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1. Introduction

A time delay widely exists in many fields such as chemistry, biology, industry, and so on. Since a
time delay arising in a system may cause instability, the stability analysis of time-delay systems has
been wildly studied in the past few decades [1,2]. The main purpose is paid to determine the admissible
delay, for which the systems remain stable.

It is well known that the LKF method has been widely used to obtain stability conditions for
time-delay systems [3, 4]. The main purpose of the LKF method is to estimate the integral term
arising in the time derivative of double integral term in the LKF. Therefore, to get less conservative
stability criteria, many integral inequality methods are derived. Those inequality methods include
Jensen inequality [5, 6], Wirtinger inequality [7–9], double integral inequlity [10–12], various
improved integral inequalities [13–26]. The Jensen inequality expressed as
Vab(ẏ) =

∫ b

a
ẏT (t)Rẏ(t)dt ≥ 1

b−aΩT
0 RΩ0 = VJensen, where a < b,R = RT > 0,Ω0 = y(b) − y(a). The

Wirtinger-based inequality expressed as Vab(ẏ) ≥ VJensen + 3
b−aΩT

1 RΩ1 = VS euret, where
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Ω1 = y(b) + y(a) − 2
b−a

∫ b

a
y(t)dt. The further improved inequality expressed

asVab(ẏ) ≥ VS euret + 5
b−aΩT

2 RΩ2, Vab(ẏ) ≥ VS euret + 5
b−aΩT

2 RΩ2 + 7
b−aΩT

3 RΩ3,
Vab(ẏ) ≥ VS euret + 5

b−aΩT
2 RΩ2 + 7

b−aΩT
3 RΩ3 + 9

b−aΩT
4 RΩ4 in [13–15], respectively, where Ω2,Ω3,Ω4 are

defined in Lemma 4 [15]. However, these results only estimate the integral term arising in the time
derivative of double integral term in the LKF. This paper presents a generalized double integral
inequality which includes those in [10–12] as special cases. A new stability criterion is proposed by
choosing a new LKF and using the generalized double integral inequality. Both the generalized
integral inequality and the new LKF include fourth integrals, which may yield less conservative
results. Two examples are introduced to show the effectiveness of the proposed criterion. The
contributions of our paper are as follows:
• The integral −

∫ b

a

∫ b

u
ẋT (s)Pẋ(s)dsdu is estimated as−

∫ b

a

∫ b

u
ẋT (s)Pẋ(s)dsdu ≤ ζTωζ, where ω and

ζ are defined in Lemma 3. The above inequality includes those in [10–12] as special cases.
• Both the new double integral inequality and the new LKF include fourth integrals, which may

obtain more general results.
Notation: See Table 1.

Table 1. Nomenclature.

S n
+ → the set of n × n symmetric positive definite matrices
Rm → m-dimensional Euclidean space
A> → The transpose of the A matrix
S ym(P)→ P + P>, For any square matrix P
0→ A zero matrix with appropriate dimensions

2. Preliminary

Consider the time delay systems as

ẏ(t) = Ay(t) + By(t − h) + C
∫ t

t−h
y(s)ds (2.1)

y(t) = φ(t), t ∈ [−h, 0] (2.2)

where y(t) ∈ Rn is the state vector, h > 0 is constant time-delay and the initial condition φ(t) is a
continuous function.
Lemma 1. [15] For a matrix P ∈ S n

+, and any continuously differentiable function x : [a, b] −→ Rn,
then we can obtain ∫ b

a
ẋT (s)Pẋ(s)ds ≥

1
b − a

4∑
i=0

(2i + 1)ΩT
i PΩi (2.3)

where

Ω0 = x(b) − x(a)
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Ω1 = x(b) + x(a) −
2

b − a

∫ b

a
x(t)dt

Ω2 = x(b) − x(a) +
6

b − a

∫ b

a
x(t)dt −

12
(b − a)2

∫ b

a

∫ b

u
x(t)dtdu

Ω3 = x(b) + x(a) −
12

b − a

∫ b

a
x(t)dt +

60
(b − a)2

∫ b

a

∫ b

u
x(t)dtdu −

120
(b − a)3

∫ b

a

∫ b

u

∫ b

v
x(t)dtdvdu

Ω4 =x(b) − x(a) +
20

b − a

∫ b

a
x(t)dt −

180
(b − a)2

∫ b

a

∫ b

u
x(t)dtdu +

840
(b − a)3

∫ b

a

∫ b

u

∫ b

v
x(t)dtdvdu

−
1680

(b − a)4

∫ b

a

∫ b

u

∫ b

v

∫ b

β

x(t)dtdβdvdu

Lemma 2. [27] For a positive define matrix P ∈ S n
+, a integrable function {x(s) |s ∈ [a, b] }, and any

auxiliary functions { fi(s) |i ∈ [0, n], s ∈ [a, b] , f0(s) = 1} satisfying
∫ b

a

∫ b

u
fi(s) f j(s)dsdu = 0,

(0 ≤ i, j ≤ n, i , j) with fi(s) , 0, i = 1, 2, · · · , n. Let λi ∈ Rn×k, i = 0, 1, · · · , n and a vector ζ ∈ Rk,
such that

∫ b

a

∫ b

u
fi(s)x(s)dsdu = λiζ. Then for any matrices Mi ∈ Rk×n(i = 0, 1, · · · , n), the following

inequality holds

−

∫ b

a

∫ b

u
xT (s)Px(s)dsdu ≤ ζT

 n∑
i=0

∫ b

a

∫ b

u
f 2
i (s)dsduMiP−1MT

i +S ym

 n∑
i=0

Miλi


 ζ (2.4)

Proof. Define M =
[

MT
0 MT

1 · · · MT
n

]T
, ξ(s) =

[
f0(s)ζT f1(s)ζT · · · fn(s)ζT

]T
.

It is easy to obtain that

−2ξT (s)Mx(s) ≤ ξT (s)MP−1Mξ(s) + xT (s)Px(s) (2.5)

Integrating the inequality (2.5) from [a, b] × [u, b] yields

− 2ζT
n∑

i=0

Mi

∫ b

a

∫ b

u
fi(s)x(s)dsdu

≤ζT

 n∑
i=0

∫ b

a

∫ b

u
f 2
i (s)dsduMiP−1MT

i

+2
n∑

i=0

n∑
j=i+1

∫ b

a

∫ b

u
fi(s) f j(s)dsduMiP−1MT

i

 ζ
+

∫ b

a

∫ b

u
xT (s)Px(s)dsdu

=ζT

 n∑
i=0

∫ b

a

∫ b

u
f 2
i (s)dsduMiP−1MT

i

 ζ
+

∫ b

a

∫ b

u
xT (s)Px(s)dsdu

(2.6)
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This completes the proof.
Lemma 3. For a differential function x : [a, b] → Rn, a matrix P ∈ Rn

+, a vector ζ ∈ Rk, and any
matrices Mi ∈ Rk×n(i = 1, 2, 3, 4), then the following inequality holds:

−

∫ b

a

∫ b

u
ẋT (s)Pẋ(s)dsdu ≤ ζTωζ (2.7)

where

ω =
(b − a)2

2

(
M1P−1MT

1 +
1
2

M2P−1MT
2 +

1
3

M3P−1MT
3 +

1
4

M4P−1MT
4

)
+ (b − a)S ym(M1λ1 + M2λ2 + M3λ3 + M4λ4)

λ1ζ = x(b) −
1

b − a

∫ b

a
x(s)ds

λ2ζ = x(b) +
2

b − a

∫ b

a
x(s)ds −

6
(b − a)2

∫ b

a

∫ b

u
x(s)dsddu

λ3ζ =x(b) −
3

b − a

∫ b

a
x(s)ds +

24
(b − a)2

∫ b

a

∫ b

u
x(s)dsdu

−
60

(b − a)3

∫ b

a

∫ b

u

∫ b

v
x(s)dsdvdu

λ4ζ =x(b) +
4

b − a

∫ b

a
x(s)ds −

60
(b − a)2

∫ b

a

∫ b

u
x(s)dsdu

+
360

(b − a)3

∫ b

a

∫ b

u

∫ b

v
x(s)dsdvdu

−
840

(b − a)4

∫ b

a

∫ b

u

∫ b

v

∫ b

β

x(s)dsdβdvdu

Proof. The result can be easily obtained by choosing n = 3, f1(s) = 3
b−a

(
s − 2b+a

3

)
,

f2(s) = 10
(b−a)2

[(
s − 3b+2a

5

)2
−

3(b−a)2

50

]
, f3(s) = −4 + 30 s−a

b−a − 60
(

s−a
b−a

)2
+ 35

(
s−a
b−a

)3
in (2.4). So the details

of proof is omitted.
Remark 1. The inequality (25) of Lemma 5.1 in [10] is a special case of Lemma 3 by setting
M1 = − 2

b−aλ
T
1 R, M2 = − 4

b−aλ
T
2 R, M3 = 0, and M4 = 0. The inequality (4) of Lemma 2.3 in [11] is a

special case of Lemma 3 by setting M1 = − 2
b−aλ

T
1 R, M2 = − 4

b−aλ
T
2 R, M3 = − 6

b−aλ
T
3 R, and M4 = 0. In

addition, the inequality (12) of Lemma 5 in [12] is a special case of Lemma 3 by set ting
M1 = − 2

b−aλ
T
1 R, M2 = − 4

b−aλ
T
2 R, M3 = − 6

b−aλ
T
3 R, and M4 = − 8

b−aλ
T
4 R.
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3. Results

Based on Lemma 1 and Lemma 3, a new stability condition can be obtained.

Theorem 1. System (1) is asymptotically stable if there exist matrices P ∈ S 5n
+ , R1,R2,R3 ∈ S n

+, and
any matrices M1,M2,M3,M4 ∈ R6n×n such that

Ψ =S ym(ΠT
1 PΠ2) + δT

1 R1δ1 − δ
T
2 R1δ2 + h2δT

0 R2δ0 +
h2

2
δT

0 R3δ0 − ΠT
3 R2Π3 − 3ΠT

4 R2Π4 − 5ΠT
5 R2Π5

− 7ΠT
6 R2Π6 − 9ΠT

7 R2Π7 +
h2

2

(
M1R−1

3 MT
1 +

1
2

M2R−1
3 MT

2 +
1
3

M3R−1
3 MT

3 +
1
4

M4R−1
4 MT

4

)
+ hS ym(M1Π8 + M2Π9 + M3Π10 + M4Π11) < 0

(3.1)

where
Π1 =

[
δT

1 δT
3 δT

4 δT
5 δT

6

]T
,

Π2 =
[
δT

0 δT
1 − δ

T
2 hδT

1 − δ
T
3

h2

2 δ
T
1 − δ

T
4

h3

6 δ
T
1 − δ

T
5

]
,

Π3 = δ1 − δ2,
Π4 = δ1 + δ2 −

2
hδ3,

Π5 = δ1 − δ2 + 6
hδ3 −

12
h2 δ4,

Π6 = δ1 + δ2 −
12
h δ3 + 60

h2 δ4 −
120
h3 δ5,

Π7 = δ1 − δ2 + 20
h δ3 −

180
h2 δ4 + 840

h3 δ5 −
1680

h4 δ6,
Π8 = δ1 −

1
hδ3,

Π9 = δ1 + 2
hδ3 −

6
h2 δ4,

Π10 = δ1 −
3
hδ3 + 24

h2 δ4 −
60
h3 δ5,

Π11 = δ1 + 4
hδ3 −

60
h2 δ4 + 360

h3 δ5 −
840
h4 δ6,

δ0 = Aδ1 + Bδ2 + Cδ3,
δi =

[
0n×(i−1)n In 0n×(7−i)n

]
, i = 1, 2, · · · , 6.

Proof. Introduce a LKF as

V(yt) =ζT (t)Pζ(t) +

∫ t

t−h
yT (s)R1y(s)ds + h

∫ t

t−h

∫ t

u
ẏT (s)R2ẏ(s)dsdu

+

∫ t

t−h

∫ t

u

∫ t

v
ẏT (s)R3ẏ(s)dsdvdu

(3.2)

where
ζ(t) =

[
yT (t)

∫ t

t−h
yT (s)ds vT

1 (t) vT
2 (t) vT

3 (t)
]T

vT
1 (t) =

∫ t

t−h

∫ t

u1
yT (s)dsdu1

vT
2 (t) =

∫ t

t−h

∫ t

u1

∫ t

u2
yT (s)dsdu2du1

vT
3 (t) =

∫ t

t−h

∫ t

u1

∫ t

u2

∫ t

u3
yT (s)dsdu3du2du1
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Then, the time derivative of V(yt) along the trajectories of system (1) as follows

V̇(yt) =2ζT (t)Pζ̇(t) + yT (t)R1y(t) − yT (t − h)R1y(t − h) + h2ẏT (t)R2ẏ(t) +
h2

2
ẏT (t)R3ẏ(t)

− h
∫ t

t−h
ẏT (s)R2ẏ(s)ds −

∫ t

t−h

∫ t

u
ẏT (s)R3ẏ(s)dsdu

=ηT (t)
{
S ym(ΠT

1 PΠ2) + δT
0 Qδ0 − δ

T
7 Qδ7 +δT

1 R1δ1 − δ
T
2 R1δ2 + h2δT

0 R2δ0 +
h2

2
δT

0 R3δ0

}
η(t)

− h
∫ t

t−h
ẏT (s)R2ẏ(s)ds −

∫ t

t−h

∫ t

u
ẏT (s)R3ẏ(s)dsdu

(3.3)

where

η(t) =
[

yT (t) yT (t − h)
∫ t

t−h
yT (s)ds vT

1 (t) vT
2 (t) vT

3 (t)
]T

By Lemma 1, we have

− h
∫ t

t−h
ẏT (s)R2ẏ(s)ds

≤ηT (t)
(
−ΠT

3 R2Π3 − 3ΠT
4 R2Π4 − 5ΠT

5 R2Π5 − 7ΠT
6 R2Π6 − 9ΠT

7 R2Π7

)
η(t)

(3.4)

By Lemma 3, we have

−

∫ t

t−h

∫ t

u
ẏT (s)R3ẏ(s)dsdu

≤ηT (t)

h2

2

4∑
i=1

1
i

MiR−1
3 MT

i + hS ym(
4∑

i=1

MiΠi+7)

 η(t)
(3.5)

Thus, according to (3.2)–(3.5), we have V̇(yt) ≤ ηT (t)Ψη(t). Thus, if (3.1)holds, then, for a sufficient
small scalar ε > 0, V̇(yt) ≤ −ε ‖y(t)‖2 holds, which ensures system (1) is asymptotically stable. The
proof is completed.
Remark 2. Both the double integral inequality and the new LKF include fourth integrals, which may
yield novel stability results. Furthermore, in order to fully consider relevant information of the double
integral inequality in Lemma 3, the

∫ t

t−h

∫ t

u1

∫ t

u2

∫ t

u3
yT (s)dsdu3du2du1 is added as a state vector.

4. Numerical examples

In this section, we demonstrate the advantages of our proposed criterion by two numerical examples.
Example 1. Consider system(1) with:

A =

[
0.2 0
0.2 0.1

]
, B =

[
0 0
0 0

]
, C =

[
−1 0
−1 −1

]
.

Table 2 lists the allowable upper bounds of h by different methods. Table 2 shows that the maximum
delay bounds of h obtained by our method are much larger than those in [4, 6, 7, 9, 11].
Example 2. Consider system(1) with:

A =

[
0 1
−100 −1

]
, B =

[
0.0 0.1
0.1 0.2

]
, C =

[
0 0
0 0

]
AIMS Mathematics Volume 5, Issue 6, 6448–6456.
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Table 2. Maximal bound h for Example 1.

methods Maximal h NoDv
[7] 1.877 16
[9] 1.9504 59
[4] 2.0395 75
[6] 2.0395 27
[11] 2.0402 45
Theorem 1 2.0412 64

Table 3 lists the allowable upper bounds of h by different methods. Table 3 shows that the maximum
delay bounds of h obtained by our method are much larger than those in [4,7,9–11,14]. For h = 0.750,
y(0) = (0.001,−0.001)T , the state trajectories of the system(1) is given in Figure 1.

Remark 3. According to Example 1 and Example 2, although our method can reduce the conservatism
of the system effectively, it increases the computational burden.

Table 3. Maximal bound h for Example 2.

methods Maximal h NoDv
[7] 0.126 16
[9] 0.126 59
[4] 0.577 75
[10] 0.577 96
[11] 0.675 45
[14] 0.728 45
Theorem 1 0.750 64

0 50 100 150 200 250 300 350 400 450 500
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0.002

0.004

0.006

0.008
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t
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y
1
(t)

y
2
(t)

Figure 1. the state trajectories of the system(1) of example 2.

AIMS Mathematics Volume 5, Issue 6, 6448–6456.



6455

5. Conclusion

This paper focus on a new stability condition for a class of time delay systems. By using two
generalized integral inequalities and a new augmented LKF, a new stability criterion is obtained. Both
the double integral inequality and the new LKF include fourth integrals, which may yield more general
results. Two numerical examples are proposed to show the effectiveness of the proposed criterion.
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