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Abstract: Nonlinear equations personate a consequential role in scientific fields such as nonlinear
optics, solid state physics and quantum field theory. This article studies the Tzitzéica-Dodd-Bullough-
Mikhailov and Tzitzéica-type equations that appear in nonlinear optics. The Painlevé and traveling
wave transformations both play a key role in revamping the aforementioned equations into nonlinear
ordinary differential equations. Then, the simple ansatz approach is followed to seize complex singular,
complex bright solitons and other kink type solutions. The existing literature unveils that this study is
a novel contribution in the literature and the proposed approach is forthright and simple to implement
for solving nonlinear problems. This approach has no extra condition as compared to many other
techniques have. We also verify and interpret graphically the secured solutions through symbolic
software Mathematica and MatLab respectively.
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1. Introduction

Evolution equations with nonlinear terms that appear in optics consist of the
Tzitzéica-Dodd-Bullough-Mikhailov(TDBM), Tzitzéica-Dodd-Bullough(TDB), and the Liouville
equations. The nonlinearities in the equations in this class include exponential functions. Look at the
Tzitzéica-Dodd-Bullough-Mikhailov equation

uxt + eu + e−2u = 0, (1.1)
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firstly defined in Tzitzéica’s study [1] in 1908. In the following years a variational form of the (1.1)
was used in various studies as in [2, 3]

utt + uxx + eu + e−2u = 0, (1.2)

named Tzitzéica-type (TT) equation. The conditions of the existence of polynomial conserved
densities for the TDBM equation (1.1) in terms of derivatives of u were listed in [4]. Bäcklund
transformation for the TDBM equation from the classification of Painleve-Gambier was given in
details by Conte et al [5]. Zhu and Geng presented Darboux transformation for the 3 × 3-matrix
spectral TDBM equation problem and derived some explicit solutions [6]. The inverse problem was
solved and N-soliton solutions for the TDBM were found besides infinitely many conservation laws
were defined for the Toda chain system equations in two dimensions [7]. One should note that
Mikailov [7] claimed Conte et al. [5]’s suggestion on the polynomial conserved densities was not true.
Some logarithmic and exponential function type solutions to the TDBM (1.1) were explicitly
constructed by some Fourier series approach by El-Kalaawy [8]. The modification of the simple
equation approach was also used to set the traveling wave solutions in terms of logarithmic functions
with hyperbolic or trigonometric parameters to the TDBM (1.1) by employing two variable
transformations to it [9]. Blow-up and broken singular traveling wave solutions covering periodic,
solitary wave, kink and unbounded wave forms were successfully given with their plots for both the
TDBM (1.1) and the TT (1.2) equations by integral bifurcation approach [2]. Soliton and periodic
solutions were derived by the hyperbolic tangent method together with the Painleve property to both
the TDBM (1.1) and the TT (1.2) equations [3]. For further study, this class of equations has been
discussed in [10, 11, 13–15] by employing distinctive approaches. Recently, Alizamini et al. [16]
investigated the Tzitzica type evolution equations by employing the new extended direct algebraic
method.

Parallel developments in both computer technologies and symbolic softwares have greatly
contributed to solve lots of problems defined in various fields covering applied mathematics, physics
and many engineering fields. In the aforesaid fields, a diverse class of nonlinear fractional partial
differential equations have successfully been managed via many effective methods [12, 17–27].
Furthermore, some recent developments have been made on fractional differential equations via some
recent definitions of fractional derivatives [28–32, 34]. In particular, the Wick-type stochastic KdV
equations have been discussed with a generalized type of conformable derivatives in white noise
environment [35, 36, 38, 39]. On the other hand, the soliton theory has become an important subject
these days to study intensively in optical fibers and other areas of physical sciences [33, 37, 40–46].
Many researchers exercised both analytical and numerical approaches to investigate the nonlinear
problems [47–52].

The organization of this article is as fallow. The story of simple ansatz approach is added in
section 2. The aforesaid approach is employed to extract new complex soliton solutions of nonlinear
Tzitzéica type equations in section 3. The results are discussed in section 4 and the conclusion is
drawn in the last section.
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2. A simple ansatz approach

The present section produces a succinct description of the simple ansatz approach [53]. For this
aim, suppose that a nonlinear PDE can be read as

P(v,
∂v
∂x
,
∂v
∂t
,
∂2v
∂x2 ,

∂2v
∂x∂t

,
∂v
∂t2 , ...) = 0 (2.1)

The classical wave transform given below

v(x, t) = V(µ), µ = kx + lt,

for non-zero constants k, l that work as amplitude and speed of the wave respectively, can be modified
the PDE (2.1) into the following ODE

Q(V,V ′,V ′′, ...) = 0 (2.2)

Then, we guess the solution of the form given by,

U(µ) = α0 +

N∑
i=1

αiψ
i(µ) (2.3)

where, α0, α1, α2, ..., αN are constant parameters and N is positive natural number that will be found
by the principle of homogeneous balance. ψ(µ) is consciously chosen to be csch(µ) and sech(µ) to
determine hyperbolic type solution while sec(µ) and csc(µ) are periodic solutions, respectively.

2.1. Solutions for the TDBM equation

The DTDBM equation is read as
uxt + eu + e−2u = 0 (2.4)

and using Painlevé transform v = eu or u = ln(v), the Eq (2.4) reduces to:

vvxt − vxvt + v3 + 1 = 0 (2.5)

Eq (2.5) is mutated to the following ODE by employing v(x, t) = V(µ), µ = kx + lt:

V3 + klVV
′′

− klV ′2 + 1 = 0 (2.6)

The balance between the terms VV
′′

with V3 implies N = 2.

V(µ) = α0 + α1csch(µ) + α2csch2(µ) (2.7)

By inserting Eq (2.7) with its derivatives in Eq (2.6) and setting each coefficient of powers of csch(µ)
to zero, one obtains a nonlinear system of algebraic equations.
The solution of this system gives

α1 = 0, α0 = −1, α2 = −
3
2
, k = k, l =

3
4k
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α1 = 0, α0 =
1
2
− i

√
3

2
, α2 =

3
4
− i

3
√

3
4

, k = k, l =
3i

(√
3 + i

)
8k

α1 = 0, α0 =
1
2

+ i

√
3

2
, α2 =

3
4

+ i
3
√

3
4

, k = k, l = −
3i

(√
3 − i

)
8k

.

The following hyperbolic function solutions are extracted.

u1(x, t) = ln(−
3
2

csch2(kx +
3
4k

t) − 1).

u2(x, t) = ln(
1
2
− i

√
3

2
+ (

3
4
− i

3
√

3
4

)csch2(kx +
3i

(√
3 + i

)
8k

t)).

u3(x, t) = ln(
1
2

+ i

√
3

2
+

3
4

+ i(
3
√

3
4

)csch2(kx −
3i

(√
3 − i

)
8k

t)). (2.8)

For more hyperbolic function solution, we take ψ(µ) = sech(µ)

V(µ) = α0 + α1sech(µ) + α2sech2(µ); µ = kx + lt (2.9)

By inserting Eq (2.9) into Eq (2.6), and gather the terms with the same powers of sech(µ).
Then, by putting each coefficient of sech(µ) equal to zero, we get a set of nonlinear algebraic equations.
On solving, we secure the following set of solutions:

α0 = −1, α1 = 0, α2 =
3
2
, l = l, k =

3
4l

α0 =
1
2

+ i

√
3

2
, α1 = 0, α2 =

−3
4
− i

3
√

3
4

, l = l, k = −
3i

(√
3 − i

)
8l

α0 =
1
2
− i

√
3

2
, α1 = 0, α2 =

−3
4

+ i
3
√

3
4

, l = l, k =
3i

(√
3 + i

)
8l

.

Thus, substitution of the above values into the Eq (2.4), the solutions are set as follows:

u4(x, t) = ln(−1 +
3
2

sech2(
3
4l

x + lt)). (2.10)

u5(x, t) = ln(
1
2

+ i

√
3

2
+ (
−3
4
− i

3
√

3
4

)sech2(−
3i

(√
3 − i

)
8l

x + lt)).

u6(x, t) = ln(
1
2
− i

√
3

2
+ (
−3
4

+ i

√
3

4
)sech2(

3i
(√

3 + i
)

8l
x + lt)). (2.11)

Here the three types of graphs including 3D graph, contour graph and 2D graph, are displayed in
Figures 1 and 2 for selected solutions.

AIMS Mathematics Volume 5, Issue 6, 6580–6593.



6584

-4

5

-2

0

2

u
(x

,t
)

5

4

(a)

t

0

6

x

0

-5

-5 -5 -4 -3 -2 -1 0 1 2 3 4 5

x

-1

-0.5

0

0.5

1

1.5

u
(x

,1
)

(b)

Figure 1. 3D, contour plot and 2D wave profiles of solution appear in Eq (2.8) are displayed
in (a) and (b) respectively for k = 1 = t.
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Figure 2. 3D, contour plot and 2D wave profiles of solution appear in Eq (2.11) are displayed
in (a) and (b) respectively for l = 1 = t.

2.2. Periodic solutions for the TDBM equation

For periodic solutions, we commence with:

V(µ) = α0 + α1 sec(µ) + α2 sec2(µ) (2.12)
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Setting coefficients of power of sec(µ) to zero yields an algebraic system of equations. Thus, the
solution gives

α0 = −1, a1 = 0, a2 =
3
2
, k = k, l = −

3
4k

α0 =
1
2

+ i

√
3

2
, α1 = 0, α2 =

−3
4
− i

√
3

4
, k = k, l =

3
(
1 + i

√
3
)

8k

α0 =
1
2
− i

√
3

2
, α1 = 0, α2 =

−3
4

+ i

√
3

4
, k = k, l =

3
(
1 − i

√
3
)

8k

the following trigonometric function solutions

u1(x, t) = ln(
3
2

sec2(kx −
3
4k

t) − 1),

u2(x, t) = ln(
1
2

+ i

√
3

2
+ (
−3
4
− i

3
√

3
4

) sec2(kx +
3
(
1 + i

√
3
)

8k
t)).

u3(x, t) = ln(
1
2
− i

√
3

2
+ (
−3
4

+ i

√
3

4
) sec2(kx +

3
(
1 − i

√
3
)

8k
t)).

For more periodic solutions, we take the following non-trivial solution:

V(µ) = α0 + α1 csc(µ) + α2 csc2(µ) (2.13)

Inserting Eq (2.13) and its derivatives into Eq (2.6) gives

α0 = −1, α1 = 0, α2 =
3
2
, k = k, l = −

3
4k

α0 =
1
2

+ i

√
3

2
, α1 = 0, α2 =

−3
4
− i

√
3

4
, k = k, l =

3
(
1 + i

√
3
)

8k

α0 =
1
2
− i

√
3

2
, α1 = 0, α2 =

−3
4

+ i

√
3

4
, k = k, l =

3
(
1 − i

√
3
)

8k

Thus the following trigonometric function solutions are obtained.

u1(x, t) = ln(
3
2

csc2(kx −
3
4k

t) − 1)

u2(x, t) = ln(
1
2

+ i

√
3

2
+ (
−3
4
− i

√
3

4
) csc2(kx +

3
(
1 + i

√
3
)

8k
t))

u3(x, t) = ln(
1
2
− i

√
3

2
+ (
−3
4

+ i

√
3

4
) csc2(kx +

3
(
1 − i

√
3
)

8k
t))

2.3. Solutions for the TT equation

The TT equation is read as
utt − uxx − eu + e−2u = 0 (2.14)
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using the Painlevé transformation v = eu or u = ln(v), the Eq (2.14) reduces to

vvtt − vvxx − v2
t + v2

x − v3 + 1 = 0 (2.15)

Let us introduce a transformation v(x, t) = V(µ), µ = kx + lt, Eq (2.15) can be turned into an ODE:

(l2 − k2)(VV
′′

− V ′2) − V3 + 1 = 0 (2.16)

Through balancing principle, we get N = 2, then the non-trivial solution can be read as

V(µ) = α0 + α1csch(µ) + α2csch2(µ) (2.17)

by inserting Eq (2.17) into Eq (2.16), and rearranging the terms with the same power of csch(µ)
together.
Then, putting each coefficient of csch(µ) equal to zero, we obtain a set of nonlinear algebraic
equations. On solving, we find the following set of solutions.

α0 = −
1
2
− i

√
3

2
, α1 = 0, α2 = −

3
4
− i

3
√

3
4

, k = k, l = ∓

√
2k2 − 3i

√
3

4 −
3
4

√
2

,

α0 = −
1
2

+ i

√
3

2
, α1 = 0, α2 = −

3
4

+ i
3
√

3
4

, k = k, l = ∓

√
2k2 + 3i

√
3

4 −
3
4

√
2

,

α0 = 1, α1 = 0, α2 =
3
2
, k = k, l = ∓

1
2

√
4k2 + 3.

Thus, by substituting the above values into Eq (2.17), the following new exact solutions can be written
as

u1,2(x, t) = ln(−
1
2
− i

√
3

2
+ (
−3
4
− i

3
√

3
3

)csch2(kx ∓

√
2k2 − 3i

√
3

4 −
3
4

√
2

t)). (2.18)

u3,4(x, t) = ln(−
1
2

+ i

√
3

2
+ (
−3
4

+ i
3
√

3
3

)csch2(kx ∓

√
2k2 + 3i

√
3

4 −
3
4

√
2

t)). (2.19)

u5,6(x, t) = ln(
3
2

csch2(kx ∓
1
2

√
4k2 + 3t) + 1). (2.20)

For more hyperbolic function solution, we take the non trivial solution as

V(µ) = α0 + α1sech(µ) + α2sech2(µ); µ = kx + lt (2.21)

Substituting Eq (2.21) into Eq (2.16), and reposition the terms with the same power of sech(µ) together.
Then, by putting each coefficient of sech(µ) equal to zero, we approach to a set of nonlinear algebraic
equations. On solving, we find the following set of solutions.

α0 =
−1
2

+ i

√
3

2
, α1 = 0, α2 =

3
4
− i

3
√

3
4

, k = k, l = ∓

√
2k2 + 3i

√
3

4 −
3
4

√
2

,
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α0 =
−1
2
− i

√
3

2
, α1 = 0, α2 =

3
4

+ i
3
√

3
4

, k = k, l = ∓

√
2k2 − 3i

√
3

4 −
3
4

√
2

,

α0 = 1, α1 = 0, α2 = −
3
2
, l = ∓

1
2

√
4k2 + 3.

Thus, by replacing the above values into Eq (2.21), the new exact solutions can be written as follows:

u1,2(x, t) = ln(
−1
2

+ i

√
3

2
+ (

3
4
− i

3
√

3
4

)sech2(kx ∓

√
2k2 + 3i

√
3

4 −
3
4

√
2

t)).

u3,4(x, t) = ln(
−1
2
− i

√
3

2
+ (

3
4

+ i
3
√

3
4

)sech2(kx ∓

√
2k2 − 3i

√
3

4 −
3
4

√
2

t)).

u5,6(x, t) = ln(| −
3
2

sech2(kx ∓
1
2

√
4k2 + 3t) + 1|)

(2.22)

Here the three types of graphs including 3D graph, contour graph and 2D graph, are displayed in
Figures 3 and 4 for different solutions.
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Figure 3. 3D, contour and 2D wave profiles of solution Eq (2.18) are displayed for k = 1,
and t = 1.
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Figure 4. 3D, contour and 2D wave profiles of solution Eq (2.22) are graphed here for k = 1,
and t = 1.

2.4. Periodic solutions for TT equation

We commence with the following solution for Eq (2.14).

V(µ) = α0 + α1 sec(µ) + α2 sec2(µ); µ = kx + lt (2.23)

Substituting Eq (2.23) into Eq (2.16), and compile all terms with the same power of sec(µ) together.
Then, by setting each coefficient of sec(µ) equal to zero, we obtain a set of nonlinear algebraic
equations. On solving, we find the following set of solutions:

α0 =
−1
2

+ i

√
3

2
, α1 = 0, α2 =

3
4
− i

3
√

3
4

, l = ∓

√
2k2 − 3i

√
3

4 + 3
4

√
2

α0 =
−1
2
− i

√
3

2
, α1 = 0, α2 =

3
4

+ i
3
√

3
4

, l = ∓

√
2k2 + 3i

√
3

4 + 3
4

√
2

α0 = 1, α1 = 0, α2 = −
3
2
, l = ∓

1
2

√
4k2 − 3

Thus, by substituting the above values into the Eq (2.23), the new periodic solutions can be derived as
follows:

u1,2(x, t) = ln(
−1
2

+ i

√
3

2
+ (

3
4
− i

3
√

3
4

) sec2(kx ∓

√
2k2 − 3i

√
3

4 + 3
4

√
2

t)),

u3,4(x, t) = ln(
−1
2
− i

√
3

2
+ (

3
4

+ i
3
√

3
4

) sec2(kx ∓

√
2k2 + 3i

√
3

4 + 3
4

√
2

t)),
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u5,6(x, t) = ln(−
3
2

sec2(kx + lt) ∓
1
2

√
4k2 − 3).

Again for periodic solutions in terms of csc(µ), we have

V(µ) = α0 + α1 csc(µ) + α2 csc2(µ); µ = kx + lt (2.24)

Substituting Eq (2.24) into Eq (2.16), and reposition the terms with the same power of csc(µ) together.
Then, by setting each coefficient of csc(µ) equal to zero, we obtain a set of nonlinear algebraic
equations. On solving, we procure the following set of solutions:

α1 = 0, α0 =
−1
2

+ i

√
3

2
, α2 =

3
4
− i

3
√

3
4

, k = k, l = ∓

√
2k2 − 3i

√
3

4 + 3
4

√
2

,

α1 = 0, α0 =
−1
2
− i

√
3

2
, α2 =

3
4

+ i
3
√

3
4

, k = k, l = ∓

√
2k2 + 3i

√
3

4 + 3
4

√
2

,

α1 = 0, α0 = 1, α2 = −
3
2
, k = k, l = ∓

1
2

√
4k2 − 3.

Thus, by substituting the above values into the Eq (2.24), the new periodic solutions can be written as
follows:

u1,2(x, t) = ln(
−1
2

+ i

√
3

2
+ (

3
4
− i

3
√

3
4

) csc2(kx ∓

√
2k2 − 3i

√
3

4 + 3
4

√
2

t)),

u3,4(x, t) = ln(
−1
2
− i

√
3

2
+ (

3
4

+ i

√
3

4
) csc2(kx ∓

√
2k2 + 3i

√
3

4 + 3
4

√
2

t)),

u5,6(x, t) = ln(−
3
2

sec2(kx ∓
1
2

√
4k2 − 3t) + 1).

3. Results and discussions

Hosseini and his coworkers [13] used a novel exponential method to study the nonlinear
Tzitzéica-type equations and obtained the exact solutions for the aforesaid equations. Moreover the
same authors [14] worked for similar equations via the expa function method to obtain exact solutions
in the rational form. Recently, Alizamini et al. [16] presented a new method for attaining solitary
wave solutions of the aforementioned equation. Almost all the articles discussed these equations in
different ways than that of our discussion. We have adopted a novel simplest technique for the first
time to explore the above-mentioned equations. This scheme produced bright, singular and kink type
soliton solutions successfully. Most importantly, one can obtain the dark soliton solutions from Eq
(2.3) by replacing the value of ψ(µ) by tanh(µ). Similarly, Eq (2.3) can produce singular solitons and
other solutions. Thus, the analytical and graphical outcomes ratify that the proposed approach is more
efficient and provide a direct way of finding novel solutions.
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4. Conclusions

The basic goal of this work has been achieved via the novel simple ansatz method with the Painlevé
transformations. The scientifically important Tzitzéica type nonlinear equations have been explored
for their abundant exact solitons and trigonometric function solutions. In particular, the TDBM and
the TT equations are figured out for complex bright, complex singular and kink type soliton solutions
through symbolic soft computation in Mathematica. Also, the numerical simulations of some secured
solutions have been demonstrated to analyze the dynamical behavior of the waves. Furthermore, these
solutions might have significant importance in science and engineering fields. The study also shows
that the method is transparent and handy to implement. Thus we conclude that one can implement the
aforesaid approach to other nonlinear differential equations.
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