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1. Introduction

Throughout this paper, the complex m×n matrix space is denoted by Cm×n. The conjugate transpose,
the Moore-Penrose inverse, the range space and the null space of a complex matrix A ∈ Cm×n are
denoted by AH, A+, R(A) andN(A), respectively. In denotes the n×n identity matrix. PL stands for the
orthogonal projector on the subspace L ⊂ Cn. Furthermore, for a matrix A ∈ Cm×n, EA and FA stand
for two orthogonal projectors: EA = Im − AA+ = PN(AH), FA = In − A+A = PN(A).

A number of papers have been published for solving linear matrix equations. For example, Chen et
al. [1] proposed LSQR iterative method to solve common symmetric solutions of matrix equations
AXB = E and CXD = F. Zak and Toutounian [2] studied the matrix equation of AXB = C
with nonsymmetric coefficient matrices by using nested splitting conjugate gradient (NSCG) iteration
method. By applying a Hermitian and skew-Hermitian splitting (HSS) iteration method, Wang et
al. [3] computed the solution of the matrix equation AXB = C. Tian et al. [4] obtained the solution of
the matrix equation AXB = C by applying the Jacobi and Gauss-Seidel-type iteration methods. Liu
et al. [5] solved the matrix equation AXB = C by employing stationary splitting iterative methods.
In addition, some scholars studied matrix equations by direct methods. Yuan and Dai [6] obtained
generalized reflexive solutions of the matrix equation AXB = D and the optimal approximation solution
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by using the generalized singular value decomposition. Zhang et al. [7] provided the explicit expression
of the minimal norm least squares Hermitian solution of the complex matrix equation AXB+CXD = E
by using the structure of the real representations of complex matrices and the Moore-Penrose inverse.
By means of the definitions of the rank and inertias of matrices, Song and Yu [8] obtained the existence
conditions and expressions of the nonnegative (positive) definite and the Re-nonnegative (Re-positive)
definite solutions to the matrix equations AXAH = C and BXBH = D.

In this paper, we will focus on the restricted solutions to the following well-known linear matrix
equation

AXB = C, (1)

where A ∈ Cm×n, B ∈ Cn×p and C ∈ Cm×p. We observe that the structured matrix, such as Hermitian
matrix, skew-Hermitian matrix, Re-nonnegative definite matrix and Re-positive definite matrix, is of
important applications in structural dynamics, numerical analysis, stability and robust stability analysis
of control theory and so on [9–14]. Conditions for the existence of Hermitian solutions to Eq (1) were
studied in [15–17]. A solvability criterion for the existence of Re-nonnegative definite solutions of
Eq (1) by using generalized inner inverses was investigated by Cvetković-Ilić [19]. Recently, a direct
method for solving Eq (1) by using the generalized inverses of matrices and orthogonal projectors
was proposed by Yuan and Zuo [21]. In addition, the Re-nonnegative definite and Re-positive definite
solutions to some special cases of Eq (1) were considered by Wu [22], Wu and Cain [23] and Groß [24].
In [25], necessary and sufficient conditions for the existence of common Re-nonnegative definite and
Re-positive definite solutions to the matrix equations AX = C, XB = D were discussed by virtue of the
extremal ranks of matrix polynomials.

In this paper, necessary and sufficient conditions for the existence of Hermitian (skew-Hermitian),
Re-nonnegative (Re-positive) definite, and Re-nonnegative (Re-positive) definite least-rank solutions
to Eq (1) are deduced by using the Moore-Penrose inverse of matrices, and the explicit representations
of the general solutions are given when the solvability conditions are satisfied. Compared with the
approaches proposed in [18–21], the coefficient matrices of Eq (1) have no any constraints and the
method in this paper is straightforward and easy to implement.

2. Preliminaries

Definition 1. A matrix A ∈ Cn×n is said to be Re-nonnegative definite (Re-nnd) if H(A) := 1
2 (A + AH)

is Hermitian nonnegative definite (i.e., H(A) ≥ 0), and A is said to be Re-positive definite (Re-pd) if
H(A) is Hermitian positive definite (i.e., H(A) > 0). The set of all Re-nnd (Re-pd) matrices in Cn×n is
denoted by RNDn×n (RPDn×n).

Lemma 1. [26] Let A ∈ Cm×n, B ∈ Cn×p and C ∈ Cm×p. Then the matrix equation AXB = C is
solvable if and only if AA+CB+B = C. In this case, the general solution can be written in the following
parametric form

X = A+CB+ + FAL1 + L2EB,

where L1, L2 ∈ C
n×n are arbitrary matrices.

Lemma 2. [27, 28] Let B1 ∈ C
l×q,D1 ∈ C

l×l. Then the matrix equation

YBH
1 ± B1YH = D1,
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has a solution Y ∈ Cl×q if and only if

D1 = ±DH
1 , EB1 D1EB1 = 0.

In which case, the general solution is

Y =
1
2

D1(B+
1 )H +

1
2

EB1 D1(B+
1 )H + 2V − VB+

1 B1 ∓ B1VH(B+
1 )H − EB1VB+

1 B1,

where V ∈ Cl×q is an arbitrary matrix.

Lemma 3. [29] Let A ∈ Cm×n and B ∈ Cm×p. Then the Moore-Penrose inverse of the matrix [A, B] is

[A, B]+ =

[
(I + TT H)−1(A+ − A+BC+)

C+ + T H(I + TT H)−1(A+ − A+BC+)

]
,

where C = (I − AA+)B and T = A+B(I −C+C).

Lemma 4. [30] Suppose that a Hermitian matrix M is partitioned as

M =

[
M11 M12

MH
12 M22

]
,

where M11, M22 are square. Then
(i). M is Hermitian nonnegative definite if and only if

M11 ≥ 0, M11M+
11M12 = M12, M22 − MH

12M+
11M12 , H2 ≥ 0.

In which case, M can be expressed as

M =

[
M11 M11H1

HH
1 M11 H2 + HH

1 M11H1

]
,

where H1 is an arbitrary matrix and H2 is an arbitrary Hermitian nonnegative definite matrix.
(ii). M is Hermitian positive definite if and only if

M11 > 0, M22 − MH
12M−1

11 M12 , H3 > 0.

In the case, M can be expressed as

M =

[
M11 M12

MH
12 H3 + MH

12M−1
11 M12

]
,

where H3 is an arbitrary Hermitian positive definite matrix.

Lemma 5. [31] Let

M =

[
C A
B 0

]
, N =

[
0 In

]
, S =

[
0
In

]
, N1 = NFM, S 1 = EMS .

Then the general least-rank solution to Eq.(1) can be written as

X = −NM+S + N1R1 + R2S 1,

where R1 ∈ C
(p+n)×n,R2 ∈ C

n×(m+n) are arbitrary matrices.
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3. The Hermitian and skew-Hermitian solutions of Eq (1)

Theorem 1. Eq (1) has a Hermitian solution X if and only if

AA+CB+B = C,
PT

(
A+CB+ − (A+CB+)H

)
PT = 0,

(2)

where T = R(AH) ∩ R(B). In which case, the general Hermitian solution of Eq (1) is

X = A+CB+ + FAL1 + L2EB, (3)

where
L1 = −P1D1 +

1
2

P1D1WH
1 + 2VH

1 − 2FAZH
1 + P1(V1FA − V2EB) + FAZH

1 WH
1 , (4)

L2 = D1QH
1 −

1
2

W1D1QH
1 + 2V2 + 2Z1EB + (FAVH

1 − EBVH
2 )QH

1 −W1Z1EB, (5)

D1 = A+CB+ − (A+CB+)H, C1 = −(I − FAF+
A)EB, T1 = −F+

AEB(I −C+
1 C1),

P1 = (I + T1T H
1 )−1(F+

A + F+
AEBC+

1 ), Q1 = C+
1 + T H

1 P1,

W1 = FAP1 − EBQ1, Z1 = V1P1 + V2Q1,

and V1,V2 ∈ C
n×n are arbitrary matrices.

Proof. By Lemma 1, if the first condition of (2) holds, then the general solution of Eq (1) is given by
(3). Now, we will find L1 and L2 such that AXB = C has a Hermitian solution, that is,

A+CB+ + FAL1 + L2EB = (A+CB+)H + LH
1 FA + EBLH

2 . (6)

Clearly, Eq (6) can be equivalently written as

X1AH
1 − A1XH

1 = D1, (7)

where A1 = [FA,−EB], X1 = [LH
1 , L2], D1 = A+CB+ − (A+CB+)H.

By Lemma 2, Eq (7) has a solution X1 if and only if

D1 = −DH
1 , EA1 D1EA1 = 0. (8)

The first condition of (8) is obviously satisfied. And note that

EA1 = PN(AH
1 ) = PN(FA)∩N(EB) = PR(AH)∩R(B).

Thus, the second condition of (8) is equivalent to

PTD1PT = 0,

where T = R(AH) ∩ R(B), which is the second condition of (2). In which case, the general solution of
Eq (7) is

X1 = D1(A+
1 )H −

1
2

A1A+
1 D1(A+

1 )H + 2V − 2VA+
1 A1 + A1VH(A+

1 )H + A1A+
1 VA+

1 A1, (9)
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where V = [V1,V2] is an arbitrary matrix. By Lemma 3, we have

[FA,−EB]+ =

[
(I + T1T H

1 )−1(F+
A + F+

AEBC+
1 )

C+
1 + T H

1 (I + T1T H
1 )−1(F+

A + F+
AEBC+

1 )

]
, (10)

where C1 = −(I − FAF+
A)EB and T1 = −F+

AEB(I − C+
1 C1). Upon substituting (10) into (9), we can get

(4) and (5). �

Corollary 1. Eq (1) has a skew-Hermitian solution X if and only if

AA+CB+B = C,
PT

(
A+CB+ + (A+CB+)H

)
PT = 0,

(11)

where T = R(AH) ∩ R(B). In which case, the general skew-Hermitian solution of Eq (1) is

X = A+CB+ + FAL3 + L4EB, (12)

where
L3 = P2D2 −

1
2

P2D2WH
2 + 2VH

3 − 2FAZH
2 − P2(V3FA + V4EB) + FAZH

2 WH
2 , (13)

L4 = D2QH
2 −

1
2

W2D2QH
2 + 2V4 − 2Z2EB − (FAVH

3 + EBVH
4 )QH

2 + W2Z2EB, (14)

D2 = −A+CB+ − (A+CB+)H, C2 = (I − FAF+
A)EB, T2 = F+

AEB(I −C+
2 C2),

P2 = (I + T2T H
2 )−1(F+

A − F+
AEBC+

2 ), Q2 = C+
2 + T H

2 P2,

W2 = FAP2 + EBQ2, Z2 = V3P2 + V4Q2,

and V3, V4 ∈ C
n×n are arbitrary matrices.

4. The Re-nnd and Re-pd solutions of Eq (1)

Theorem 2. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cm×p and T = R(AH) ∩ R(B). Assume that the spectral
decomposition of PT is

PT = U
[

Is 0
0 0

]
UH, (15)

where U = [U1,U2] ∈ Cn×n is a unitary matrix and s = dim(T ). Then
(a). Eq (1) has a Re-nnd solution if and only if

AA+CB+B = C, UH
1 A+CB+U1 ∈ RND

s×s. (16)

In which case, the general Re-nnd solution of (1) is

X = A+CB+ + FAJ1 + J2EB, (17)

where
J1 = P3D3 −

1
2

P3D3WH
3 + 2VH

5 − 2FAZH
3 − P3(V5FA + V6EB) + FAZH

3 WH
3 , (18)
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J2 = D3QH
3 −

1
2

W3D3QH
3 + 2V6 − 2Z3EB − (FAVH

5 + EBVH
6 )QH

3 + W3Z3EB, (19)

D3 = K − A+CB+ − (A+CB+)H, C3 = (I − FAF+
A)EB,

T3 = F+
AEB(I −C+

3 C3), P3 = (I + T3T H
3 )−1(F+

A − F+
AEBC+

3 ), Q3 = C+
3 + T H

3 P3,

W3 = FAP3 + EBQ3, Z3 = V5P3 + V6Q3, K11 = UH
1 (A+CB+ + (A+CB+)H)U1,

K = U
[

K11 K11H1

HH
1 K11 H2 + HH

1 K11H1

]
UH,

V5,V6 ∈ C
n×n,H1 ∈ C

s×(n−s) are arbitrary matrices, and H2 ∈ C
(n−s)×(n−s) is an arbitrary Hermitian

nonnegative definite matrix.
(b). Eq (1) has a Re-pd solution if and only if

AA+CB+B = C, UH
1 A+CB+U1 ∈ RPD

s×s. (20)

In which case, the general Re-pd solution of (1) is

X = A+CB+ + FAJ1 + J2EB, (21)

where

K = U
[

K11 K12

KH
12 H3 + KH

12K−1
11 K12

]
UH,

J1, J2,D3,C3,T3, P3,Q3,W3,Z3 and K11 are given by (18) and (19), K12 ∈ C
s×(n−s) is an arbitrary matrix

and H3 ∈ C
(n−s)×(n−s) is an arbitrary Hermitian positive definite matrix.

Proof. By Lemma 1, if the first condition of (16) holds, then the general solution of Eq (1) is given by
(17). Now, we will find J1 and J2 such that AXB = C has a Re-nnd (Re-pd) solution, that is, we will
choose suitable matrices J1 and J2 such that

A+CB+ + (A+CB+)H + FAJ1 + JH
1 FA + J2EB + EBJH

2 , K ≥ 0 (K > 0). (22)

Clearly, Eq (22) can be equivalently written as

X3AH
3 + A3XH

3 = D3, (23)

where A3 = [FA, EB], X3 = [JH
1 , J2], D3 = K − A+CB+ − (A+CB+)H.

By Lemma 2, Eq (23) has a solution X1 if and only if

D3 = DH
3 , EA3 D3EA3 = 0. (24)

The first condition of (24) is obviously satisfied. And note that

EA3 = PN(AH
3 ) = PN(FA)∩N(EB) = PR(AH)∩R(B).

Then the second condition of (24) is equivalent to

PTD3PT = 0,
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where T = R(AH) ∩ R(B). By (15), we can obtain[
Is 0
0 0

]
UHKU

[
Is 0
0 0

]
=

[
Is 0
0 0

]
UH(A+CB+ + (A+CB+)H)U

[
Is 0
0 0

]
, (25)

Let

UHKU =

[
K11 K12

KH
12 K22

]
, (26)

where U = [U1,U2]. By (25), we can obtain

K11 = UH
1 (A+CB+ + (A+CB+)H)U1, (27)

it is easily known that K ≥ 0 (K > 0) if and only if UHKU ≥ 0 (UHKU > 0). And X is Re-nnd (Re-pd)
if and only if K ≥ 0 (K > 0). Thus, by (26) and (27), we can get

K ≥ 0⇐⇒ K11 = UH
1 (A+CB+ + (A+CB+)H)U1 ≥ 0,

K > 0⇐⇒ K11 = UH
1 (A+CB+ + (A+CB+)H)U1 > 0,

equivalently,

K ≥ 0⇐⇒ UH
1 A+CB+U1 ∈ RND

s×s,

K > 0⇐⇒ UH
1 A+CB+U1 ∈ RPD

s×s,

which are the second conditions of (16) and (20). In which case, by Lemma 4,

K ≥ 0⇐⇒ K = U
[

K11 K11H1

HH
1 K11 H2 + HH

1 K11H1

]
UH,

K > 0⇐⇒ K = U
[

K11 K12

KH
12 H3 + KH

12K−1
11 K12

]
UH,

where H1 ∈ C
s×(n−s) is an arbitrary matrix, H2 ∈ C

(n−s)×(n−s) is an arbitrary Hermitian nonnegative
definite matrix and H3 ∈ C

(n−s)×(n−s) is an arbitrary Hermitian positive definite matrix. And the general
solution of Eq (23) is

X3 = D3(A+
3 )H −

1
2

A3A+
3 D3(A+

3 )H + 2V − 2VA+
3 A3 − A3VH(A+

3 )H + A3A+
3 VA+

3 A3, (28)

where V = [V5,V6] is an arbitrary matrix. By Lemma 3, we have

[FA, EB]+ =

[
(I + T3T H

3 )−1(F+
A − F+

AEBC+
3 )

C+
3 + T H

3 (I + T3T H
3 )−1(F+

A − F+
AEBC+

3 )

]
, (29)

where C3 = (I − FAF+
A)EB and T3 = F+

AEB(I −C+
3 C3). Upon substituting (29) into (28), we can get (18)

and (19). �
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5. The Re-nnd and Re-pd least-rank solutions of Eq (1)

Theorem 3. Let A ∈ Cm×n, B ∈ Cn×p, C ∈ Cm×p and T̃ = N(NH
1 ) ∩ N(S 1). Assume that the spectral

decomposition of PT̃ is

PT̃ = Ũ
[

Ik 0
0 0

]
ŨH, (30)

where Ũ = [Ũ1, Ũ2] ∈ Cn×n is a unitary matrix and k = dim(T̃ ), and M,N, S ,N1, S 1 are given by
Lemma 5. Then
(a). Eq (1) has a Re-nnd least-rank solution if and only if

AA+CB+B = C, ŨH
1 (−NM+S )Ũ1 ∈ RND

k×k. (31)

In which case, the general Re-nnd least-rank solution of Eq (1) is

X = −NM+S + N1R1 + R2S 1, (32)

where

R1 = P4D4 −
1
2

P4D4WH
4 + 2VH

7 − 2NH
1 ZH

4 − P4(V7NH
1 + V8S 1) + NH

1 ZH
4 WH

4 , (33)

R2 = D4QH
4 −

1
2

W4D4QH
4 + 2V8 − 2Z4S H

1 − (N1VH
7 + S H

1 VH
8 )QH

4 + W4Z4S H
1 , (34)

D4 = K̃ + NM+S + (NM+S )H, C4 = (I − N1N+
1 )S H

1 , T4 = N+
1 S H

1 (I −C+
4 C4),

P4 = (I + T4T H
4 )−1(N+

1 − N+
1 S H

1 C+
4 ), Q4 = C+

4 + T H
4 P4,

W4 = N1P4 + S H
1 Q4, Z4 = V7P4 + V8Q4, K̃11 = ŨH

1 (−NM+S − (NM+S )H)Ũ1,

K̃ = Ũ
[

K̃11 K̃11H̃1

H̃H
1 K̃11 H̃2 + H̃H

1 K̃11H̃1

]
ŨH,

V7 ∈ C
n×(p+n), V8 ∈ C

n×(m+n), H̃1 ∈ C
k×(n−k) are arbitrary matrices, and H̃2 ∈ C

(n−k)×(n−k) is an arbitrary
Hermitian nonnegative definite matrix.
(b). Eq (1) has a Re-pd least-rank solution if and only if

AA+CB+B = C, ŨH
1 (−NM+S )Ũ1 ∈ RPD

k×k. (35)

In which case, the general Re-nnd least-rank solution of Eq (1) is

X = −NM+S + N1R1 + R2S 1, (36)

where

K̃ = Ũ
[

K̃11 K̃12

K̃H
12 H̃3 + K̃H

12K̃−1
11 K̃12

]
ŨH,

R1,R2,D4,C4,T4, P4,Q4,W4,Z4 and K̃11 are given by (33) and (34), K̃12 ∈ C
k×(n−k) is an arbitrary

matrix and H̃3 ∈ C
(n−k)×(n−k) is an arbitrary Hermitian positive definite matrix.
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Proof. By Lemmas 1 and 5, if the first condition of (31) holds, then the least-rank solution of Eq (1)
is given by (32). Now, we will find R1 and R2 such that AXB = C has a Re-nnd (Re-pd) least-rank
solution, that is, we will choose suitable matrices R1 and R2 such that

− NM+S − (NM+S )H + N1R1 + RH
1 NH

1 + R2S 1 + S H
1 RH

2 , K̃ ≥ 0 (K̃ > 0). (37)

Clearly, Eq (37) can be equivalently written as

X4AH
4 + A4XH

4 = D4, (38)

where A4 = [N1, S H
1 ], X4 = [RH

1 ,R2], D4 = K̃ + NM+S + (NM+S )H.

By Lemma 2, Eq (38) has a solution X4 if and only if

D4 = DH
4 , EA4 D4EA4 = 0. (39)

The first condition of (39) is obviously satisfied. And note that

EA4 = PN(AH
4 ) = PN(NH

1 )∩N(S 1).

Thus, the second condition of (39) is equivalent to

PT̃D4PT̃ = 0,

where T̃ = N(NH
1 ) ∩ N(S 1). By (30), we can obtain[

Ik 0
0 0

]
ŨHK̃Ũ

[
Ik 0
0 0

]
=

[
Ik 0
0 0

]
ŨH(−NM+S − (NM+S )H)Ũ

[
Ik 0
0 0

]
, (40)

Let

ŨHK̃Ũ =

[
K̃11 K̃12

K̃H
12 K̃22

]
, (41)

where Ũ = [Ũ1, Ũ2]. By (40), we can obtain

K̃11 = ŨH
1 (−NM+S − (NM+S )H)Ũ1, (42)

it is easily known that K̃ ≥ 0 (K̃ > 0) if and only if ŨHK̃Ũ ≥ 0 (ŨHK̃Ũ > 0). And X is Re-nnd (Re-pd)
least-rank solution if and only if K̃ ≥ 0 (K̃ > 0). Thus, by (41) and (42), we can get

K̃ ≥ 0⇐⇒ K̃11 = ŨH
1 (−NM+S − (NM+S )H)Ũ1 ≥ 0,

K̃ > 0⇐⇒ K̃11 = ŨH
1 (−NM+S − (NM+S )H)Ũ1 > 0,

equivalently,

K̃ ≥ 0⇐⇒ ŨH
1 (−NM+S )Ũ1 ∈ RND

k×k,

K̃ > 0⇐⇒ ŨH
1 (−NM+S )Ũ1 ∈ RPD

k×k,

which are the second conditions of (31) and (35). In which case, by Lemma 4,

K̃ ≥ 0⇐⇒ K̃ = Ũ
[

K̃11 K̃11H̃1

H̃H
1 K̃11 H̃2 + HH

1 K̃11H̃1

]
ŨH,
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K̃ > 0⇐⇒ K̃ = Ũ
[

K̃11 K̃12

K̃H
12 H̃3 + K̃H

12K̃−1
11 K̃12

]
ŨH,

where H̃1 ∈ C
k×(n−k) is an arbitrary matrix, H̃2 ∈ C

(n−k)×(n−k) is an arbitrary Hermitian nonnegative
definite matrix and H̃3 ∈ C

(n−k)×(n−k) is an arbitrary Hermitian positive definite matrix. And the general
solution of Eq (38) is

X4 = D4(A+
4 )H −

1
2

A4A+
4 D4(A+

4 )H + 2V − 2VA+
4 A4 − A4VH(A+

4 )H + A4A+
4 VA+

4 A4, (43)

where V = [V7,V8] is an arbitrary matrix. By Lemma 3, we have

[N1, S H
1 ]+ =

[
(I + T4T H

4 )−1(N+
1 − N+

1 S H
1 C+

4 )
C+

4 + T H
4 (I + T4T H

4 )−1(N+
1 − N+

1 S H
1 C+

4 )

]
, (44)

where C4 = (I−N1N+
1 )S H

1 and T4 = N+
1 S H

1 (I−C+
4 C4). Upon substituting (44) into (43), we can get (33)

and (34). �

6. Numerical examples

The following example comes from [9].
Example 1. Consider a 7-DOF system modelled analytically with the first three measured modal data
given by

Λ = diag(3.5498, 101.1533, 392.8443), X =



0.5585 0.4751 −0.4241
−0.0841 −0.2353 0.2838

0.3094 −0.1717 0.2512
−0.0800 −0.1646 0.0852

0.0996 −0.3562 −0.0508
−0.0553 0.0404 −0.2105

0.0084 −0.1788 −0.4113


.

and the corrected symmetric mass matrix M and symmetric stiffness matrix K should satisfy the
orthogonality conditions, that is,

X>MX = I3, X>KX = Λ.

Since

‖X>(X>)+X+X − I3‖ = 1.5442 × 10−15,

‖PT
(
(X>)+X+ − ((X>)+X+)>

)
PT ‖ = 0,

which means that the conditions of (2) are satisfied. Choose V1 = 0,V2 = 0. Then, by the equation of
(3), we can obtain a corrected mass matrix given by

M =



1.1968 −0.1073 0.8201 −0.1678 0.1977 −0.2079 −0.1439
−0.1073 0.3057 0.6292 0.0998 0.2953 −0.2547 −0.2095

0.8201 0.6292 2.2748 0.1347 1.1398 −0.7290 −0.3249
−0.1678 0.0998 0.1347 0.0998 0.3427 0.0177 0.2804

0.1977 0.2953 1.1398 0.3427 1.8775 0.0370 1.4878
−0.2079 −0.2547 −0.7290 0.0177 0.0370 0.3742 0.6461
−0.1439 −0.2095 −0.3249 0.2804 1.4878 0.6461 2.1999


,
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and
‖X>MX − I3‖ = 1.5016 × 10−15,

which implies that M is a symmetric solution of X>MX = I3.
Since

‖X>(X>)+ΛX+X − Λ‖ = 4.0942 × 10−13,

‖PT
(
(X>)+ΛX+ − ((X>)+ΛX+)>

)
PT ‖ = 1.5051 × 10−14,

which means that the conditions of (2) are satisfied. Choose V1 = 0,V2 = 0. Then, by the equation of
(3), we obtain a corrected stiffness matrix given by

K =



50.0364 −47.8369 −66.1052 1.4621 21.6558 62.0904 44.8915
−47.8369 93.9748 169.4007 41.9423 49.9653 −78.9100 −244.1315
−66.1052 169.4007 176.9957 −3.6625 −103.7349 −173.8782 −169.8170

1.4621 41.9423 −3.6625 25.7528 −2.6730 −189.4986 98.3110
21.6558 49.9653 −103.7349 −2.6730 95.3473 −51.6395 446.8062
62.0904 −78.9100 −173.8782 −189.4986 −51.6395 56.3200 448.6900
44.8915 −244.1315 −169.8170 98.3110 446.8062 448.6900 394.1690


,

and
‖X>KX − Λ‖ = 3.5473 × 10−13,

which implies that K is a symmetric solution of X>KX = Λ.
Example 2. Given matrices

A =


7.9482 9.7975 1.3652 6.6144 5.8279 2.2595
9.5684 2.7145 0.1176 2.8441 4.2350 5.7981
5.2259 2.5233 8.9390 4.6922 5.1551 7.6037
8.8014 8.7574 1.9914 0.6478 3.3395 5.2982
1.7296 7.3731 2.9872 9.8833 4.3291 6.4053


,

B =



1.9343 3.7837 8.2163 3.4119 3.7041
6.8222 8.6001 6.4491 5.3408 7.0274
3.0276 8.5366 8.1797 7.2711 5.4657
5.4167 5.9356 6.6023 3.0929 4.4488
1.5087 4.9655 3.4197 8.3850 6.9457
6.9790 8.9977 2.8973 5.6807 6.2131


,

C =


745.6317 1194.5543 1060.3913 995.6379 1010.8200
535.5044 831.5304 791.3676 684.6897 711.7632
845.4324 1338.1065 1123.7380 1077.0615 1096.2601
629.0768 1006.4762 928.6566 804.5134 824.7220
868.4158 1299.0559 995.0786 1012.7046 1054.9264


.

Since ‖AA+CB+B −C‖ = 9.3907 × 10−12, and the eigenvalues of K11 are

Λ1 = diag{0.3561, 11.0230, 6.8922, 5, 3274},
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which means that the conditions of (16) are satisfied. Choose V,H1 and H2 as

V = [I6, I6], H1 =


0.5211 0.6791
0.2316 0.3955
0.4889 0.3674
0.6241 0.9880

 , H2 =

[
6 0
0 0

]
.

Then, by the equation of (17), we get a solution of Eq (1):

X =



7.9305 −1.8515 −1.1364 0.5615 0.5411 1.2825
−1.7228 2.3425 2.3029 1.4677 0.4975 −0.4920

0.8582 1.6817 2.5285 1.8325 1.0895 −0.8095
3.0514 −0.8250 −0.7922 3.3741 1.5249 1.6918
−6.1787 3.8549 2.5294 −2.6945 2.4568 0.6923
−0.1968 1.0600 0.3214 0.6383 −0.3125 3.2860


with corresponding residual

‖AXB −C‖ = 6.4110 × 10−12.

Furthermore, it can be computed that the eigenvalues of X + XH are

Λ2 = diag{0, 0.3555, 3.9363, 7.0892, 11.1802, 21.2758},

which implies that X is a Re-nnd solution of Eq (1).
Example 3. Let the matrices A and B be the same as those in Example 2 and the matrix C be given by

C =


1841.2323 2726.8415 2555.2926 2172.7688 2365.3939
1281.0788 1957.5932 1843.7252 1614.6211 1699.3985
1826.1325 3077.6141 2600.8168 2539.0181 2467.3558
1583.3543 2422.3169 2153.6625 1910.0156 2035.2123
2065.8761 2950.7783 2362.0060 2197.7129 2389.1173


.

Since ‖AA+CB+B −C‖ = 1.7944 × 10−11, and the eigenvalues of K11 are

Λ1 = diag{25.3998, 20.3854, 19.4050, 19.0160},

which means that the conditions of (20) are satisfied. If select V,K12 and H3 as

V = [I6, I6], K12 =


0.5211 0.6791
0.2316 0.3955
0.4889 0.3674
0.6241 0.9880

 , H3 =

[
6 0
0 8

]
.

Then, by the equation of (21), we can achieve a Re-pd solution of Eq (1):

X =



7.0701 1.2500 0.8677 1.7685 2.7735 −1.4689
1.0152 9.9032 0.1535 −0.4383 −0.0571 1.2297
0.8063 0.4874 10.0878 −0.5956 2.0235 1.1426
2.1662 0.0136 −0.8364 8.2937 1.8721 2.5887
1.6627 0.7279 1.2887 1.2198 5.6682 0.4925
−1.6028 1.1737 1.8004 2.6718 0.2729 8.1489


,

AIMS Mathematics Volume 5, Issue 6, 6594–6608.



6606

and the eigenvalues of X + XH are

Λ2 = diag{5.9780, 7.9395, 19.1387, 19.4286, 20.4585, 25.4004}.

Furthermore, it can be computed that

‖AXB −C‖ = 1.7808 × 10−11.

7. Concluding remarks

In this paper, we mainly consider some special solutions of Eq (1). By imposing some constraints
on the expression X = A+CB+ + FAL1 + L2EB, we succeed in obtaining a set of necessary and sufficient
conditions for the existence of the Hermitian, skew-Hermitian, Re-nonnegative definite, Re-positive
definite, Re-nonnegative definite least-rank and Re-positive definite least-rank solutions of Eq (1),
respectively. Moreover, we give the explicit expressions for these special solutions, when the consistent
conditions are satisfied.
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