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1. Introduction

In 2001, Bruce Montgomery [1] (see also [2]) introduced the r-dynamic proper k-coloring of a
graph G = (V(G), E(G)) as a proper k-coloring ¢ : V(G) — {0,...,k — 1} such that the number of
colors in the neighborhood N(v) of each vertex v € V(G) satisfies that

lc(N(v))| = min{r, d(v)}. (1.1)

Here, d(v) denotes the degree of the vertex v within the graph G. The minimum positive integer k
for which such a proper k-coloring exists is the r-dynamic chromatic number y,(G) of the graph G.
If r = 1, then these concepts are equivalent to the classical notions of proper coloring and chromatic
number of a graph. In the literature, one can find a wide amount of studies concerning r-dynamic
proper k-colorings of different types of graphs [3—13] and products of graphs [14-20]. In spite of
this, to the best knowledge of the authors, no previous work exists in the literature dealing with the
r-dynamic coloring of the direct product of graphs. In this regard, this paper is established as a starting
point to delve into this topic. More specifically, we focus on the r-dynamic chromatic number of the
direct product of either two paths or a path and a cycle.
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The paper is organized as follows. In Section 2, we describe some preliminary concepts and results
on Graph Theory that are used throughout the paper. Then, Sections 3 and 4 deal, respectively, with
the r-dynamic chromatic number of the direct product of two paths, and of a path and a cycle.

2. Preliminaries

This section deals with some preliminary concepts and results on Graph Theory that are used
throughout the paper. For more details about this topic, we refer the reader to the manuscripts [21,22].

A graph is any pair G = (V(G), E(G)) that is formed by a set V(G) of vertices and a set E(G) of
edges so that each edge joins two vertices, which are then said to be adjacent. From now on, let vw the
edge formed by two vertices v,w € V(G). If v = w, then the edge constitutes a loop. A graph is called
simple if it does not contain loops. Further, the number of vertices of a graph is its order. A graph is
called finite if its order is finite. In this paper, we focus on the direct product G x H of two finite and
simple graphs G = (V(G), E(G)) and H = (V(H), E(H)), which is the graph having as vertex set the
Cartesian product V(G) X V(H), and so that two vertices («, v) and (¢#’,V") in such a set are adjacent if
and only if uu’ € E(G) and v € E(H). Figure 1 illustrates this last concept.

G H G x H

b
v b (v,a)>é<(v,c)
I A (u,a) ,
u a Cc (u,b) (U C)

Figure 1. Illustrative example of a direct product of graphs.

The set of vertices that are adjacent to a vertex v € V(G) constitutes its neighborhood Ng(v). The
cardinality dg(v) of this set is the degree of the vertex v. If there is no risk of confusion, then we use the
respective notations N(v) and d(v). Furthermore, we denote, respectively, 6(G) and A(G) the minimum
and maximum vertex degree of the graph G. The following result follows straightforwardly from the
previous definitions.

Lemma 1. Let G and H be two finite simple graphs. Then,

a) dexg((v,w)) = dc(v)dy(w), for all (v,w) € V(G X H).
b) 6(G x H) = 6(G)6(H).
c) A(G x H) = A(G)A(H).

A path between two distinct vertices v and w of a given graph G is any ordered sequence of adjacent
and pairwise distinct vertices (vo = V,Vy,...,Vu—2,V,—1 = w) in V(G), with n > 2. If v = w, then such
a sequence is called a cycle. A graph is called connected if there always exists a path between any pair
of vertices. From here on, let P, and C, respectively denote the path and the cycle of order n.

A proper k-coloring of a graph G is any map ¢ : V(G) — {0,...,k — 1} assigning k colors to the set
of vertices V(G) so that no two adjacent vertices have identical color. The minimum positive integer
k for which such a proper k-coloring exists is the chromatic number x(G) of the graph G. Concerning
the chromatic number of a direct product of graphs, the following result holds.
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Lemma 2. Let G and H be two finite simple graphs. Then,
x(G x H) < min{y(G), y(H)}.

Proof. The first assertion follows straightforwardly from the fact that every proper k-coloring ¢ of the
graph G (respectively, H) induces naturally a proper k-coloring ¢ of the product graph G X H, which is
defined so that c((v, w)) = c(v) (respectively, c((v,w)) = c(w)), for all (v,w) € V(G X H). O

Disproving the so-called Hedetniemi’s conjecture [23], it has recently proven [24] that the upper
bound described in Lemma 2 may not be reached. In any case, the following result is also known.

Theorem 3. [25] Let G and H be two finite simple graphs such that y(G) = y(H) = k and each vertex
of the graph H is contained in a complete graph of order k — 1. Then, the upper bound in Lemma 2 is
reached.

Particular cases of proper coloring and chromatic number are the so-called r-dynamic proper k-
coloring and the r-dynamic chromatic number, which have already been described in the preliminary
section (see (1.1)). The following results are known.

Lemma 4. []] Let G be a graph and let r be a positive integer. Then,
min {r, A(G)} + 1 < x(G) < x41(G).
Moreover, x.(G) < xac)(G).

It is also known the r-dynamic chromatic number of certain graphs.

Lemma 5. [7] Let m, n and r be three positive integers such that n > 2 and r > 2. The following
results hold.

a) Xr(Pn) =3.
5, ifn=35,
b) x(Cp) =13 3, ifn=23k, forsomek>1,

4, otherwise.

Further, the following result constitutes a generalization of Lemma 2 in case of dealing with
connected graphs with at least one edge.

Lemma 6. Let G and H be two finite simple and connected graphs of order greater than one, and let
r be a positive integer such that r < 6(G"), for some G’ € {G, H}. Then, (G X H) < x,.(G").

Proof. Without loss of generality, let us suppose that G’ = G. Then, from Lemma 1, together with
the fact that both graphs are connected of order greater than one, we have that r < dg(u) < dg(u) -
dy(v) = dgxn((u,v)), for all (u,v) € V(G x H). Now, similarly to the proof of Lemma 2, if the map
c: V(G) - {0,...,x,(G) — 1} is an r-dynamic proper y,(G)-coloring of the graph G, then the map
c:V(GxH)—{0,...,x,(G) — 1} 1s a proper y,(G)-coloring of the direct product G X H. Moreover,
for each vertex (u,v) € V(G x H), we have that

INGxu (c((u, )| = ING(c(u))| = minfr, dg(u)} = r = min{r, dexu((u, v))}.
Hence, the map ¢ is an r-dynamic proper y,(G)-coloring of the direct product GX H. As a consequence,

XH(G X H) < x(G). O
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3. Dynamic coloring of the direct product of two paths
In this section, we study the r-dynamic chromatic number of the direct product of two paths

Pm:<u0,...,l/lm_]>
and
Py, ={vo,...,Vp_1).

The following lemma is useful to this end. It establishes a lower bound for the r-dynamic chromatic
number of a direct product of two graphs under certain conditions. In particular, this result is used
in Theorem 8§ to determine the r-dynamic chromatic number of the direct product of two paths, with
r>2.

Lemma 7. Let G and H be two finite simple and connected graphs of order greater than two, with two
edges uu’' € E(G) and W' € E(H) such that dg(u) = dy(v) = 1 and dg(u’) = dy(v') = 2. If r > 2, then

4 < y,(G x H).

Proof. Let r > 2. The following assertions hold from the hypothesis.

e From Lemma 1, we have that dgygy((1, V")) = dgxu((1',v)) = 2.
e There exists a vertex (u”’,v") € V(G x H) such that ((«’,V"), (u”,Vv")) € E(G X H).

Then, since r > 2, every r-dynamic proper k-coloring of the direct product G X H assigns different
colors to the four vertices (u,v’), («',v), (u”,v") and (&', V"), which describe in turn a cycle C, within
G X H. As a consequence, k > 4 and the result holds. O

Theorem 8. Let m, n and r be three positive integers such that m,n > 2. Then,

2, ifr=1
Xr(PnXP,)=1 4, ifre{23}

5, otherwise.

Proof. From Lemma 1, we have that A(P,, X P,) = 4. Since y(P,,) = x(P,) = 2, then the case r = 1
holds because Lemmas 2 and 4 imply that

2 = min{l,A(P,, X P,)} + 1 < x(P,, X P,) < min{y(P,,), x(P,)} = 2.

Let us study separately the two remaining cases by defining to this end an appropriate r-dynamic
proper coloring ¢ : V (P, X P,) — {0, 1, ...} satisfying Condition (1.1).

e Caser € {2,3}.
From Lemma 7, we have that 4 < y,(P,, X P,), for all » > 2. Thus, Lemma 4 enables us to focus
on proving that y3(P,, X P,) < 4. To this end, let ¢ : V (P, X P,) — {0, 1,2, 3} be defined such
that, for each (u;,v;) € V(P,, X P,), we have that
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imod 3, if jmod9 € {0, 1},
i+ 1D)mod3, if jmod9 € {3,4},
(i+2)mod3, if jmod9 € {6,7},
3, if jmod3 = 2.
Condition (1.1) holds and hence, y3(P,, X P,) = 4. Figure 2 illustrates the direct product Ps X P;.

c((u;, Vj)) =

Figure 2. 3-dynamic proper 4-coloring of the direct product Ps X P7.

e Caser > 4.
From Lemma 4, we have that 5 < y,(P,, X P,). In order to prove that this lower bound is reached,
let ¢ : V(P, x P,) — {0,1,2,3,4} be such that, for each (i, j,k,)) € {0,...,[F]} x {0,1} X
{0,.... {51} x{0,1,2,3, 4}, the following assertions hold.

- If2i+ j <mand 10k + 2/ < n, then
c((U2i4j, Vioks2)) = (i + 2)) mod 5.
-If0<2i+j—-1<mand 10k + 2]+ 1 < n, then
c((U2is j—1, Vioks21+1)) = (i + 21 + 3)mod 5.

Condition (1.1) holds and hence, y,(P,, X P,) = 5. Figure 3 illustrates the case m = n = 10.

Figure 3. 4-dynamic proper 5-coloring of the direct product Py X Pjy.

AIMS Mathematics Volume 5, Issue 6, 6496-6520.
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4. Dynamic coloring of the direct product of a path and a cycle

In this section, we focus on the study of the r-dynamic chromatic number of the direct product of a
path
P, =(ugy...,up1)
and a cycle
Ch={Voy-vesVn_1,V0)-

A series of preliminary results are required to this end. In order to simplify the notation, for each given
proper coloring ¢ : V(P,, x C,) — {0, 1, ...}, we denote ¢; j := c(u;,v;), forall 0 <i<mand 0 < j < n.
In addition, all the indices of the vertices v; associated to the cycle C, are considered to be modulo n.

Let us start with a result that enables us to focus on those direct products P,, X C, such that n is
either odd or multiple of four.

Lemma 9. Let m, n and r be three positive integers such that m,n > 2 and n is odd. Then,

Xr(Pm X C2n) :Xr(Pm X Cn)

Proof. The result follows straightforwardly from the fact that the direct product P, X C,, may be
partitioned into two disjoint direct products P,, X C,. O

Now, the following lemma establishes a lower bound for the 2-dynamic chromatic number of the
direct product P,, X C,, when n is not a multiple of three.

Lemma 10. Let m and n be two positive integers such that m,n > 2 and n # 3k, for any positive integer
k. Then, y,(P,, x C,) > 3.

Proof. From Lemma 4, once it is observed that A(P,, X C,) = 4, we have that y,(P,, X C,) > 3.
Hence, it is enough to prove that y,(P,, X C,) = 3 leads to a contradiction. Thus, let us suppose the
existence of a 2-dynamic 3-proper coloring ¢ : V(P,, X C,) — {0, 1,2}. In particular, since the vertices
(up, vo), (uy,v1), (uz,vp) and (uy,v,—1) describe a cycle C4 within the direct product P,, X C, so that
d((ug, vp)) = 2, we have that

Co,0 F C1,1 # Ciu-1 # C0p-

Without loss of generality, we can suppose that cog = 0, ¢;; = 1 and ¢;,,-; = 2. Then, ¢, = 0. Now,
since d((ug, v2)) = 2, we have that, if ¢y, = 0, then it should be ¢, 3 = 2 and hence, ¢;, = 0. But then,
lc(N((u1,v1))| = 1, which is a contradiction. So, it must be ¢y, = 2 and hence, ¢;3 = 0. Notice that
it is already a contradiction if n = 4. So, suppose that n > 4. In particular, in order to have a proper
coloring, it must be ¢, = 2 (see Figure 4).

(u2, vo) (u2,v2)

<U1, vnfl)

(o, vo) (o, v2)

Figure 4. Illustration of Lemma 10.
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By following an iterative similar reasoning, we can ensure that ¢y ; = ¢, ;, for all j < n, and that
Ci2j+1 = (j+ 1) mod 3, for all j < n (recall that all the indices of the vertices v; associated to the
cycle C, are taken modulo n). This is a contradiction with the fact that n # 3k, for any positive integer
k. Hence, y>(P,, X C,) > 3. m|

The following two results deal with 3-dynamic proper k-colorings of the direct product P,, X C,,
with k < 4.

Lemma 11. Let m, n and k be three positive integers such that m,n > 2 and k < 4, and let ¢ be a 3-
dynamic proper k-coloring of the direct product P,, X C,. Then, for each pair of integers i € {1,m — 2}
and 0 < j < n, it must be {c; j_3, ¢i j+3} € {ci-1,j, Civ1,j}-

Proof. Let us focus on the vertex c¢; ;_3 (the vertex c; ;3 follows a similar reasoning). From Condition
(1.1), it must be [c(N((ug, vj-2))| = lc(N((U-1,v;j-2)))| = 2. As a consequence, ¢; ;-3 # ¢;j-1, for any
i € {1,m—2}. Thus, if ¢; ;3 & {ci-1j, Cis1,j}, then the vertex (u;,v;-1) does not verify the mentioned
Condition (1.1), because the four adjacent vertices of the vertex (u;, v;-;) could only be colored with at
most two colors (see Figure 5). O

(Uit1,vj)

(ui,vj-3) @

(ui-1,v;)

Figure 5. Illustration of Lemma 11.

Proposition 12. Let m, n and k be three positive integers such that m,n > 2 and k < 4, and let ¢ be
a 3-dynamic proper k-coloring of the direct product P,, X C,. Then, the following assertions hold for
every pair of integers i € {1,m -2} and 0 < j < n.

Cl) Cij * Ci j+4-
b) If ci.1,j = civ1,j, then this color is also assigned to both vertices (u;,vj-3) and (u;, v .3).
c) x3(P,xC,) >4, foralln € {4,5,10}.

Proof. Let us prove each assertion separately.

a) From Lemma 11, it is ¢; ; € {c;_1 j+3, Ci+1,j+3). Thus, the condition ¢; j = c¢; j+4 contradicts that the
map c is a proper coloring.

b) It follows readily from Lemma 11.

c) The case n = 4 follows from (a). Now, in order to prove the case n = 5, let j be a non-negative
integer such that j < 4. From (a), Condition (1.1) and the fact that d((uo,v;+1)) = 2, we have
that ¢; ; € {c1 j+2, €1 j+4). In a similar way, ¢ j,.i € {c1 j+3, 1}, and hence, a fifth color is required.
Finally, the case n = 10 follows straightforwardly from the case n = 5 and Lemma 9.

O

AIMS Mathematics Volume 5, Issue 6, 6496-6520.
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We focus now on the characterization of 4-dynamic proper colorings of the direct product P,, X C,,.

Lemma 13. Let m, m’ and n be three positive integers such that m,m’,n > 2 and m" < m. Then,
X4(Pm’ X Cn) S/Y4(Pm X Cn)

Proof. Let c be a 4-dynamic proper y4(P,, X C,)-coloring of the direct product P,, X C,. Then, the result
follows straightforwardly from the fact that the map ¢’ : V(P,, X C,) — {0,1,...,x4(P,, X C,) — 1}
that is defined so that ¢ ; = ¢; ;, for all non-negative integers i < m’ and j < n, is a 4-dynamic proper
X4(P,, X Cy)-coloring of the direct product P, X C,. O

Lemma 14. Let m and n be two positive integers such that m,n > 2, and let ¢ be a 4-dynamic proper
5-coloring of the direct product P,, X C,. Then, for each pair of integers 0 <i<m—1and 0 < j<n,
it must be

{ci,j-3, Ciju3} S {Ciz1,j» Civ1,j} C {Cij=3, Cim1,j4> Civ1,j—4} NV {Cij+3, Cim1, j+d» Cin1,j+4)-

Proof. Let i and j be two integers such that 0 <i<m—1and 0 < j <n. If ¢; ;.3 € {ci-1j, cir1,}, then
it must be ¢; j.1 = ¢;j-3. But then, the vertex (u;_1,v;—») does not satisfy Condition (1.1). A similar
reasoning follows for c; j,3 and the vertex (u;_1,v;:+2), and hence, {c; j_3, ¢; j+3} € {ci-1,j» Civ1,j}-

Further, since [c(N((u4;, vj-1))| = [c(N((u;, vj+1)))| = 4, it must be

{ciz1,j-2, Ciz1,j-2} N {Ciz1j» Cix1,j} = O = {ci1j» Civ1,j} N {Ciz1 js2, Cin1,j42}-

Thus, since [c(N((#;,v;j-3)))| = |c(N((u;, vj+3)))| = 4, we have that

{Ciz1,j> Cis1 j} C{Cij=3, Ci1,j—4> Cis1,j—a} NV {Ci j435 Ci1,js4> Cis1,j4d)-

Proposition 15. Let m and n be two positive integers such that m,n > 2, and let ¢ be a 4-dynamic
proper S-coloring of the direct product P,, X C,. Then, the following assertions hold.

a) cij # Cija, for all pair of integers 0 <i<m—1and0 < j<n.
b) If m > 5, then n = 5k, for some positive integer k.
c) xs(P, xC,) >5, foralln € {3,4,6,7,8, 14}.

Proof. Let us prove each assertion separately.

a) From Lemma 14, we have that ¢; ; € {ci—1 j+3, Cit1,j+3}. Then, the result follows from the fact that
the map c is a proper coloring.

b) From Lemma 14, we have that ¢,y € {co3,c23}. Without loss of generality, let us suppose that
c1p = co3 (the case ¢y = c,3 follows similarly by symmetry). Under such an assumption, it is
simply verified that the direct product P,, X C, is always colored by the map ¢ in a similar way to
what is shown in Figure 6.
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(ug, v3)

Figure 6. Illustration of Proposition 15.b.

Notice in particular the requirement that the set {c; j, ¢; j+1, Ci j+2, Ci j+3, Ci j+4} 1S always formed by
five distinct colors, whatever the pair of integers 0 < i < m—1and 0 < j < n are. The result
follows from this fact, together with the colored pattern that is shown in Figure 6.

c) A study of cases is required.

— The case n = 3 holds because, from Lemma 14, it should be {c( ¢, c20} € {c1,0,C0.1,C2.1}. But
this contradicts the fact that |c(N((#;,v2)))| = 4. The case n = 6 follows then from Lemma 9.

— The case n = 4 follows simply from (a).

— For the case n = 7, it is readily verified that the map ¢ should verify that {cy, c20} = {c10} U
({co.1, 2.1} N{cos, c26}). As a consequence, it should be coo = ¢19 = ¢20, which contradicts
the fact that |c(N((u;,v1)))| = 4. The case n = 14 follows then from Lemma 9.

— Finally, the case n = 8 holds because, from Lemma 14, it should be ¢y € {co3,c23} N
{cos, C25}, but this contradicts the fact that |c(N((uy, v4)))| = 4.

Lemma 16. Let m € {3,4} and let n > 2 be a positive integer such that y4(P,, X C,) = 5. The following
assertions hold.

a) If nis odd, then y4(P,, X C,46) = 5.
b) If nis even, then y4(P,, X Cpy12) = 5.

Proof. From Lemma 4, we have that y4(P,, X Cy) > 5, for all k > 2. Thus, in order to prove the result, it
is enough to define a convenient 4-dynamic proper 5-coloring. Moreover, from Lemma 13, it is enough
to prove the case m = 4. Let us prove each assertion separately for the mentioned case.

a) Let ¢ be a 4-dynamic proper 5-coloring of the direct product P, X C,, with n odd. Then, let
¢’ V(P4 X Chye) — {0, 1,2, 3,4} be defined so that the following assertions hold.

— Let i and j be two non-negative integers such that i < 4 and j < n. Then,

/ f—
Ci2jmod (n+6) — Ci.2jmodn-

AIMS Mathematics Volume 5, Issue 6, 6496-6520.
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— The remaining vertices of the direct product P, X C,,¢ are colored as follows.

1.0 forall k € {0,6},1 € {3,9},

Cll,(2n+k)m0d(n+6) = 0,2,(2n+1)m0d(n+6) =4 G-t forallk € {2,8},1€ {511},
Cin-, forallke{4,10},1€{1,7}.
kei(3,7,11),
Co,n-1> for all
1€ {2,6,10},

’ _ ’ —
Co,2n+k)ymod (+6) — €3,2n+l) mod (1+6) —

ke {l,5,9},
1 €1{0,4,8]}.

This map ¢’ is a proper coloring of the direct product P4 X C,.¢ satisfying Condition (1.1), for
n > 2 being odd. Figure 19 illustrates the direct product P4 X Cy;.

¢ & {c1.0, Con-1, Cop-1, Cip—2), forall {

b) The case 2 = nmod4 follows from the previous case and Lemma 9. Finally, the case 0 =
nmod 4 follows similarly, but it is necessary to take into account the partition of the direct product
P,, x Cy412 into two graphs of the form P,, X C(,112)2.

O

Let us prove now the main result of this section, where we establish the r-dynamic chromatic
number of the direct product of a path and a cycle.

Theorem 17. Let m ,n and r be three positive integers such that m,n > 2. Then,

2, ifr=1,
3, ifr=2andn =3t forsomet>1,
4 {r:Zandni?)t,foralltZl,
r=3andn ¢ {4,5,10},
XA(PnxCy) = r=3andn e {4,5,10},
S, if{r>4andn = 5t, for somet > 1,
r>4, me{3,4andn ¢ {3,4,6,7,8, 14},
; {r >4, me{3,4andn € {3,4,6,7,8, 14},

6,
r>4,m=>5and n#+ 5t, forallt > 1.

Proof. 1t is known that y(P,,) = 2, for any positive integer m. Moreover, y(C,) = 2, if n is even, and
x(C,) = 3, otherwise. Then, Lemmas 2 and 4, together with the fact that A(P,, X C,) = 4, imply that

2 = min{1, AP, X C)} + 1 < (P X Cy) < min{y(Pp), x(C,)} = 2.

Let us study separately the remaining cases by defining to this end appropriate r-dynamic proper
colorings ¢ : V (P, X C,) — {0, 1, ...} satisfying Condition (1.1).
Since A(P,, X C,) = 4, Lemma 4 implies that

r+1, ifre{l,2,3},

Xr(PmXCn) Z . (4'1)
5 otherwise.
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The following study of cases arises.

e Caser =2.
The case n = 3t for some positive integer ¢ follows readily from Lemmas 5 and 6, together
with the corresponding lower bound described in (4.1). Otherwise, if n # 3t, for any positive
integer ¢, then Lemma 10 implies that y»(P,, X C,) > 3. In particular, from Lemmas 5 and 6,
together with the corresponding lower bound described in (4.1), we have that y,(P,, X C,) = 4,
for n ¢ {5, 31}, for any positive integer ¢. Finally, if n = 5, then it is enough to consider the map
c:V(P, xCs)—1{0,1,2,3} such that

, ifiisevenand j e {0,1}, oriisoddand j = 3,
, ifiisoddand j e {1,2}, oriisevenand j =4,
, ifiisevenand j e {2,3}, oriisoddand j =0,

W N = O

, otherwise.

It is straightforwardly verified that Condition (1.1) holds and hence, x,(P,, X Cs) = 4. Figure 7
illustrates the direct product P4 X Cs.

Figure 7. 2-dynamic proper 4-coloring of the direct product P4 X Cs.

e Case r = 3.
From (4.1), we have that y3(P,,xC,) > 4. Firstly, we study those cases for which this lower bound
is reached. In each case, an illustrative 3-dynamic 4-proper coloring ¢ : V(P,, X C,) — {0, 1,2, 3}
satisfying Condition (1.1) is given. Once more time, all the indices of the vertices v; associated
to the cycle C, are taken modulo n throughout the whole proof.

— Subcase n = 3¢, for some positive integer ¢. Let the map ¢ be defined so that, for each
non-negative integer k < t, the following assertions hold.
* Coskel = 2.

* C03k+2 = Cl3k+2 = 3.
* For each non-negative integer i < f and each j,/ € {0, 1,2}, if 3i+ j+/ <mand 3k+1[ < n,

then C3i4 j+l, 3k+l = (l - l) mod 4.
It is readily verified that the map c is a proper coloring satisfying Condition (1.1) and hence,
X3(P,, X C3,) = 4. Figure 8 illustrates the direct product P; X Cg.
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Figure 8. 3-dynamic proper 4-coloring of the direct product P; X Cs.

— Subcase n = 61 + w, for some positive integer + and some w € {1,2}. Let the map c be
defined so that the following assertions hold, for all non-negative integers i < m and j < t.

* For each positive integer k < w, we have that ¢;,,_;x = (3 + i) mod 4.
* For each (k, 1, s) € {0, 1,2} x{0,1} x {0, ...,t— 1}, we have that ¢; g42¢+/-; = (i + k) mod 4.

The map c is a proper coloring satisfying Condition (1.1) and hence, y3(P,, X Cg1y) = 4.
Figures 9 and 10 illustrate, respectively, the direct products Pg X Cy3 and Pg X Ci4.

AL\ N7
SS e e
A VAVASCS & @04
Se oo e ="
X K IHAII XXX

PO e e —Cis =a
AKX X KX AKX

Figure 10. 3-dynamic proper 4-coloring of the direct product Pg X C4.
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— Subcase n = 6t + 5, for some positive integer.
Firstly, we focus on the case m odd. Let the map ¢ be defined so that the following assertions
hold.

« Let k € {0, 1} and let i be a non-negative integer such that 8i + 4k < m. Then,

K, if j € 10,2,8, 10},
Csi P =
I (k+ ymod?2, if j € (4,6, 12, 14).

*

Let k,[ € {0, 1} and let i be a non-negative integer such that 8i + 4k + 2/ + 1 < m. Then,

(k +)mod?2, if j € {5,13},

3 (k+!/+1)mod?2, if j € {1,9},
CRi+dk+21+1,j = 241, if je(3,11),
2+ ((+1)mod2), ifje{7,15}.

*

Let k € {0, 1} and let i be a non-negative integer such that 8i + 4k + 2 < m. Then,

24k, if j € {2,4,10,12),
Csi P=
ST 24 ((k+ mod?2), if j € {0,6,8, 14).

*

Let k € {0, 1} and let i, j be two non-negative integers such that 2i + k < m and 16 + 6 +
3k < n. Then,

Coitk,16+6j+3k = imod 4.

*

Let i, j be two positive integers such that 2i + 1 < m and 17 + 6 < n. Then,

Coit1,17+6j = C2i+1,1-

*

Let i, j be two positive integers such that 2i < m and 18 + 6 < n. Then,

3, ifimod4 e {0,3),
Co; P=
PISITN 4 ifimod 4 € {1,2).

*

Let i, j be two positive integers such that 2i < m and 20 + 6 < n. Then,

1, ifimod4 e {0, 1},
Co; i =
22016770 0, if imod4 € {2, 3).

*

Let i, j be two positive integers such that 2i + 1 < m and 21 + 6 < n. Then,

Coi+1,21+6j = C2i+1,15-

The map c is a proper coloring satisfying Condition (1.1) and hence, y3(P,, X Ce:45) = 4, for
m odd. Figure 11 illustrates the direct product Py X Cy;.
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Figure 11. 3-dynamic proper 4-coloring of the direct product Py X Cy;.

Let us focus now on the case m even. Let the map c be defined so that the following assertions
hold.

* Let i, k be two non-negative integers such that k < 7 and 8i + k < m. Then,

if j € {3kmod 16, (3k + 10) mod 16},

if j € {(3k + 6)mod 16, (3k + 12) mod 16},
if j € {(3k +4)mod 16, (3k + 14) mod 16},
if j € {(3k + 2) mod 16, (3k + 8) mod 16}.

-

-

Ci+k,j =

W o = O

-

* Let i be a non-negative integer such that 8; + 7 < m. Then,

0. ifjel(57)

| rjequay,
SHLITN o e je o, 11),
3, if je{13,15).

* Let k € {0, 1,2} and let i, j be two positive integers such that 2i < m and 16 + 6j + k < n.
Then,

C2i16+6j+k = C2ik-

« Let i, j be two positive integers such that 2i + 1 < m and 19 + 6 < n. Then,

0, ifimod4 € {0,1},
Co; =
2i+1,19+6 2, ifimod4 € {2,3).
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* Let i, j be two positive integers such that 2i < m and 20 + 6j < n. Then,

1, ifimod4 € {0, 3},
C2i20+6; = 2, if(imod4) =1,
3, if (imod4) =

* Let i, j be two positive integers such that 2i + 1 < m and 21 + 6 < n. Then,

0, if(imod4)=2
Cor12146; = 1, if (imod4) =1,
3, ifimod4 € {0, 3}.

The map c is a proper coloring satisfying Condition (1.1) and hence, y3(P,, X Ce45) = 4, for
m even. Figure 12 illustrates the direct product Py X Cy;.

(ISR
,::, X oy_:o'ov &
V.v'Q". OO o'.-,.,

e e e
S e VAV o 00

{_X X
T

KX SE—TS
AN Azév N\ N véZA AN
XX 169-%’—‘9—:-?6:_{0;

Figure 12. 3-dynamic proper 4-coloring of the direct product Py X Cy;.

— Subcase n = 6¢ + 4, for some positive integer ¢ > 2.
If 3¢ + 2 is odd, then it is of the form 6k + 5, for some positive integer k, and hence, the result
follows from the previous subcase and Lemma 9. Otherwise, if 37 + 2 is even, then it is of the
form 8 + 6k, for some non-negative integer k. Both maps ¢ defined as the ones described for
the case n = 6k + 5 (depending in any case on whether m is odd or even) constitute proper
colorings of the direct product P,, X Cs,¢ satisfying Condition (1.1). Then, Lemma 9 implies
that y3(P,, X Cg+4) = 4. Figure 13 illustrates the direct product Py X Cog.
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V.V.V.v.v.A % X/.\x/.\ AAAAAAAA AX A.v.v.v.v.v

VAN A VAN XX x X
e e ee e o aerereren
.v.A’v.A.A X _X_X_—X > X X X’;’;’;’Z’X

p'o'o‘o.op? R M O MR X R R M M IS
Xopp. S xxxxxxxxxx xxx . :vo'x'iovovo*'

v. S =_3% s Vin ‘_4;.4‘:-@ -AQAOAQAQ'Q'QQA

Figure 13. 3-dynamic proper 4-coloring of the direct product Py X Cyg.

Let us study now the case n € {4,5,10}. From Proposition 12, we have that y;(P,, X C,) > 4,
for all n € {4,5, 10}. Then, it is enough to define for each case an illustrative 3-dynamic 5-proper
coloring ¢ : V (P, X Cs) — {0, 1,2, 3, 4} satisfying Condition (1.1).

— For n = 4, let the map ¢ be defined such that for all (u;,v;) € P,, X C4 we have that

0, ifje{0,1}andimod6 € {3j,3;+ 1},

1, ifje{0,1}and 3 +i)mod6 € {3/,3j+ 1},

J, ifje{2,3}.

4, otherwise.

— For n =5, let the map ¢ be defined as ¢; ; = (j + 2i)mod 5, for all i < m and j < n.

Condition (1.1) holds in both cases and hence, y3(P,, X C,) = 5, for each n € {4,5}. Figure 14
illustrates the case m = 4.

Figure 14. 3-dynamic proper 5-colorings of the direct products P4 X C4 and P4 X Cs.

Finally, the case n = 10 follows from the case n = 5 and Lemma 9.

e Caser > 4.
Since A(P,, X C,) = 4, Lemma 4 enables us to focus on the case r = 4. From (4.1), we have
that y4(P,, X C,) > 5. Firstly, we study those cases for which this lower bound is reached. In
each case, an illustrative 4-dynamic 5-proper coloring ¢ : V(P, X C,) — {0, 1,2, 3,4} satisfying
Condition (1.1) is given. Again, indices associated to C, are taken modulo 7.
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— Subcase n = 5¢, for some positive integer ¢. If n is odd, then let the map ¢ be defined so that,
forall k < ¢,

0, if j=3i+ 5k,
1, ifj=3i+5k+4,
cij=14 2, ifj=3i+5k+8,
3, ifj=3i+5+2,
4, if j=3i+5k+6.
Condition (1.1) holds and hence, y4(P,, X Cs;) = 5, for t odd. Then, the case t = 2 mod 4
follows straightforwardly from Lemma 9. Finally, the just described map c together with the

mentioned Lemma 9 enables us to prove the case t = O mod 4. Figures 15 and 16 illustrate,
respectively, the direct products Pg X Cs and Pg X Cy.

Figure 15. 4-dynamic proper 5-coloring of the direct product Pg X Cs.

N N =_’“v“v"ALA_AA_._‘_;‘v“v“v‘V‘ < X N
XX QS RIIIA A AT XK XX X
SSOTLEIE I I X EPRRXK
e ® 0000000066 =l
PO O OO e = e YaVaVay e 0,000
Sevea ot O OOVt e e oo .o
SN S S S AN A A A KA AN
X XX XX XX v‘v.v.véeggégg._A_._A
TSI I XK KX KEIIIIR
Seove OO O OO0 e = =

G e VAV AV OO 0
SR LTSRS LR AAASASES
K KL KA KX IS

DS A o D OO 0.V,
S SRR
NS S — X oW m e
XQX XX XX XA %é‘évéxg{ﬁ.{.x.x

Figure 16. 4-dynamic proper 5-coloring of the direct product P;; X Cy.
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— Subcase m € {3,4} and n ¢ {3,4,6,7,8, 14}. From Lemma 13, it is enough to prove the case
m = 4. The following study of cases arises.

* n = 6t+ 1, with # > 2. This case arises from Lemma 16, once we prove in Figure 17 the
existence of a 4-dynamic proper 5-coloring of the direct product P, X Cy3.

Figure 17. 4-dynamic proper 5-coloring of the direct product P4 X Cys.

* n = 6r+ 3, with r > 1. This case also arises from Lemma 16, once we prove in Figure 18
the existence of a 4-dynamic proper 5-coloring of the direct product P4 X Cy.

Figure 18. 4-dynamic proper 5-coloring of the direct product P4 X Co.

* n = 6t+5, witht > 1. This case arises from Lemma 16 and the already known fact that
X4(P3 X Cs) = 5. Figure 19 illustrates the direct product P4 X Cy;.

Figure 19. 4-dynamic proper 5-coloring of the direct product P4 X Cy;.
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* 2 = nmod4, with n ¢ {6, 14}. It follows simply from the previous cases and Lemma 9.

x*n=12t+k,witht > 1 and k € {12, 16,20}. This case also arises from Lemma 16, once
we prove the existence in Figures 20-22 of 4-dynamic proper 5-colorings of the direct
pI'OdllCtS Py X Cqp, Py X C16 and P4 X Czo.

A AN - Z N\ - AN ] _ /N < £ 7 = ~ -
S LTS
e AAA_;‘A-x XX XX

XX XX Xéx-‘,-.—v‘v >

_ <~ 7 N N

vave— O G9.Q.9.900e = o o
XX KR ROKAA KKK KX

Figure 21. 4-dynamic proper 5-coloring of the direct products P, X Cie.

Q

N2 VA Y v
KL SRR
N N N
ST K IR TETASAESES
RIS EEIIEILIIRX

Figure 22. 4-dynamic proper 5-coloring of the direct product P, X Cy.

JoN vévéxé;_‘__A A_—A-‘Axéxévévov <
SRR R KKK IS

Let us focus now on those direct products P, X C,, for which the corresponding 4-dynamic
chromatic number is six.

— Subcase m € {3,4} and n € {3,4,6,7,8,14}. Again from Lemma 13, it is enough to prove
the case m = 4. Proposition 15, together with Figures 23 and 24, enables us to ensure that
X4(Py X C3) = xa(Py X Cq) = xy4(P4 X C7) = 6. Then, Lemma 9 implies that y4(P4 X C¢) =
Xa4(Py X Cg) = x4(Py X C14) = 6.
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'y

Figure 23. 4-dynamic proper 6-colorings of the direct products P4 X C3 and P4 X Cy.

Figure 24. 4-dynamic proper 6-coloring of the direct product P, X C;.

— Subcase m > 5 and n # 5t, for every positive integer . From Lemma 9, it is enough to study
those direct products P,, X C, such that n is odd or multiple of four. Keeping in mind this
aspect, we are going to focus on the cases n € {3¢,4t, 6t + 1, 6¢ + 5}, for some positive integer
t. In each case, an illustrative 4-dynamic 6-proper coloring ¢ : V (P,, X C,) — {0,1,2,3,4,5}
satisfying Condition (1.1) is given.

« n = 3t, for some positive integer ¢. Let the map ¢ be defined so that

, ifimod3 =0and jmod4 € {0, 1},
if imod3 = 0and jmod4 € {2, 3},
ifimod3 =1 and jmod4 € {0, 1},
if imod3 =1 and jmod4 € {2, 3},
if imod3 =2 and jmod4 € {0, 1},
if imod3 =2 and jmod4 € {2, 3}.

-

- -

A R N

-

Condition (1.1) holds and hence, y4(P,, X C3,) = 6. Figure 25 illustrates the direct product
Ps % C6.
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Figure 25. 4-dynamic proper 6-coloring of the direct product Ps X Cg.

* n = 4t, for some positive integer . Let the map ¢ be defined so that the following
assertions hold.
- Let 7 and j be two non-negative integers such that 2i + 1 < m and 2j < n. Then,

imod 6, if jmod?2 =0,

C2i+12j = Cixlm-2j-1 =
2i+1,2j 2i+1,m=-2j-1 {(i+3)mod6, if jmod2 = 1.

- Let i and j be two non-negative integers such that 2i < m and 2j + 1 < n. Then,

(i+4)mod6, if jmod2 =0,

Ci2j+1 = C2im—2j-2 =
2i2j+1 2i,m-2j-2 {(i+1)m0d6, if jmod2 = 1.

Condition (1.1) holds and hence, y4(P,, X C4;) = 6. Figure 26 illustrates the direct product
Py X Cs.

e

KRR
XD
SRS
X XF KX

AN ‘.7 A ,‘ AN
Xoxer%‘%:-xox

S—

Figure 26. 4-dynamic proper 6-coloring of the direct product P4 X Cs.
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* n = 6t + 1, for some positive integer ¢. Let the map ¢ be defined so that the following
assertions hold.

- Let i be a positive integer such that 2i + 1 < m. Then,
imod 6, if j€{0,2,4}U{7+3k: 0 <k <24,
(i+2)mod6, if je{S5+3k: 0<k<2t,
(i+3)mod6, ifje({l,3},
(i+4)mod6, if je{6+3k: 0<k<2t.

- Let i be a positive integer such that 2i < m. Then,

Civ12j =

i+ 1)mod6, if je{lJU{3+3k: 0<k<1+21},
(i+3)mod6, if je{d+3k: 0<k<2t,
(i+4)mod6, if je€{0,2},

(i+5)mod6, ifje{S5+3k: 0<k<2t).

Condition (1.1) holds and hence, y4(P,, X Ce41) = 6. Figure 27 illustrates the direct
product Py X Cy3.

Cinj+l =

Figure 27. 4-dynamic proper 6-coloring of the direct product P4 X Cj3.

* n = 6t + 5, for some positive integer ¢. Let the map ¢ be defined so that the following
assertions hold.

- Let i be a positive integer such that 2i + 1 < m. Then,

imod 6, if j €{0,2) U{5+3k: 0 <k <21},
(i+2)mod6, ifje(3+3k: 0<k<2s,
(i+3)mod6, ifj=1,

(i+4)mod6, ifje{d+3k: 0<k<2e.

Civ12j =

AIMS Mathematics Volume 5, Issue 6, 6496-6520.
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- Let i be a positive integer such that 2i < m. Then,

Ci2jr1 =

(i+ 1)mod6, if je{l+3k:
(i+3)mod6, ifje {2+ 3k:
(i+4)mod6, if j=0,

(i+5)mod6, ifje {3+ 3k:

Condition (1.1) holds and hence, y4(P,, X Ce5) = 6.

pI'OdUCt Py x Cyy.

:.A.A.e’.'.v XX &
.‘.‘. -'.'.A
R E_® X X A ‘. =0
onoxezvze,:. S

‘. .'.' v.v.v 9;:".'
A.A _X_X

'0"0'- -'0 0'
R, ::e:: ZEES
A.A.A. -A.A.A
e 0L
. .A-‘ v. .v _..' X’A
.v.‘A .A‘ v.v.v
A. .A.‘ ‘ ~ X’x

'0"0"-%

0<k<1+2t},
0<k<2t,

0<k<2t.

Figure 28 illustrates the direct

Figure 28. 4-dynamic proper 6-coloring of the direct product P4 X Cy;.

5. Conclusion and further works

This paper has explicitly determined the r-dynamic chromatic number of the direct product of any
given path P,, with either a path P, or a cycle C,,. In this regard, Theorem 8 and 17 are the main results
of the manuscript. Particularly, it has been obtained that 2 < y,.(P,, X P,) < 5and 2 < y,(P,, X C,) <6,
for all positive integers m, n and r such that m,n > 2. The significant number of technical results and
studies of cases that have been required throughout the paper in order to prove our two main results
enables us to ensure that the problem of r-dynamic coloring the direct product of two given graphs
is not trivial. As such, this paper may be considered as a starting point to delve into this topic. Of
particular interest for the continuation of this paper is the study of the r-dynamic coloring of two given
cycles. The r-dynamic coloring of the direct product of either a path or a cycle with other types of
graphs is also established as related further work.

AIMS Mathematics
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