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1. Introduction

The aim of this paper is to establish the existence and uniqueness of solutions for the following
nonlinear Riemann-Liouville g-fractional differential equation subject to nonlocal Erdélyi-Kober g-
fractional integral conditions

Dy x(1) + f(t, x(1), Dgx(t)) =0,1€(0,7),
X(0) = 0, ax(T) = % LIIHPx(E), (b
i=1

where Dy and Df, are the fractional g-derivative of Riemann-Liouville type of order & and 6 on (0, T)
respectively, 1 < @ <2, 0 <6 < 1,f € C([0,T] xR x R,R), Ig"’“"’ﬁ" denotes the Erdélyi-Kober
fractional g-integral of order y; on (0,7), u; >0, B; >0, n; e Rand ¢, € (0,7),a, 4,(i=1,2,---, n)
are some given constants.

The g-calculus or quantum calculus is an old subject that was initially developed by Jackson [1],
basic definitions and properties of g-calculus can be found in [2]. The fractional g-calculus had its
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origin in the works by Al-Salam [3] and Agarwal [4]. In recent years, considerable interest in g-
fractional differential equations has been stimulated due to its applicability in mathematical modeling
in different branches like engineering, physics and technical,etc. There are many papers and books
dealing with the theoretical development of g-fractional calcaulus and the existence of solutions of
boundary value problems for nonlinear g-fractional differential equations, for examples and details,
one can see [5—-22] and references therein.

In [9], Zhao, Chen and Zhang considered the following nonlocal g-integral boundary value problem
of nonlinear fractional g-derivatives equation:

Dyx(r) + f(2, x(1)) = 0, 1 € (0, 1),
x(0) = 0, x(1) = plfx(n) = pt [} = x(5)d, 5,

where g € (0,1), 1 <a<2,0<p<2,0<n<1andpy > 0. Dy is the fractional g-derivative
of Riemann-Liouville type of order @. By using the the generalized Banach contraction principle,
the monotone iterative method, and Krasnoselskiis fixed point theorem, the authors obtained some
existence results of positive solutions to the above problem.

In [10], the authors investigated the g-integral boundary value problem for g-integro-difference

equations involving Riemann-Liouville g-derivatives and a g-integral of different orders as follows:

(ADg + (1 - A)Dﬁ)x(t) =af(t,x(1)) + blgg(t, x(2)), t€[0,1], a, b e R*,

1 ) 1 (1—gs)@2-D
uy (qu<)y?) x(5)dys + (1= p) fy SEE5—x(5)dgs,
x(0) =

where, g € (0,1),1 <, <2,0<6<1,0<A<land0 <pu <1, a-p> 1 Dy denotes
the Riemann-Liouville fractional g-derivative of order o and f, g : [0,1] X R — R are contlnuous
functions.

In [23], the authors considered the existence of solutions for the following nonlinear Riemann-
Liouville fractional differential equation with nonlocal Erdélyi-Kober fractional integral conditions

{ (ADx(t) = f(t, x(t)), t € (0,T),,
x(0) = 0,ax(T) = Y7, Bl % x(&),

where 1 < g < 2, D? is the Riemann-Liouville fractional derivative of order ¢, ny"s" is the Erdélyi-
Kober fractional integral of order 6; > O withn; > Oandy; e R, i=1,2,--- ,m, f : [0,T] xR — Ris
a continuous function and ;,8; € R, & € (0,T), i = 1,2,--- ,m are given constants.

As we all know, few people solve the existence of solutions for a nonlinear Riemann-Liouville
g-fractional differential equation subject to nonlocal Erdélyi-Kober g-fractional integral conditions.
Inspired by the paper [23], we consider the existence and uniqueness for problem (1.1) by using Banach
contraction principle and Schauder’s fixed point theorem.

2. Preliminaries on g-calculus and Lemmas

Here we recall some definitions and fundamental results on fractional g-integral and fractional ¢-
derivative. See the references [4—7] for complete theory.
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For ¢ € (0,1), define [a], = %, a € R. The g-factorial function is defined as (a — b)™ =
kl_%(a bg"), a, b e R, Ifnis a positive integer. If v is not a positive integer, then (a—b)") = a” H a“;};‘{jn.
If b = 0, then a” = @’. The g-gamma function is defined by T’ @) = d= q);z i), a > 0, and satisﬁes

Fya+1) = [a] T (a).
mwmmmemmmﬁmmmwwmm:%%%wm@:g@mmme
g-integral of a function f defined on the interval [0,b] is given Dby
U f0) = [; f(s)dys = (1 =@t z q'f(g', 1 € 10,b].
Some results about operator D and /, can be found in references [4]. Let us define fractional
g-derivative and g-integral and outhne some of their properties [4, 6, 8].

Definition 1 ( [4]) Let @ > 0 and f be a function. The fractional g-integral of Riemann-Liouville type
is given by (1) f)(r) = f() and

U2 f)() =

l—‘qia) ‘fOV (r- qs)(a—l)f(s)dqs, a>0,1e]0,b].

Definition 2 ( [6]) The fractional g-derivative fractional of Riemann-Liouville type of order v > 0 is
defined by D)) f(r) = f(r) and
\ _ [ yl-v
D, f(t) =D, f(t), v >0,

where [ is the smallest integer greater than or equal to v.

Definition 3 ( [24]) For 0 < g < 1, the Erdélyi-Kober fractional g-integral of order g > 0 with 8 > 0
and 7 € R of a continuous function f : (0, c0) — R is defined by

f = LS f(5)d, 5.

—B(n+u>

)

provided the right side is pointwise defined on R*.

18 £y = 2

Remark 1 For g = 1 the above operator is reduced to the g-analogue Kober operator
)
Ly

that is given in [4]. For n = O the g-analogue Kober operator is reduced to the Riemann-Liouville
fractional g-integral with a power weight:

0 = = [ s s

10 = o (=50 f9dys. > 0

q(,u)

Lemma 1 ( [4]) Let @, 8 € R* and f be a continuous function on [0, »]. The Riemann-Liouville
fractional g-integral has the following semi-group property

PISf@) = ITE f(0) = I f ().
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Lemma 2 ( [8]) Let f be a g-integrable function on [0, ]. Then the following equality holds
Dy f(t) = f(1), for @ >0, 1 € [0,D].
Lemma 3 ( [4]) Let @ > 0 and p be a positive integer. Then for ¢ € [0, b] the following equality holds

ta—p+k

p-1
15D f(t) = DI F(H = ) = @ DLF(0).
k=0 ~ 4

+k-p+1)

Lemma 4 ( [24]) For f(¢) = tﬁ and >0, u>0,n74€R, 0<g<1,then

1. Tm+1+9)
=14 —.
B Tyu+n+1+%)

It = pl

3. Main results

In this section, we will give the main results of this paper. Let the space
E = {x € C([0,T],R), Dx € C([0, T],R)} be endowed with the norm ||x|| = n[l(?])g]lx(t)l + n[l(;cl;g]ngx(t)l.
te(0, tel0,

It is known that the space E is a Banach space. To obtain our main results, we need the
following lemma.

Lemma 5 Let h(¢) € C([0, T],R). Then for any ¢ € [0, T'], the solution of the following problem

D2x(t) + h(t) = 0, 1€ (0, T),
2(0) = 0, ax(T) = 3 LI Pix(e). 3.1)
i=1
is given by
a—-1 n
x(t) = —I°h(z) + tﬁ(algh(T) = N AL NE), (3.2)
i=1

h M Ta—l c /llm HisPBi -1 T(x—l < pl 1 Fq(m+l+aﬁ;'l)
where M = a —l; ilg"ET = a —; iﬁi[ﬁi]q—l—q(ﬂﬁnﬁl_‘_%)

&1 #0.

Proof. Applying the operator /g on both sides of the first equation of (3.1) for # € (0,7) and using
Lemma 1 and Lemma 2, we have

x(t) = =ISh(t) + 11" + et (3.3)

Applying the initial value condition x(0) = 0, we get ¢, = 0. By the boundary value condition,
we have

_Z/lilgisﬂivﬁilgh(é:i) + ¢ Zﬂilgh#i,ﬁif;l—] — —aIf;h(T) + claT‘H,
i=1 i=1
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that is

algh(T) = X Al P& algh(T) = X Al ITheE)
= :1_ = =
a— is Mis Bi Tr gra—
are! - 3 AP pagot

M

Substituting ¢y, ¢, to (3.3) , we obtain the solution (3.2). This completes the proof.

Using the Lemma 5, we can define an operator Q : E — E as follows:

@ 1

Qx(1) = — I f (s, x(s), D‘Sx(s))(t) + ﬁ(al" Lf(s, x(s), Dix(s))(T)

(3.4)
- Z AL f (s, x(5), DEX())(ED),
i=1
where
17 0 (a—1) 0
135309, D0 = =1 f (7 = 4)"V £(5. x(5), DEx(s))dys
andt e {1, T,&,& -+ ,&,). Then, the existence of solutions of system (1.1) is equivalent to the problem
of fixed point of operator Q in (3.4).
In the following, we will use some classical fixed point techniques to give our main results.
Theorem 1 Suppose that there exists a function L(z) : [0, T] — R* g-integrable such that
Lf (5%, y) = f(6, X, 9)] < L) (Ix = X[ + |y = D),
for each x, X,y,y € R. Then problem (1.1) has an unique solution on [0, T'] if
T ! T~T,(a ) LTy +1)
Ly+Ls+ 1 L, + Ai|Bi — ) <1, 35
1+ Ly ( (lalL, Z| 1B~ ]"F,,wl+nl+1>)< (3.5)

|M| Fyla - 5)

where Ly = sup ISL(7), Ly = sup I77'L(1), Lz = sup IJ°L(t).
t€[0,T] t€[0,T] t€[0,T]

Proof. The conclusion will follow once we have shown that the operator Q defined (3.4) is contractively
with respect to a suitable norm on E.

For any functions x,y € E, we have
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[(@x)(1) — (@)D <

f (t = g9)“V(f (s, x(5), Dx(5)) = £ (5, ¥(5), Dyy(5))dys

['y(a)
1% 1
+ (‘ f (T = g9) "2 (f (s, x(s), D)x(s)) = f(5,¥(s), Diy(S))qu‘
Fya—-1)

ﬂf““’“‘” By )1
+Zu|i (fﬁ 9

f (s = g0 (T, x(1), Dix(D) = f(7, 3(D), D‘;y<T>>d,,rdqs\)

y(@) Jo
lx=y (" - To-1 -
< (t - qs)( )L(s)dqs + ( f (T - qs)( )L(S)d s
L) Ty =1
.\ Z 2 l' ﬁé:—ﬁ (i) fi(fﬁi _ sﬂiq)(ui—l)jﬂi(n,-+1)_1
=0 Ly(u)l'y(@) !

f (s - CIT)(“_I)L(T)ququ) Ix =yl
0

Ta-1 Bé_‘—ﬁ(ﬂﬂl)
< Ly + ——(lalL, + L A
Ix- y||(1 TG IZ| o

fo\{i(é:iﬁi _ Sﬂiq)(ﬂi—l)sﬁi(nﬁ'l)_ldqs))

on the other hand

: L, + 1)
;m& ﬁl]qm) lx=yl.

1
D)(@Qx)(1) = — DYIS £ (s, x(s), Dox())(t) + M(alj“l f(s,x(s), DO x(s))(T)
- Z ALPBI2 £ (5, x(s), Dox(5)(€)) D!

— DS f(s, x(s), D)x(5))(1) + i( 127 f (s, x(5), DOx(s))(T)

999

b L@ .
— Y ATHB Y f(s, x(s), DP i q a-1-6
Z} I (5509, D)6 et

1
== I77° f(s, x(5), D) x(5))(7) + M(alg_l f(s, x(s), D)x())(T)

b I,(@)
— /L,Irlh,uhﬁtla , , D(5 . q (1—1—5.
Zl P (5,508 DD | =

Thus
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|D3(Qx)(r) = DY(@y)(1)] <

1270(f (5, 2(5), D3x()(0) — f(5.3(5), D)D)
[y (a)'=0

4t Iaf 1 D§ T D T
+|M|rq< _ >(' (f (s, x(5), DEX())T) = f(5,¥(5), Doy(N)(T)|

b 3 AP Cs, 5), D) ~ £, (59, Diy()ED)
i=1

I“q(a)Ta—l—(S

IM|Uy(e - 6)

()T~ d LiT, (i + 1)
S(L3 + m(mwz + IZ_(): Mi'ﬁi[E qm)) Il x—=yll

<I"L(s)(1) + (lalty ™ LT + ) AP I L))
i=1

which implies that

Ta_l T_(Sl—‘q(a') 1 q(771+ )
Il Qx - ay||<{L1+L3+ o (Hm ||L2+Z|A|ﬁ,[ ]qw—l)}nx—yn.

Thus the operator Q is a contraction in view of the condition (3.5). By Banach’s contraction
mapping principle, the problem (1.1) has an unique solution on [0, T']. This completes the proof.

Corollary 1 Assume that there exists Ly > 0 such that

|f(t’ x,)’) - f(t9 7~C,5’)| < LO(lx - ﬂ + |y _S)D,

foreach t € [0,T] and x, X, y,y € R. Then the problem (1.1) has an unique solution whenever

T T(z—6+1 |Cl| T2oz—2 T2a/—2
+ +— + +
(Fq(a+ ) Tya-0+1) M |( I'ya q(af—é))
1 Ta—1—6 T« -1
—( ) I H 415 (& )L <1,
M| [a],Ty(@—0) ' Tyla+ Z &) o

a-1
Mis Mis &i _ Lqlnit1+%5)
where Iq sa(‘fi) _ﬁl ]ql"q(/z _H7+1+a 156&

In the following Theorem, the existence results for nontrivial solution for problem (1.1) are
presented. For convenience, we denote

1
Zlﬂ |I’71 s His fll(f,) = Zl/l |ﬁ, q%
q\Mi i

!
= —gs)@ by —
trer[l&)"(]l“q(a) f(;(t qs) li(s)d,s,i=1,2,3,

1 !
.= - — (@=2) . | —
7 zrerlloe,li)gjl“q(a -1 L(I qs)" lis)dys i = 1,2, 3,

1 !
- - — (a=6-1)j. ;=
zrerﬂ(?z)*(] q( ) ‘fo (t qs) l,(s)dqs, i=1,2,3,
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where /;(1),i = 1,2, 3 are defined in Theorem 2.

Theorem 2 Let f : [0, T] X RXR — R be a continuous function. Assume there exist three nonnegative
continuous functions /;(¢),i = 1, 2, 3 such that

|f(t, x(t),DZx(t))l <L)+ L@ + l3(t)|Dgx(t)|r2, O<r<l,i=1,2,

and f(z,0,0) # 0 for ¢ € [0, T']. Then the problem (1.1) has a nontrivial solution.

Proof. We shall use Schauder’s fixed point theorem to prove our theorem. Define E; = {x : x € E, ||
1
x ||< d}, where d > max {3(§1 + lalop + 01(1 + p)d), 3(62 + lalozp + e2(1 + p)) =1, 3(s3 + lalosp +

1 a— a—6— .
o3(1 +p) )'*"2} and p = —TMI + — A; l T I;IE‘;)_I . Note that E; is a closed, bounded and convex subset of
|M] M| Ty( )

the Banach space E. We now show that Q : E; — E,. In fact, for x € E; we have that
1| < 1| < <d,
|x(0)] < llel[l(;c};i]lx( <l x[|<
|ID?x(1)| < max|DPx(0)| <|| x ||I£ d,
g refo,r] 4

which implies
(2, x(0), Dox(0)] < (1) + L(1)d" + l3(1)d"™.

Thus

|Qx ()] <

1 !
Fq(a)fO(I—QS)<a—1>(11(s)+12(S)dr1 b ()" d,s

@ 1

o (mf (T = g9) " 2Ui(s) + L(s)d" + l3(s)d"d,s

+Zwmwwif@ Pig)h Dl
2T )

f (5= g0V (T) + bE)d" + B(n)d" )d,vd, s
0

T(l—l Toz—1|a|
IMI IM|

[y(@)

<01 +02d" + 03d?)(1 + 0)

(o1 + 02d" + 03d™).

To=-1 T (@)
M| Ty(a-9)

|D,Qx(1)] S[(Ql +02d" +03d”) + lal(oy + o2d" + <T3dr2)]

+ (61 +6d" +63d"?).
From the two inequalities above, we get

| Qx [|=max [x(1)| + max |D)x(7)|
1€[0,T] t€[0,T]

<(g1 + lalop + 01(1 + p)0) + (2 + lalop + 02(1 + p))d" +
(3 + lalosp + 03(1 + p))d"™
d d d
<s+= =d.
37373
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Hence, Q maps E, into E,. Also, it is easy to check that Q is continuous, since f is continuous. For
eachx € E;andeach 0 <t <t, < T, we have

1
[y(a)
1 B (a-1) 5
(ty — g8) "V f(s, x(s), D°x(5))d,s
Fq(a’) ft; 2—4q f q q
it =t
M

[(Qx)(12) — (QX)(11)] <

fo (22 = 49" = (11 = 4P| £ (5. 2(5). Dix(s))ds

+

+

(hau;;‘lf(s, x(8), Dix(s))(T)

£ 3 IS (5, x(5), Dzix(s))(f,-))'.
i=1

(DEQX)(1:) — (DI <

I £ (s, x(5), Dx(s))(t2) = I3 f (s, X(s), D(;x(s))(tl)‘

1
+ ‘_(alf;‘lf(s, x(s), DzX(S))(T)

M

QI G P
_ s l’ﬁl a 0 . q a—1-0 _ 1-6

; AP s, X(5), DN = (71 = )|

<

1 g
e —6)[0 [(1‘2 - qs)(“—5—1) —t - qs)(a—é—l)]f(s, x(s),DgX(S))dqs

1 "2
= f (12 - 4)* 1 £ (5. x(s). DEx(s))dy s
q 151

57 =710 Ty(a)
M T, a-9)

—+

+

(||a|13‘1f(s, x(5), DY(s))(T)
£ NI f(s, x(5), Dgx<s)><§i>)‘.
i=1

Let, — 1, we get || Qx(t;) — Qx(t;) ||— 0. Thus, Q is uniformly bounded and equicontinuous.
The theorem of Arzeld-Ascoli implies that Q is completely continuous. By Schauder’s fixed point
theorem, Q has a fixed point in E;. Clearly x = 0 is not a fixed point because f(z,0,0) # O for
t € [0, T]. Hence, the problem (1.1) has at least one nontrivial solution. This proves the theorem.
Remark 2 In the Theorem 2, if r; > 1,i = 1,2, we may choose ,(t), [3() and d such that

(&, x(2), Dyx(0)] < L) + LOIDGx ()],

and

0 < < minf( 1 ) 1 7}
2(s2 + laloap + 02(1 + p)0) 2(s3 + lalosp + 03(1 + p)0)

Forr; = 1,i = 1,2, we have the following theorem.
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Theorem 3 Let f : [0, T] X RXR — R be a continuous function. Assume there exist three nonnegative
continuous functions /;(¢),i = 1,2, 3 such that

(&, x(0), Dyx(e)] < 1i(2) + L@O)lx(@)] + LOIDx (),

and max {gz + |aloop + 02(1 + p)0), (3 + lalosp + 03(1 + p)g’)} < % Further, assume that f(¢,0,0) # 0
for ¢t € [0, T']. Then the problem (1.1) has a nontrivial solution.

Proof. Let d > 3(;1 + lalop + 01(1 + p)¢ ), The proof is similar to Theorem 2, so it is omitted. This
completes the proof.

Although Theorems 2 and Theorem 3 provide some simple conditions on the existence of solution
of problem (1.1) and Theorem 1 provides a condition on the existence and uniqueness on the solution
of problem (1.1), the following theorem provides an easily verifiable condition for the existence of a
nontrivial solution for the problems (1.1).

Theorem 4 Assume that f : [0,T] X R X R — R with f(#,0,0) # O for ¢ € [0,T] and x € E. Suppose
that

D&
lim max 7, 0, Dx(0) =0 (3.6)

lIxl—core[0,T] Il x ||

holds. Then problem (1.1) has at least one nontrivial solution.

Proof. Choose a constant A such that

T« |a|T2a/—2 Ta—IK Ta/—6 |a|T2a/—2—5 Ta—l—6K
A( + + + + + ) <
a a (07 a — a — a a —
Lya+ 1) [MUye) MLy a+1) Tya-06+1) [MTya-96) [Ml|e],](a-23)

Ly(mi+1

where k = Z AilBil 5] IT v )‘fa

By the condition (3.6), there exists a constant ¢; such that

|f(z, x(t),DZx(t))l <Al x| forany ¢ € [0,T]and || x ||> c;.

Since f : [0, T] xR XR — R, we can find another constant A; > 0 such that | f(z, x(), Déx(t))l <Ay,
forre[0,T]and || x ||< ¢;. Letc = max{ ,c1}, then for any || x ||[< ¢, we have | f(z, x(1), D5x(t))| < Ac.
Set

E.={xeE:||x|Lc}
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Then for any x € E., we have
a—1

M( ,,(oz

IQx(1)| < m_— f (T — q5)“ PAcd,s

1 ! t
F @ f(t - qs)(o‘_l)Acdqs +
q

n ﬁé:—ﬁ[(ﬂﬂ'lh
+Z|/1| f(('fﬂ §Pig) D B D=1

f (s —gqr) 1)Acdqrd s
I'y(a)

T« T 1 T llal K
< + + )
T e+ 1) [M \Tya) Ty a+l)

(3.7

I‘q(oz)Ta‘é_1 lal
M y(a — 6) \['y(ar — 1)

1 ' o Na-s-1)
|DZ(QX)(1)| S—q( 5 f (t—qgs) Acd,s +
f —Bi(mi+ui)

f(T qs) P Acd S+Z|/l| T f(é:ﬁ §Pig) D Pt -1

i=1

(3.8)

—g7)*” 1)Acd 7d, s)

I, (
( T(I o |a|T20z 2-0 .\ T(y—l—rSK )
T a—-6+1) MLy a—3)  [Mlal,Ty@-0)

Thus

|Qux]| = max |Qx(1)| + max |D}Qx(r)|
t€[0,T] t€[0,T]

T« T(z—l T(z—l |(1| K
< + ( + ) Ac+
T a+1) M \Tga) T,a+1)

Toz—é |a|T20/—2—6 Ta—]—pK
( + + )Ac
T a—0+1) ML a-0)  Mlal,l,(a—0o)
T T2a—2 Ta—l
:A( + l + X
T a+1) MU, (a) M, (a+1)
Ta—6 . |a|T2(1—2—6 . Toz—l—(SK )
T a-6+1)  [MT (a-0) [Mlal,I,(a-0o)

(3.9)

c<c.

From (3.9), we obtain Q(E.) C E.. By Schauder fixed point theorem, @ has at least one fixed point

in E.. Clearly, x = 0 is not a fixed point because f(z,0,0) # 0. Therefore, problem (1.1) has at least
one nontrivial solution, which completes the proof.

4. Example

In this section, we illustrate the results obtained in the last section.
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Example 1 Consider the following fractional-order boundary value problem involving nonlocal
Erdélyi-Kober fractional g-integral conditions:

1
3 , , x@+DTx)
Dix(t) + o (——=— +cost+2)+ 1 =0,
2

1+21x(N+D ¥ x(1)|
2

4.1
x(0)=0 D

5x(1):% Ezi‘)x( )+ T

SN

1
5

x(%)’

RI— oo]—

_ 1 1 _ _ 3 _ _ _ _ 1 _ 3 _ —
Whereq_§75_Z,T_17a//_§’a_3’/ll_m _100$ﬁ1_107ﬁ2_§7n1_§,n2 §7§1_Z7§2_

1
1 L, RO+D?x0)
L =3 =2, and £(t,, x(r), D3x(1)) = #(—21 +cost+2)+ 1.
1+2x(t)+D % x(1)|
2
By computation, we deduce that

2

(62001, D) = £2,, 0, Dyy(@)] < 5 (1x(0) = (0] + 1D {36 = Do),

then, the first condition is satisfied with L(f) = &

11 NG+1+3) 3 | TG+1+5)
M =5 — o X —=[10], 5 .3 30\ X z8lg=—— 15
100 10 rl(1+§+l+_) 100 5 LiG+g+1+3)
2
1 1 1.1 3
5 —x=(1-(2)=) - = xZ(1 - (=)
>3~ 100 5( (2) )(4)2 100 5( ( ))( )2
1 6
- - =4
>5 500~ 300 986 # 0.
1 ft i 8 1 I',(3)
Ly = su t—qgs)e Vd s=-—1"—.
: ,e[olf]rq(é) (=g 5 das = 55 45

£ 1T

L, = su (t - )(z 2 4 _
2T te[orf]rq(z 1)f S =3T3
£ 1,0

L3 = su (t—gs)3 iD= -

’ te[o%rq@ 4)f 1 2% = 3T ,423)

T, T¥T,(a) : LiTy(m; + 1)
M| (1 Ty - p>)('a'L2 " Z; b ﬁ,]qrq(ul + 7+ 1>)

Li+ Lz +

1 0,3 1 I,3) 1 (5 I,(3) L 11 LG
<= + = + - + =[1 ]q
2T,(4.5)  2T,4.25) 4.986\2T,(3.5) 100 ©10 2 r,4. 5"
r,Gr r
3 1.1 r,3) +§ (3(3) L1 1 [ ]q r,(3) q(3)
100~ 57 20,45  2T,(3)r,3.5) 100 70 2 r,r,G. 5)
3 1 1 _ L,Ar,e )
— X = x =[5],—2—1"" ) ~ 0.894875 < 1.
100 5 2Pl o, sy T O
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Hence, by Theorem 1, the boundary value problem (1.1) has an unique solution on [0, 1].

Example 2 Consider the following fractional-order boundary value problem involving nonlocal
Erdélyi-Kober fractional g-integral conditions:

1
7 [\ 3
I | (D5 2 _
Dy x(1) + 5 sin(n|x|) FED +1=0,re(0,1)
x(0) =0,
L3I0 1y 4 3 8edes ]
5x(1) = 7Iq X(Z) + EI‘I X(z)
1
I L (xi+1D3)2
Here, ¢ = 5,6 = . f(t, x(t), Dyx(?)) = 5 sin(7|x]) |x|+|ngx|+1 + 1,
. (Wf+ID3) 1
£t x(8), D3x(e)| |27 SIND o + 1 _ 3+ 1DGaD* + 1 0. as x|
= RS — U, as || X |[— oo.
Il x|l Il x i Il x|l

Therefore, the conclusion of Theorem 4 implies that problem (1.1) has at least one solution on [0, 1].
5. Conclusions

In this work, we utilize Banach contraction principle and Schauder’s fixed point theorem to research
the existence, uniqueness of solutions for a g-fractional differential equation with nonlocal Erdélyi-
Kober g-fractional integral condition and in which the nonlinear term contains a fractional g-derivative
of Rieman-Liouville type. Some existence and uniqueness results of solutions are obtained, we also
provide an easily verifiable condition for the existence of nontrivial solution for the problem (1.1).
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