, H. Dai, Generalized reflexive solutions of the matrix equation $A X B=D$ and an associated optimal approximation problem, Comput. Math. Appl., 56 (2008), 1643-1649.
7. F. Zhang, M. Wei, Y. Li, et al., The minimal norm least squares Hermitian solution of the complex matrix equation $A X B+C X D=E$, J. Franklin I., 355 (2018), 1296-1310.
8. G. Song, S. Yu, Nonnegative definite and Re-nonnegative definite solutions to a system of matrix equations with statistical applications, Appl. Math. Comput., 338 (2018), 828-841.
9. H. Liu, Y. Yuan, An inverse problem for symmetric matrices in structural dynamic model updating, Chinese J. Eng. Math., 26 (2009), 1083-1089.
10. M. I. Friswell, J. E. Mottershead, Finite element model updating in structural dynamics, Kluwer Academic Publishers: Dordrecht, 1995.
11. F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43 (2001), 235-286.
12. V. L. Mehrmann, The autonomous linear quadratic control problem: theory and numerical solution, In: Lecture Notes in Control and Information Sciences, 163, Springer, Heidelberg, 1991.
13. G. Duan, S. Xu, W. Huang, Generalized positive definite matrix and its application in stability analysis, Acta Mechanica Sinica, 21 (1989), 754-757. (in Chinese)
14. G. Duan, R. J. Patton, A note on Hurwitz stability of matrices, Automatica, 34 (1998), 509-511.
15. C. G. Khatri, S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579-585.
16. A. Navarra, P. L. Odell, D. M. Young, A representation of the general common solution to the matrix equations $A_{1} X B_{1}=C_{1}$ and $A_{2} X B_{2}=C_{2}$ with applications, Comput. Math. Appl., 41 (2001), 929-935.
17. F. Zhang, Y. Li, W. Guo, et al., Least squares solutions with special structure to the linear matrix equation $A X B=C$, Appl. Math. Comput., 217 (2011), 10049-10057.
18. Q. Wang, C. Yang, The Re-nonnegative definite solutions to the matrix equation $A X B=C$, Commentationes Mathematicae Universitatis Carolinae, 39 (1998), 7-13.
19. D. S. Cvetković-Ilić, Re-nnd solutions of the matrix equation $A X B=C$, J. Aust. Math. Soc., 84 (2008), 63-72.
20. X. Zhang, L. Sheng, Q. Xu, A note on the real positive solutions of the operator equation $A X B=C$, Journal of Shanghai Normal University (Natural Sciences), 37 (2008), 454-458.
21. Y. Yuan, K. Zuo, The Re-nonnegative definite and Re-positive definite solutions to the matrix equation $A X B=D$, Appl. Math. Comput., 256 (2015), 905-912.
22. L. Wu, The Re-positive definite solutions to the matrix inverse problem $A X=B$, Linear Algebra Appl., 174 (1992), 145-151.
23. L. Wu, B. Cain, The Re-nonnegative definite solutions to the matrix inverse problem $A X=B$, Linear Algebra Appl., 236 (1996), 137-146.
24. J. Groß, Explicit solutions to the matrix inverse problem $A X=B$, Linear Algebra Appl., 289 (1999), 131-134.
25. X. Liu, Comments on "The common Re-nnd and Re-pd solutions to the matrix equations $A X=C$ and $X B=D "$, Appl. Math. Comput., 236 (2014), 663-668.
26. A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications (second edition), Springer, New York, 2003.
27. H. W. Braden, The equations $A^{\top} X \pm X^{\top} A=B$, SIAM J. Matrix Anal. Appl., 20 (1998), 295-302.
28. Y. Yuan, On the symmetric solutions of a class of linear matrix equation, Chinese J. Eng. Math., 15 (1998), 25-29.
29. L. Mihályffy, An alternative representation of the generalized inverse of partitioned matrices, Linear Algebra Appl., 4 (1971), 95-100.
30. A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math., 17 (1969), 434-440.
31. Y. Tian, H. Wang, Relations between least-squares and least-rank solutions of the matrix equation $A X B=C$, Appl. Math. Comput., 219 (2013), 10293-10301.

AIMS Press
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

