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1. Introduction

Let a,b,c € R with ¢ # 0,—1,-2,---. Then the Gaussian hypergeometric function F(a, b;c;r)
[1-3] is defined by

O (@)n(B), o

F(a,b;c;r) =,F(a,b;c;r) = ,
oy (c),n!

(Irl < 1), (1.1)

where (a)g = 1, (@), = a(a+ 1)a+2)---(a+n—-1) =T(a+n)/I'(a) forn e N = {1,2,---}is the
Pochhammer symbol and I'(x) = fom *Ye7'dt is the classical Euler gamma function [4, 5]. If c = a+ b,
then F(a,b;a + b;r) is said to be zero-balanced. In particular, the complete elliptic integral K (r) [6,
71 and generalized complete elliptic integral K, (r) (r € (0,1),a € (0,1/2]) [8] of the first kind are
the special cases of the Gaussian hypergeometric function F(a, b; c; r). Indeed, K (r) and K,(r) can be
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expressed by
_T 1.2
K(r) = 5F(l/z, 1/2:1:7%)
and
T
K, (r) = EF(a, l-a;1;r%), re(,1). (1.2)

In 2016, Takeuchi [9] introduced the complete p-elliptic integral K, (r) of the first kind in terms of
the Gaussian hypergeometric functions as follows

T
K,(r) = EPF(I/p; 1—1/p; 1;r7),

where 7, is given by

m, 1 n
- = —B 1 , 1 — 1 = —
27 (I/p /p) b sinGt/p)
and 1
_ a-t,q bt g, L(@I'(D)
B(a,b) = j(; (1 =0 dt = Taxb

is the Beta function.
Recently, the Gaussian hypergeometric function and its special cases have attracted the attention of
many researchers [10-25] due to they have wide applications in pure and applied mathematics [26—40].
Anderson et al. [41] proved that the double inequality

K(r) 1

KD > T (1.3)

holds for all » € (0, 1).
Motivated by inequality (1.3), many researchers provided its improvements, variants, refinements
and generalizations. For example, Alzer and Richards [42] proved that the double inequality

1 - I (r) - 1
IL+o(@r K, (\r) 1+71,r

(1.4)

holds for all @ € (0,1/2] and r € (0, 1) with the best possible factors o(a) = a(l —a) and 7, = 0.

Recently, Yin et al. [43] generalized inequality (1.4) to the case of complete p-elliptic integral of
the first kind %,(r) and a sharp improvement of (1.4) was presented by Zhao et al. in [8]. Ismail
[42, p. 1669] asked whether the inequality (1.4) can be extended to the zero-balanced hypergeometric
function. Inspired by this question, Richards [44] proved the following result which is to answer the
question by Ismail from another point of view.

Theorem A. (See [44]) Let a,b > 0. Then the double inequality

1 <F(a,b;a+b;r2)< 1
(1 + e Fa,b;a+byr) (1 + ryab

holds for all r € (0, 1) with the best possible exponents A(a,b) = ab/(a + b) and u(a,b) = 0.
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The main purpose of this paper is to generalize the inequality (1.4) to the case of zero-balanced
hypergeometric function and also make some refinements of (1.4) and Theorem A under certain re-
striction of a, b, which gives an affirmative answer to the question by Ismail. Our main result is the
following Theorem 1.1.

Throughout this paper, we mainly focus on the parameters satisfying a + b > 6ab/5 for a,b > 0.
By the symmetry, our parameters might be only consider as 0 < a < b and a + b > 6ab/5, which is
equivalent to

{(a,b)|0<a < 2, b>0}u{(a,b)| % <as< g a<b< 6a5f5}' (1.5)

For convenience, we denote o (a, b) and 7(a, b) by o and 7 simply if no risk for confusion, where

ab abla+b—-ab+1)
b= -2 and b) = .
ola.b) == and @by = o T

Theorem 1.1. Let a,b > O with a + b > 6ab/5. Then the double inequality

1+Tr2+a/r3<F(a,b;a+b;r2) 1+‘rr2+,8r3
1+or F(a,b;a+ b;r) 1+or

holds for all r € (0, 1) if and only if @« < @y and B > By, where

(1.6)

ab(a + 1)(b+1)[a@ +a) + (1 - )2 + a)b + (1 — a)?]
3a+b)*(a+b+1)a+b+2) ’

abla+ 1)(b+ 1)

2a+b)(1+a+b)

ap = apla,b) = —

Bo = Bola, b) =

Remark 1.2. For later use, we need discuss about the sign of @y and @y + 7 for a,b > 0O witha + b >
6ab/5s.

e Leta(a,b) = a+a)+(1—a)2+a)b+(1—a)b>. Thenitis easy to see that a(a,b) > 0 for0 < a < 1
and b > 0. Moreover, it follows from (1.5) that

21 _ A2
aa.b) 262(61 5a )_ 3a’[(2a - 3)* + 1]

) = 0
6a—-5 26a-57
for1 <a<5/3anda < b < 5a/(6ba—>5). This yields @y < 0.
e By calculations, we obtain

ab
6(a+b)32(1+a+b)(2+a+b)

1
+ 15515 = 30)(50 + 330a + 223¢°) + 294a’|b

W +T = [a(l +a)(2 + a)
+(1+a)3=2a+2d)b* + (2a— 1)(a - 1)b3].

From the above expression, we clearly see that g + 7 > O for 0 <a < 1/2 (or 1 < a < 5/3) and
b>0,and @y + 7 < 0 for 1/2 < a < 5/6 and sufficiently large b > 0.
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As mentioned in (1.2), if » = 1 — a, then F(a, b;a + b;r*)/F(a, b;a + b; r) reduces to the ratio of
generalized complete elliptic integral of the first kind K, (r)/K,(vr) and a(l —a) < 1/4for0 < a < 1.
That is to say Theorem 1.1 in [8] can be derived from our Theorem 1.1 as a corollary.

Corollary 1.3. Let a € (0, 1/2]. Then the double inequality
1 + 1(@)r* + Aa)r? - FC,.(r) - 1 + 1(a)r* + u(a)r’
1 +o(a)r K, () 1 +o(a)r

holds for all r € (0, 1), where o(a) = o(a,1 —a),7(a) = 7(a,1 — a) and A(a) = ay(a,1 — a), u(a) =
Bola, 1 — a) are defined in the literature [8].

(1.7)

Remark 1.4. Corollary 1.3 gives an affirmative answer to the question by Ismail. Moreover, the bounds
for inequality (1.7) are better than (1.4). Indeed, from A(a) < 0, o(a) = 1(a) + u(a) and 7(a) + A(a) =
a(l —a)[(1 —2a)(6 + 13a + 33a*) + 2a°>(25 + 4a)]|/36 > 0 for a € (0, 1/2], we obtain

1+ 7(@)r* + Aa)r 1 2
1+ o(a)r 1+ o(a)r T+ o—(a)r[T(a) + /l(a)r]
1 2

[T(d) + /l(a)] >

> + _
l+o(@r 1+o(a)r 1+ o(a)r

and

1 + 1(@)r* + ua)r’ - I +t(@r+uar 1
1+ o(a)r 1+ o(a)r
forr € (0,1)and a € (0, 1/2].
Remark 1.5. Under the assumption of Theorem 1.1, the upper bound of (1.6) is better than that in
Theorem A due to
1 +7r+6r° - l+7r+pr 1
1+or 1+or
from o = 7 + By. On the other hand, in order to compare the lower bound of (1.6) and Theorem A, it
suffices to take into account the sign of £(r) := (1 + 77 + aor’)(1 + r)” — (1 + o7r).

Differentiation yields

@) =0 +07 o+ 2tr + Bag + 21 + o) + a3 + )| - o,
£ = A+ f), (1.8)
where
f(r) =21 — 0+ 0 + 2B + 21+ 207)r + (2 + o) 6y + T + 0T + a0 + 2)(o + 3)r.

It follows from
a’b? a’b*(5 + 3a + 3b + ab)
3ap + 2t + 207 =
O T T = b1 +a+b)2+a+b)

2
T v ath)

and a < 0 that f(r) can be regarded as the special polynomial defined in Lemma 2.1. We can verify

but miss the details that f (1) < 0 for a,b > 0 with a + b > 6ab/5. This in conjunction with Lemma

2.1 implies that there exists r* € (0, 1) such that f(r) > 0 for r € (0, r") and f(r) < Oforre (r,1).

Combining this with (1.8) and f(0) = f’(0) = 0, we conclude that f(r) > O for r € (0,r"] and f(r) is

strictly concave on (r*, 1).

For a,b > 0 with a + b > 6ab/5, we have the following two conclusion:
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o if (1) > 0, then f(r) > min{f(r*), f(1)} > O for r € (+*, 1). This yields the lower bound of (1.6)
is better than that in Theorem A for r € (0, 1) and we refer to see the domain of a, b illustrated in
Figure 1;

o if f(1) < O, then there exists " € (r*, 1) such that the lower bound of (1.6) is better than that in
Theorem A for r € (0, ).

151 — f(1)=0 4
— a+b=6ab/5

10} §

ok 4
1 L L L L 1 L L L L 1 L L L L 1 L

0 5 10 15

Figure 1. Visualized the domain {(a, b)| a,b > 0,a + b > 6ab/5, f(1) > 0}.

2. Lemmas

In this section, we introduce some notations and present some technical lemmas, which will be used
in proving our main result.
Leta,b > 0 and
(@)n(b)y
nl(a+b),
Then we clearly see from (1.1) that F(a, b; a + b; r) can be expressed simply as

A, = Ay(a,b) =

F(a,b:a+b;r) = Z A" @2.1)

n=0
It is easy to verify that A, satisfies the recurrence relation
At (m+a)(n+Db)
A, (a+b+n)(n+1)
and also A, is strictly decreasing forn > O ifa + b > ab.

The following lemma provides a simple criterion to determine the sign of a class of special polyno-
mial.

(2.2)

AIMS Mathematics Volume 5, Issue 6, 6479-6495.
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Lemma 2.1. (See [45, Lemma 7) Let n,m € N U {0} with n > m and P,(t) be the polynomial of degree
n defined by

m n

P,(t) = Za,-ti - Z ait',

=0 i=m+1
where a,,,a, > 0 and a; > 0 for 0 < i < n— 1 withi # m. Then there exist t, € (0, 00) such that
P,(tp) = 0 and P,(t) > 0 for t € (0, ty) and P,(t) < 0 for t € (ty, o).

Lemma 2.2. (1) For a,b > 0, then nA,(a, b) is strictly increasing for n > 1. In particular,

Anab) _m
Ay (a,b) n

(2.3)

form>n>1.
(2) Fora,b >0 witha+ b > 6ab/5, then A, /A, is strictly increasing forn > 1.
(3) Fora,b > 0 witha+ b > ab, then A,;1/A, > Ay,i2/ Ao, holds for n > 0.
Proof. (1) From the recurrence relation (2.2) of A, , we clearly see that

(n+ DAy n+1 (a+n)b+n) ab o1
nA, " n (a+b+nn+1) n(a + b + n)

for a,b > 0 and n > 1. This yields the monotonicity of nA,(a, b) with respect to n and inequality (2.3)
follows directly from the monotonicity of nA,(a, b).
(2) Taking the differentiation of (2.2) with respect to n yields

0Ani1/N) 51(n;a,b)
on T (n+ DXa+b+n)*

(2.4)

where
S1(nsa,b) = a® +a(l —a)b + (1 — a)b* + 2(a + b — ab)n + n°.
e I[f0 <a < 1andb > 0, then we clearly see that 6,(n; a,b) > 0 forn > 1.

e If 1 < a <5/3, then it follows from (1.5) that

S\(m;a,b) > 6(1;a,b) = (a+ 1> —(a— (a+2)b—(a-1)b

2
Z(a+1)2—(a—1)(a+2)-5—a—(a—1)( >a )
6a -5

6a -5
C4+3@-D[4+@- D10+ @~ 1? +a))| o
(6a — 5)2
forn > 1.
Therefore, the proof is completed from (2.4) and 6;(n; a, b) > 0.
(3) From (2.2) we clearly see that
Ans1 Aoy (m+a)(n+b) Cn+a)n+b)2n+1+a)2n+1+0b)

A, Ay  (@+b+n)n+1) (@+b+2n)Q2n+ Da+b+2n+ DH2n+2)

AIMS Mathematics Volume 5, Issue 6, 6479-6495.
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_ abo,(n; a, b) ’ (2.5)
2+ D2n+ Da+b+n)a+b+2n)(1+a+b+2n)
where
8y(n;a,b) = (a+b)(1 +a+b—ab)+[3(1 +2a+2b) +a+b—abln+43 +a+ bn* + 8n’.
Combining this with @ + b > ab and (2.5) yields the desired result. O

Lemma 2.3. Let a,b > 0 with a + b > 6ab/5 and p,(a,b) = (1 + 0)A,12 — 2(@y + 7)Aoz — 2A0,44.
Then p,(a,b) > 0 forn > 2.

Proof. Let p,(a,b) = (1 + 0)A,+2 — 2As,+4. Then Remark 1.2 makes us to know that the sign of oy + 7
can not be determined. We divide into two cases to complete the proof by mathematical induction.

Case 1 a( + 7 < 0. It suffices to show that p,(a, b) > 0 for n > 0.
From the definition of A,, we compute that

a*(a + Db*(b + Dn(a, b)
12(a+ b +a+b)2+a+b)3+a+b)

pola, b) = (2.6)

where
n(a,b) =36+ 17a+a* + (17 + 2a — a>)b + (1 — a)b*.

It follows from 0 < a < 1 that n(a, b) > 0. For a > 1, we clearly see that n(a, b) > 0 from (1.5) and
Lemma 2.1 together with

5a 6[24+212(a— 1)+ (a—1)*(338 + 104a+a2)]
77( ) = > 0.

“6a->5 (6a—5)
This in conjunction with (2.6) yields py(a, b) > 0.

We assume that pi(a, b) > 0, namely, (1 + o)A > 2As44 for k > 0. By the induction hypothesis,
it follows from Lemma 2.2(3) and n = k + 2 that

. A A
Prei(a,b) = (1 + ) A - A"” ~ 2A0k46 > 2A0pa - — = 2Agpag
k+2 k+2
A3 A2k+6)
=2A —_— - > 0.
2l (Ak+2 A2k+4
This completes the proof of Case 1.
Case2 ap+71>0.
By simple calculations, p,(a, b) can be simplified as
ab [T o(a+ 1) [Too(b + J) !
pa(a,b) = . — — " a(a)l, 2.7)
60480(a + b) [[ip(a + b +1) szo(a +b+ j) =

where

e(a) = 2a(l + a)(2 + a)(823200 + 465754a + 87277a* + 55464> + 23a™),

AIMS Mathematics Volume 5, Issue 6, 6479-6495.
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e1(a) = 3292800 + 107820324 + 13070784a> + 72041784’

+2041437a* + 3138594° + 255394° + 8914,
&(a) = 6802216 + 13070784a + 83419524 + 1941253a> + 24744* — 670794 — 99024° — 4584’
e3(a) = 4790032 + 7204178a + 19412534> — 8966624°

—577922a* — 121105a° — 11511a° — 4234’
es(a) = 1477354 + 2041437a + 2474a* — 577922a° — 227680a* — 36779a° — 25884° — 564’,
es(a) = 207922 + 313859a — 670794* — 1211054 — 36779a* — 4330a° — 16845,
€s(a) = 11230 + 25539a — 99024 — 115114’ — 25884 — 168a°,
e(a) = (1 — a)(46 + 937a + 4794° + 56a°).

Obviously, it follows that €(a) > 0,€(a) > 0 fora > 0 and €(a) > 0 for 0 < a < 1 and &(a) < 0

for 1 < a < 5/3. Moreover, (a) (k = 2,3,---,6) is the special polynomial defined in Lemma 2.1.
It follows from Lemma 2.1 and
130507213472 952529672 166616512
62(5/3) - 2187 2 63(5/3) - 81 9 64(5/3) —_— _W’
87250384 1326560
&(5/3) = T a3 €(5/3) = 7

that e2(a) > 0, €3(a) > 0 for 0 < a £ 5/3 and there exits a; € (0,5/3) (k = 4,5, 6) such that €(a) > 0
for 0 < a < a; and €(a) < 0 for a; < a < 5/3. The roots a; can be computed numerically as follows
ay =1.65774--- > a5 =1.41613--- > ag = 1.22785--- > 1. So

e for 0 < a < 1, then it follows that Y] _; e(a)b* > 0;

e for 1 < a < 5/3, then we can consider the following intervals (1, ag], (as, as], (as, a4], (as,5/3]
and ZZZO €(a)b* can be regarded as the special polynomial defined in Lemma 2.1 on each such
interval, which yields ZZ=0 e(@)b* > 0 following from (1.5) and Lemma 2.1 together with

7 k
724
kzz(;ek(a)( — 5) Gz 5)7[48(295386449(a—1) + 15384558(a” — 1) + 1526700a’)

+ (a — 1)’(12215090768 + 171081732004 + 87697809824 + 38255483864°(a — 1)
+ 108719648354 + 18178058803a° + 67415093854° + 10474769094’
+ 640854844° + 772338a9)] > 0.

This in conjunction with (2.7) implies p,(a, b) > 0.
Suppose that pi(a, b) > 0 for k > 2. We now prove that p;,(a, b) > 0.

The induction hypothesis enables us to know that
(1 + 0)Ar2 > 2(@o + T)Agisa + 2A0144. (2.8)

It follows from Lemma 2.2(2) and (3) with n = k + 2 that

Az Aoea Az Aogae
- - > 0.

Arva Aoksa Akva Aopas
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This in conjunction with (2.8) yields

A
Prs1(@,b) = (1 + Az - == = 2(a0 + TAsirs — 2016
k+2
JAVER
> [2(ap + T) Ao + 2A0144] - A 2(ag + T)Asrs — 200146
k+2
A2k+2 (Ak+3 A2k+4) (Ak+3 A2k+6 )]
=2A (g +7) - + - > 0.
S Aopra \Arr2 Aopir Arvo Aokss
O
Lemma 2.4. Leta,b > Qwitha+ b > 6ab/5 and
Ay = Apir — @Aopi — TA2yi — Aoy,
B, = 0Api2 — @pAopir — TA2pi3 — Aoyys.
Then (i) A, > 0; (ii) A, + B, > 0 for n > 0.
Proof. (i) By Lemma 2.2(2) and Bernoulli’s inequality we know that
Az _Duz B Doy | ( A )”‘1 _ [ ,a+b-ab+2n|"
Aot Az Apa At \Aopn (a+2n)(b + 2n)
514 (n=1)(a+b—ab+2n)
(a+2n)(b+2n)
for n > 2. This in conjunction with (2.2) and the monotonicity of A, with respect to n gives
A, A, Ay, Ay, A, Ay,
— +2 —a0—72+2— 2+4Z +2 —a'o—(‘l'+1) 2n+2
Aoni1 Doy Aopit Dopsr — Aopig 2+l
>1+(n—1)(a+b—ab+2n) (t+D@+2n+1DHb+2n+1)
— a —
= (a + 2n)(b + 2n) 0 (a+b+2n+ 1)2n+2)
(n—1)(a+b—ab+2n) (t+D@+2n+1DHb+2n+1)
— a —
= T @+b+2n+ D2n+2) (a+b+2n+ 1)2n+2)
os(n;a,b
_ 3(nya,b) (2.9)

12(a+ b1 +a+b)2+a+b)1+n)(l+a+b+2n)

where 83(n; a, b) = {o(a, b) + 1(a, b)n + La(a, byn? and o(a, b) = Yo @), Li(a,b) = T e(@)bt,
&la,b) = Yy sp(@)b*, and

ey(a) = 6a*(1 + a)2 +a), &)(a) = a(24 + 56a + 294> + 4a’ + a*),

0 1

g)(a) = 2(6 + 28a + 17a* — 4a’ — 2a*), &3(a) = 18 + 29a — 8a* — 224’ — 10a* - &,
g)(a) =23 +2a-2a* - 5a° —a*), &Xa) = a(l - a)(l +a),

gy(@) = 6a°(1 + a)2 +a), &|(a) = 2a*(18 + 28a + 3a* - 4a°),

&y(a) = 2a(18 + 20a — 12a* — 8a’ + 3a"), &3(a) = 2(6 + 28a — 12a*> — 264> — 3a"* - 2a°),
gy(a) = 2(9 +3a - 8a* - 3a’ — 4a"), ei(a) =21 -a)3-a+2d%),
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gx(a) = 12a°(1 + a)2 + a), &(a) = 4a[12 + 25a + a*(9 - a)],

g3(a) = 4[6 + 25a + a*(3a* —a + 6)], &5(a) = 3(3 +a+a’)[7+2(5-3a)2+3a),
4

£ila) = 125

[(5 —3a)(75 + 20a + 87d%) + 11a3] .

From the above expressions, we clearly see that {>(a,b) > 0 for 0 < a <5/3 and b > 0. Moreover,

2{(a,b) + 1(a, b)
=6a°(1 + a)(2 + a)(4 + a) + 2a[48 + 118a + 464> + a*(2 — a) + 4a*(4 — a»))b
+2[24 + 118a + 12a* + 16a*(2 — a) + 4a* + 3a°1b*
+2(42 + 64a — 164° — 264> — 11a* - 2a°)b* + 221 — a + 4d®> — 11a° — 4a*)b*
+2(1 —a)(3 —a+2aH)b°,
which gives 2{5(a, b) + {1(a,b) > 0 for 0 < a < 1. By the same argument as in Case 2 of Lemma 2.3,

24 (a, b)+{(a, b) can be regarded as the special polynomial of b defined in Lemma 2.1 for 1 < a < 5/3,
which implies 245 (a, b) + {(a, b) > 0 from Lemma 2.1 and

oar 5a vala 5a '\ 124*
" 6a-5)"""\"6a=5) (6a-5)

+ (a — 1)*(32043 + 6028a + 20528a” + 144724° + 768a4)] > 0.

[23168(a — 1) + 2940a

From the above discussion, we clearly see that for n > 2,

63(n;a,b) = n[28(a,b) + £1(a,b)] + {y(a, b) = 2[24(a, b) + &1 (a, b)] + Lo(a, b)
= 6a*(1 + a)(2 + a)(9 + 2a) + 3a[72 + 176a + 754> + 54*(4 — a*)]b
+6[18 + 88a + 11a° + 124*(2 — a) + 2a* + 2a°1b*
+3(62 + 95a — 24a*> — 42a° — 184* — 3a°)b® + 6(15 + 24> — 9a° — 3a*)b*
+3(1 —a)4 — a+3a>b = {(a,b). (2.10)

Similarly, it follows from (2.10) that Z(a, b)>0for0<ac<1and Z(a, b)>0for1l <a<5/3from
Lemma 2.1 and

5 5a 1084*
{la =
6a—5)  (6a-5)

[652 +(a- 1)(1098(a3 - 1)+ 5202a
+2908a*(a* — 1) + 3384° + 11a* + 189a5)] > 0.

This in conjunction with (2.9) and (2.10) implies that A, > 0 for n > 2.

It remains to verify the sign of Ay and A;. We only give the details of calculations for Ay and similar
for A;.

By the definition of A,, Ay can be rewritten as

B a(l + a)b(1 + b)ly(a, b)
T 8a+ bRl +a+bP?Q2+a+b)3B+a+b)

Ao
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where

Lo(a,b) = 2a°(1 + a)(2 + a)3 + a) + a[24 + 70a + 51a* + 64> + a*>(2 — a)1b
+[2(6 — a) + 2d° + a(18 + 13a + a®)(4 — a»)]b* + (22 + 51a — 14d® - 24a® - 3a*)b*
+ (12 + 8a — 13a* = 3a>)b* + (1 — a)(2 + a)b°.

The same argument as in (2.10) enables us to know that Zo(a, b)>0for0<a<1and Zo(a, b)>0
for 1 < a <5/3 from Lemma 2.1 and

%la Sa_\__12& 834 + (a - 1)(334 + 21340 + 2301a*(@ - 1)
"\ 6a-5]" (6a-5)

+ 17224 + 29524* + 306a5)] > 0.

(i1) We first verify the sign of Ay + By and A; + B;. Since the method is similar as above, we only
give some necessary expression for Ay + By and then similar for A, + B;.
By calculations, we obtain

a(l + a)b(1 + b)t,(a, b)

Ao+ By = ,
0 B 0@+ by +a+ b2 +a+b)B3+a+byd+a+bh)

where

li(a,b) = 6a°(1 + a)(2 + a)(3 + a)(4 + a) + a(288 + 2580a + 3836a* + 19194> + 358a* + 194°)b
+ 2+ a)(3 + )24 +410a + 431a* + 2a*(2 — a)(18 + Ta)|b*
+ (300 + 38364 + 28774 — 666a° — 8694* — 187a° — 11a°)b°
+ (210 + 1919a + 3794 — 869> — 346a* — 33a°)b*
+ (60 + 358a — 78a* — 187a° — 33a*)b° + (1 — a)(2 + a)(3 + 11a)b°.

We can compute easily that 21 (a,b) >0forO0<a<1and Zl (a,b) >0for1 < a <5/3 from Lemma
2.1 and

2 a Sa_\_ _36d' 59520 + (a - 1)(32020 + 1640204 + 3676704
"M 6a-5]" (6a-5)

+ a’(a — 1)(1030750 + 709949a) + 426724° + 1790164° + 7446a7))] > 0.

For n > 2, it follows from @y < 0 and Lemma 2.3 together with the monotonicity of A, with respect
to n that

A, + B, = (1 +0)A0 — ao(Agpsr + Agpin) — T(Agpia + Agyi3) — (Agpsa + Agpys)
> (1 +0)An2 — 2(0 + T)Aopiz — 209,14
= pn(a,b) > 0.

O
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Lemma 2.5. Leta,b > 0 witha + b > ab and
Cn = O-An+l _ﬁOAZn - TA2n+1 - A2n+3’
D, = Aviz = BoAsus1 — TAopiz — Aoy,
Then (i) C, < 0; (ii) C, + D,, < 0 forn > 0.
Proof. (1) By calculations, we obtain

_a(l +a)b(1 +b)[(a+b)4+3a+3b)+2(a+b+3)a+b—ab)] -

Co = 6(a+b(1+a+b)2+a+b)

0. (2.11)

The relation o = By + T allows us to rewrite C,, as

Cn = (Bo + 1)Ansi1 — BoAoy — TArps1 — Agps3

2n 2n+1 A
:ﬁO An+1_ AZn +7T An+1_ A2n+1 +Cn9
n+1 n+1
where .
A n-— n
C, = Aoy + ——TAs01 — Aoy,
n+1ﬁ0 20+ 7 Thourt = Ao

From Lemma 2.2(1) it suffices to show C, < 0 for n > 1.
Forn > 1, Lemma 2.2(1) and 7,8, > 0 together with the monotonicity of A, with respect to n lead
to

N -1
C, < (n Po + - T)AZn_A2n+3

n+1 n+1
n—1 n 2n+3 Ax
< A2n+3 (n T 1ﬁ0 + T 1T) n - 1] = A2n+3Cn. (212)
Simplifying C " gives rise to
ol ! |3a(1 + a)b(1 + b)
= - a a
" 4(a+b)(1 +a+b)n(l +n)

+4xa+b+nw+b—am+a%ﬁn+«1+a+mm+b—amﬁ]<Q

This in conjunction with (2.11) and (2.12) completes the proof of (1).

(i1) For n > 0, it follows from Lemma 2.2(1) and o = 7 + 8, together with the monotonicity of A,
with respect to n that

Ch+ D, =M1+ Apia = Bo(Aoy + Appit) — T(Aopst + Aopin) — (Agpis + Agyia)
< 0Dt + Apy = 2(7 + o) Aoy — 2044
= 0(Aps1 — 200042) + Ay — 200,44 < 0.

This completes the proof. O
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3. Proof of Theorem 1.1

Proof. Define
vap(r) = +or)F(a,b;a + b; ) — (1+ ™+ aor3)F(a, b;a+b;r)

and
Gap(r) = (1 + or)F(a,b;a + by r*) — (1 + 1% + Bor’)F(a, b;a + b; r).

In order to prove the inequalities (1.6) is valid, it suffices to show ¢,,(r) > 0 and ¢,,(r) < O for
re (0,1).
From (2.1), we can rewrite ¢, ,(r) and ¢,,(r), in terms of power series, as

Pap(r) = (1 + w)Z A = (1417 + aor3)z A
n=0 =0

:}"4

DA+ Bnr)rZ”] : 3.1)
n=0

Gap(r)=(1+07) Z A" = (1 + 177 + Bor) Z A, r"
n=0 n=0

:}"3

DC+ Dnr)rz”} : 3.2)

n=0

where A,, B, and C,, D,, are defined in Lemma 2.4 and Lemma 2.5, respectively.
From (3.1) and (3.2), we only need to prove that A, + B,r > 0 and C,, + D,,r < O for r € (0, 1) and
n>0.

Casel A, + B,r > 0.

e If B, > 0, then it follows from Lemma 2.4(i) that A, + B,r > A,, > 0 for r € (0, 1);
e If B, < 0, then Lemma 2.4(ii) enables us to know that A, + B,r > A, + B, > 0 for r € (0, 1).

Case2 C,+D,r <0.

e If D, <0, then it follows from Lemma 2.5(i) that C, + D,r < C, < 0 for r € (0, 1);
e If D, > 0, then from Lemma 2.5(ii) we clearly see that C,, + D,r < C,, + D,, < 0 for r € (0, 1).

We are now in a position to prove @ and S, are the best possible constants.
Let
(1 +or)F(a,b;a+ b;r*) — (1 + tr})F(a,b;a + b; 1)

(0] =
ab(r) r*F(a,b;a+ b;r)

(3.3)
Then we clearly see that

ab(a+ 1) (b + 1) [a(z +a)+(1-a)2+a)b+ (1 - a)bz]
3a+ba+b+ Da+b+2) G

abla+ 1)(b+1)

2@+ b)(1+a+b) =bo.

lir£1+ D, p(r) = -

lil‘{l_ D, p(r) =
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For oy < ¢ < By, then it follows from (3.4) that there exist sufficiently small ry, r, € (0, 1) such that
®,,(r) <cforre(0,r)and ®,,(r) > c forr € (1 — ry, 1). In other words,
F(a,b;a+b;r2)< 1+71r*+cr
F(a,b;a+ b;r) 1+or, re,ry)

and b b 2 2 3
Fla,b;a+b;r) 1+71r +cr
€(1—r,1).
Fabarbn ~  d+or o 07D
This completes the proof of Theorem 1.1. O

Remark 3.1. In the proof of Theorem A [44], the parameters a and b are required to meet the condition
that a + b > ab, although this is still more relaxed than our parameter’s condition a + b > 6ab/5 in
Theorem 1.1.

It is natural to ask that can our parameter’s condition be relaxed to a + b > ab? From Lemma 2.5,
we clearly see that the upper bound in Theorem 1.1 still holds for @ + b > ab but the lower bound is
not true. The reason is that Ag(a, b) < 0 for 3/2 < a < 3 and a + b = ab. More precisely,

a ) - a*)(2a — 1)[(3 — a)2a — 3)(43a® + 72a — 72) + 5a*] <0

- 648(a® +a— 1)*(a? + 2a — 2)(a® + 3a — 3)
for 3/2 < a < 3. By the continuity, it follows from (3.1) that there exists a sufficiently small r,; € (0, 1)
such that ¢, ;(r) < O for r € (0,r,;) when a and b lie in a very narrow strip near the curve segment

{(a,b)| 3/2 < a < 3,a+ b = ab}). We focus on the condition that a + b > 6ab/5 just to make the
calculation simpler. Of course, one can give some refinements for our parameter condition.

Ag (a,

a-—1

To this end, numerical experiment results allow us to pose the following conjecture.

Conjecture. Leta,b > 0 witha + b > 6ab/5 and @, ,(r) be defined as in (3.3). Then @, ;,(r) is strictly
increasing from (0, 1) onto (ay, By).

4. Discussions

This paper deals with the zero-balanced hypergeometric function ,F(a, b;a + b; r). In this study,
we present an elegant double inequality for ,F(a, b;a + b; ) /2F\(a,b;a + b;r), which gives some
refinements for some previously known results and also answers to the question by Ismail in the affir-
mative.

5. Conclusions

In this paper, we have established a sharp double inequality involving the ratio of zero-balanced
hypergeometric function ,F(a, b;a + b; r*)/,F\(a, b; a + b; r). More precisely, the double inequality
1+ 12 + apr® - F(a,b;a+b;r*) 1 +7'r2+,80r3
1+or F(a,b;a+b;r) 1+or

holds for all r € (0, 1) with the best possible constants @, and Sy, where

ab T_ab(a+b—ab+1)
a+b’  2a+ba+b+1)
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MW+D@+DPQ+M+U—MQ+@hMLwMﬂ

0= 3a+b2a+b+)a+b+2) ’
5 = ab(a + 1)(b + 1)
T 2a+b)(1+a+b)
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