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1. Introduction

Modular metric spaces were introduced in [4, 5]. Behind this new notion, there exists a physical
interpretation of the modular. A modular on a set bases on a nonnegative (possibly infinite valued)
“field of (generalized) velocities”: to each time λ > 0 (the absoulute value of) an averge velocity
ωλ(ρ, σ) is associated in such that in order to cover the distance between points ρ, σ ∈ M, it takes
time λ to move from ρ to σ with velocity ωλ(ρ, σ), while a metric on a set stands for non-negative
finite distances between any two points of the set. The process of access to this notion of modular
metric spaces is different. Actually we deal with these spaces as the nonlinear version of the classical
modular spaces as introduced by Nakano [12] on vector spaces and modular function spaces
introduced by Musielack [11] and Orlicz [13]. In [1, 2] the authors have defined and investigated the
fixed point property in the context of modular metric space and introduced several results. For more
on modular metric fixed point theory, the reader may consult the books [7–9]. Some recent work in
modular metric space has been represented in [14, 15]. It is almost a century where several
mathematicians have improved, extended and enriched the classical Banach contraction principle [1]
in different directions along with variety of applications. In 1969, Kannan [6] proved that if X is

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2020411


6396

complete, then a Kannan mapping has a fixed point. It is interesting that Kannan’s theorem is
independent of the Banach contraction principle [3].

In this research article, fixed point problem for Kannan mappings in the framework of modular
metric spaces is investigated.

2. Basic Notation and Terminology

LetM , ∅. Throughout this paper for a function ω : (0,∞) ×M×M→ [0,∞], we will write

ωλ(ρ, σ) = ω(λ, ρ, σ),

for all λ > 0 and ρ, σ ∈ M.

Definition 1. [4, 5] A function ω : (0,∞) ×M ×M → [0,∞] is called a modular metric onM if
following axioms hold:

(i) ρ = σ⇔ ωλ(ρ, σ) = 0, for all λ > 0;
(ii) ωλ(ρ, σ) = ωλ(σ, ρ), for all λ > 0, and ρ, σ ∈ M;
(iii) ωλ+µ(ρ, σ) ≤ ωλ(ρ, ς) + ωµ(ς, σ), for all λ, µ > 0 and ρ, σ, ς ∈ M.
A modular metric ω onM is called regular if the following weaker version of (i) is satisfied

ρ = σ if and only if ωλ(ρ, σ) = 0, for some λ > 0.

Eventually, ω is called convex if for λ, µ > 0 and ρ, σ, ς ∈ M, it satisfies

ωλ+µ(ρ, σ) ≤
λ

λ + µ
ωλ(ρ, ς) +

µ

λ + µ
ωµ(ς, σ).

Throughout this work, we assume ω is regular.

Definition 2. [4, 5] Let ω be a modular onM. Fix ρ0 ∈ M. The two sets

Mω =Mω(ρ0) = {ρ ∈ M : ωλ(ρ, ρ0)→ 0 as λ→ ∞},

and
M∗

ω =M∗
ω(ρ0) = {ρ ∈ M : ∃λ = λ(ρ) > 0 such that ωλ(ρ, ρ0) < ∞}

are called modular spaces (around ρ0).

It is obvious thatMω ⊂ M
∗
ω but this involvement may be proper in general. It follows from [4, 5]

that if ω is a modular onM, then the modular spaceMω can be equipped with a (nontrivial) metric,
generated by ω and given by

dω(ρ, σ) = inf{λ > 0 : ωλ(ρ, σ) ≤ λ},

for any ρ, σ ∈ Mω. Ifω is a convex modular onM, according to [4,5] the two modular spaces coincide,
i.e. M∗

ω =Mω, and this common set can be endowed with the metric d∗ω given by

d∗ω(ρ, σ) = inf{λ > 0 : ωλ(ρ, σ) ≤ 1},

for any ρ, σ ∈ Mω. These distances will be called Luxemburg distances.
Following example presented by Abdou and Khamsi [1,2] is an important motivation of the concept

modular metric spaces.
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example 3. Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let P be a
δ-ring of subsets of Ω, such that E ∩ A ∈ P for any E ∈ P and A ∈ Σ. Let us assume that there exists
an increasing sequence of sets Kn ∈ P such that Ω =

⋃
Kn. By E we denote the linear space of all

simple functions with supports from P. By N∞ we will denote the space of all extended measurable
functions, i.e. all functions f : Ω → [−∞,∞] such that there exists a sequence {gn} ⊂ E, |gn| ≤ | f |
and gn(ω) → f (ω) for all ω ∈ Ω. By 1A we denote the characteristic function of the set A. Let
ρ : N∞ → [0,∞] be a nontrivial, convex and even function. We say that ρ is a regular convex function
pseudomodular if:

(i) ρ(0) = 0;
(ii) ρ is monotone, i.e. | f (ω)| ≤ |g(ω)| for all ω ∈ Ω implies ρ( f ) ≤ ρ(g), where f , g ∈ N∞;

(iii) ρ is orthogonally subadditive, i.e. ρ( f 1A∪B) ≤ ρ( f 1A) + ρ( f 1B) for any A, B ∈ Σ such that A∩ B ,
∅, f ∈ N ;

(iv) ρ has the Fatou property, i.e. | fn(ω)| ↑ | f (ω)| for all ω ∈ Ω implies ρ( fn) ↑ ρ( f ), where f ∈ N∞;
(v) ρ is order continuous in E, i.e. gn ∈ E and |gn(ω)| ↓ 0 implies ρ(gn) ↓ 0.

Similarly, as in the case of measure spaces, we say that a set A ∈ Σ is ρ-null if ρ(g1A) = 0 for every
g ∈ E. We say that a property holds ρ-almost everywhere if the exceptional set is ρ-null. As usual
we identify any pair of measurable sets whose symmetric difference is ρ-null as well as any pair of
measurable functions differing only on a ρ-null set. With this in mind we define

N(Ω,Σ,P, ρ) = { f ∈ N∞; | f (ω)| < ∞ ρ − a.e},

where each f ∈ N(Ω,Σ,P, ρ) is actually an equivalence class of functions equal ρ-a.e. rather than an
individual function. Where no confusion exists we will writeM instead of N(Ω,Σ,P, ρ). Let ρ be a
regular function pseudomodular.

(a) We say that ρ is a regular function semimodular if ρ(α f ) = 0 for every α > 0 implies f = 0 ρ−a.e.;
(b) We say that ρ is a regular function modular if ρ( f ) = 0 implies f = 0 ρ − a.e.

The class of all nonzero regular convex function modulars defined on Ω will be denoted by <.
Let us denote ρ( f , E) = ρ( f 1E) for f ∈ N , E ∈ Σ. It is easy to prove that ρ( f , E) is a function
pseudomodular in the sense of Def.2.1.1 in [10] (more precisely, it is a function pseudomodular with
the Fatou property). Therefore, we can use all results of the standard theory of modular function space
as per the framework defined by Kozlowski in [10], see also Musielak [11] for the basics of the general
modular theory. Let ρ be a convex function modular.

(a) The associated modular function space is the vector space Lρ(Ω,Σ), or briefly Lρ, defined by

Lρ = { f ∈ N ; ρ(λ f )→ 0 as λ→ 0}.

(b) The following formula defines a norm in Lρ (frequently called Luxemburg norm):

‖ f ‖ρ = inf{α > 0; ρ( f /α) ≤ 1}.

A modular function spaces furnishes a wonderful example of a modular metric space. Indeed, let
Lρ be modular function space.
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example 4. Define the function ω by

ωλ( f , g) = ρ

(
f − g
λ

)
for all λ > 0, and f , g ∈ Lρ. Then ω is a modular metric on Lρ. Note that ω is convex if and only if ρ is
convex. Moreover we have

‖ f − g‖ρ = d∗ω( f , g),

for any f , g ∈ Lρ.

For more examples readers can see [4, 5]

Definition 5. [1]

(1). A sequence {ρn} ⊂ Mω is ω-convergent to ρ ∈ Mω if and only if ω1(ρn, ρ)→ 0.
(2). A sequence {ρn} ⊂ Mω is ω-Cauchy if ω1(ρn, ρm)→ 0 as n,m→ ∞.
(3). A set K ⊂ Mω is ω-closed if the limit of ω1-convergent sequence of K always belongs to K.
(4). A set K ⊂ Mω is ω-bounded if

δω = sup{ω1(ρ, σ); ρ, σ ∈ K} < ∞.

(5). If any ω-Cauchy sequence in a subset K ofMω is a convergent sequence and its limit is in K,
then K is called an ω-complete.

(6). The ρ-centered ω-ball of radius r is defined as

Bω(ρ, r) = {σ ∈ Mω; ω1(ρ, σ) ≤ r},

for any ρ ∈ Mω and r ≥ 0.
Let (M, ω) be a modular metric space. In the rest of this work, we assume that ω satisfies the Fatou

property, i.e. if {ρn} ω-converges to ρ and {σn} ω-converges to σ, then we must have

ω1(ρ, σ) ≤ lim inf
n→∞

ω1(ρn, σn),

for any ρ ∈ Mω.

Definition 6. Let (M, ω) be a modular metric space. We define an admissible subset of Mω as
intersection of modular balls.

Note that if ω satisfies the Fatou property, then the modular balls are ω-closed. Hence any
admissible subset is ω-closed.

The heading levels should not be more than 4 levels. The font of heading and subheadings should
be 12 point normal Times New Roman. The first letter of headings and subheadings should be
capitalized.
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3. Modular Kannan mappings in modular metric space

It is well-known that every Banach contractive mapping is a continuous function. In 1968,
Kannan [6] was the first mathematician who found the answer and presented a fixed point result in the
seting of metric space as following .

Theorem 7. [6] Let (M, d) be a complete metric space and J : M→M be a self-mapping
satisfying

d(J(ρ),J(σ)) ≤ α
(
d(ρ,J(ρ)) + d(σ,J(σ))

)
,

∀ ρ, σ ∈ M and α ∈ [0, 1
2 ). Then J has a unique fixed point ς ∈ M, and for any ρ ∈ M the sequence

of itreaive (Jn(ρ)) converges to ς.

Before we state our results, we introduce the defintion of Kannan mappings in modular metic spaces.

Definition 8. Let K be a nonempty subset of Mω. A mapping J : K → K is called Kannan
ω-Lipschitzian if ∃ α ≥ 0 such that

ω1(J(ρ),J(σ)) ≤ α
(
ω1(ρ,J(ρ)) + ω1(σ,J(σ))

)
,

∀ ρ, σ ∈ K. The mapping J is said to be:

(1). Kannan ω-contraction if α < 1/2;
(2). Kannan ω-nonexpansive if α = 1/2.
(3) ς ∈ K is said to be fixed point of J if J(ς) = ς.

Note that all Kannan ω-Lipschitzian mappings have at most one fixed point due to the regularty
of ω.

The following result discusses the existence of fixed point for kannan contraction maps in the setting
of modular metric spaces.

Theorem 9. Let (M, ω) be a modular metric space. Assume that K is a nonempty ω-complete of
Mω. Let J : K → K be a Kannan ω-contraction mapping. Let ς ∈ K be such that ω1(ς,J(ς)) < ∞.
Then {Jn(ς)} ω-converges to some τ ∈ K. Furthermore, we have ω1(τ,J(τ)) = ∞ or ω1(τ,J(τ)) = 0
( i.e., τ is the fixed point of J)

Proof. Let ς ∈ K such that ω1(ς,J(ς)) < +∞. Now we establish that {Jn(ς)} is ω-convergent. As
K is ω-complete, it suffices to prove that {Jn(ς)} is ω-Cauchy. Since J is a Kannan ω-contraction
mapping, so ∃ α ∈ [0, 1/2) such that

ω1(J(ρ),J(σ)) ≤ α
(
ω1(ρ,J(ρ)) + ω1(σ,J(σ))

)
,

for any ρ, σ ∈ K. Set k = α/(1 − α) < 1. Furthermore

ω1(Jn(ς),Jn+1(ς)) ≤ α
(
ω1(Jn−1(ς),Jn(ς)) + ω1(Jn(ς),Jn+1(ς))

)
,

which implies
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ω1(Jn(ς),Jn+1(ς)) ≤
α

1 − α
ω1(Jn−1(ς),Jn(ς))

= k ω1(Jn−1(ς),Jn(ς)),

for any n ≥ 1. Hence,

ω1(Jn(ς),Jn+1(ς)) ≤ kn ω1(ς,J(ς)),

for any n ∈ N. As J is a Kannan ω-contraction mapping, so we get

ω1(Jn(ς),Jn+h(ς)) ≤ α
(
ω1(Jn−1(ς),Jn(ς)) + ω1(Jn+h−1(ς),Jn+h(ς))

)
,

which implies
ω1(Jn(ς),Jn+h(ς)) ≤ α

(
kn−1 + kn+h−1

)
ω1(ς,J(ς)), (NL)

for n ≥ 1 and h ∈ N. As k < 1 and ω1(ς,J(ς)) < +∞, we conclude that {Jn(ς)} is ω-Cauchy,
as claimed. Let τ ∈ K be the ω-limit of {Jn(ς)}. As K is ω-closed, we get τ ∈ K. Suppose that
ω1(τ,J(τ)) < +∞; then we will obtain that ω1(τ,J(τ)) = 0. As

ω1(Jn(ς),J(τ))) ≤ α
(
ω1(Jn−1(ς),Jn(ς)) + ω1(τ,J(τ))

)
≤ α

(
kn−1 ω1(ς,J(ς)) + ω1(τ,J(τ))

)
,

for any n ≥ 1. By the use of Fatou’s property, we obtain

ω1(τ,J(τ))) ≤ lim inf
n→∞

ω1(Jn(ς),J(τ)))

≤ α ω1(τ,J(τ)).

Since α < 1/2, we conclude that ω1(τ,J(τ)) = 0, i.e., τ is the fixed point of J . �

The upcoming result is the analogue to Kannan’s extention of the classical Banach contraction
principle in modular metric space.

Corollary 10. Let K be a nonempty ω-closed subset of Mω. Let J : K → K be a Kannan ω-
contraction mapping such that ω1(ρ,J(ρ)) < +∞, for any ρ ∈ K. Then for any ς ∈ K, {Jn(ς)}
ω-converges to the unique fixed point ς of J . Furthermore, if α is the Kannan constant associated to
J , then we have

ω1(Jn(ς), τ) ≤ α
(

α

1 − α

)n−1
ω1(ς,J(ς)),

for any ρ ∈ K and n ≥ 1.

Proof. From Theorem 9, we can obtain the proof of first part directly. Using the inequality (NK) and
since k < 1, we get

lim inf
h−→∞

ω1(Jn(ς),Jn+h(ς)) ≤ α
(
kn−1

)
ω1(ς,J(ς)), (3.1)

Now, using the fatou’s property, we have

ω1(Jn(ς), τ) ≤ α kn−1 ω1(ς,J(ς)) = α
(

α

1 − α

)n−1
ω1(ς,J(ς)),

for any n ≥ 1 and ς ∈ K. �
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Recall that an admissible subset ofMω is defined as an intersection of modular balls.

Definition 11. We will say that:

(i). if any decreasing sequence of nonempty ω-bounded admissible subsets inMω have a nonempty
intersection, thenMω is said to satisfy the property (R),

(ii). if for any nonempty ω-bounded admissible subset K with more than one point, there exists
ρ ∈ K such that

ω1(ρ, σ) < δω(K) = sup{ω1(a, b); a, b ∈ K},

for any σ ∈ K, thenMω is said to satisfy ω-quasi-normal property.

Following technical lemma is very useful in the proof of our theorem.

Lemma 12. Suppose thatMω satisfy the both (R) property and the ω-quasi-normal property. Let
K be a nonempty ω-bounded admissible subset ofMω and J : K → K be a Kannan ω-nonexpansive
mapping. Fix r > 0. Suppose that Ar = {ρ ∈ K; ω1(ρ,J(ρ)) ≤ r} , ∅. Set

Kr =
⋂
{Bω(a, t);J(Ar) ⊂ Bω(a, t)} ∩ K.

Then Kr , ∅, ω-closed admissible subset of K and

J(Kr) ⊂ Kr ⊂ Ar and δω(Kr) ≤ r.

Proof. As J(Ar) is strictly contained in each balls and intersection of all balls contained in Kr. Thus
J(Ar) ⊂ Kr, and Kr is not empty. From definition of admissible set, we deduce that Kr is an admissible
subset of K. Let us prove that Kr ⊂ Ar. Let ρ ∈ Kr. If ω1(ρ,J(ρ)) = 0, then obviously we have ρ ∈ Ar.
Otherwise, assume ω1(ρ,J(ρ)) > 0. Set

s = sup {ω1(J(ς),J(ρ)); ς ∈ Ar}.

From the definition of s, we have J(Ar) ⊂ Bω(J(ρ), s). Hence Kr ⊂ Bω(J(ρ), s), which implies
ω1(ρ,J(ρ)) ≤ s. Let ε > 0. Then ∃ ς ∈ Ar such that s − ε ≤ ω1(J(ρ),J(ς)). Hence

ω1(ρ,J(ρ)) − ε ≤ s − ε

≤ ω1(J(ρ),J(ς))

≤
1
2

(
ω1(ρ,J(ρ)) + ω1(ς,J(ς))

)
≤

1
2

(
ω1(ρ,J(ρ)) + r

)
.

As we are taking ε an arbitrarily positive number, so we get

ω1(ρ,J(ρ)) ≤
1
2

(
ω1(ρ,J(ρ)) + r

)
,

which impliesω1(ρ,J(ρ)) ≤ r, i.e., ρ ∈ Ar as claimed. SinceJ(Ar) ⊂ Kr, we getJ(Kr) ⊂ J(Ar) ⊂ Kr,
i.e., Kr is J-invariant. Now we prove that δω(Kr) ≤ r. First, we observe that

ω1(J(ρ),J(σ)) ≤
1
2

(
ω1(ρ,J(ρ)) + ω1(ς,J(ς))

)
≤ r,
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for any ρ, σ ∈ Ar. Fix ρ ∈ Ar. Then J(Ar) ⊂ Bω(J(ρ), r). The definition of Kr implies Kr ⊂

Bω(J(ρ), r). Thus J(ρ) ∈
⋂
σ∈Kr

Bω(σ, r), which implies J(Ar) ⊂
⋂
σ∈Kr

Bω(σ, r). Again by the definition

of Kr, we get Kr ⊂
⋂
σ∈Kr

Bω(σ, r). Therefore, we have ω1(σ, ς) ≤ r, for any σ, ς ∈ Kr, i.e., δω(Kr) ≤

r. �

Now, we are able to state and prove our result for ω-nonexpansive Kannan maps on modular metric
spaces.

Theorem 13. Suppose thatMω satisfies both the (R) property and theω-quasi-normal property. Let
K be a nonempty ω-bounded admissible subset ofMω and J : K → K is a Kannan ω-nonexpansive
mapping. Then J has a fixed point.

Proof. Set r0 = inf {ω1(ρ,J(ρ)); ρ ∈ K} and rn = r0 + 1/n, for n ≥ 1. By definition of r0, the set
Arn = {ρ ∈ K; ω1(ρ,J(ρ)) ≤ rn} is not empty, for any n ≥ 1. Taking Krn defined in Lemma 12. It
is simple to analyze that {Krn} is a decreasing sequence of nonempty ω-bounded admissible subsets of
K. The property (R) implies that K∞ =

⋂
n≥1

Krn , ∅. Let ρ ∈ K∞. Then we have ω1(ρ,J(ρ)) ≤ rn,

for any n ≥ 1. If we let n → ∞, we get ω1(ρ,J(ρ)) ≤ r0 which implies ω1(ρ,J(ρ)) = r0. Hence the
set Ar0 , ∅. We claim that r0 = 0. Otherwise, assume r0 > 0 which implies that J fails to have a
fixed point. Again consider the set Kr0 as defined in Lemma 12. Note that since J fails to have a fixed
point and Kr0 is J-invariant, then Kr0 has more than one point, i.e., δω(Kr0) > 0. It follows from the
ω-quasi-normal property that there exists ρ ∈ Kr0 such that

ω(ρ, σ) < δω(Kr0) ≤ r0,

for any σ ∈ Kr0 . From Lemma 12, we know that Kr0 ⊂ Ar0 . From the definition of Kr0 , we have

J(ρ) ∈ T (Ar0) ⊂ Kr0 .

Hence Obviously this will imply

ω1(ρ,J(ρ)) < δω(Kr0) ≤ r0,

which is a contradiction with the definition of r0. Hence r0 = 0 which implies that any point in K∞ is a
fixed point of J , i.e., J has a fixed point in K. �

4. Conclusions

In this paper, we have introduced some notions to study the existence of fixed points for contractive
and nonexpansive Kannan maps in the setting of modular metric spaces.Using the modular convergence
sense , which is weaker than the metric convergence we have proved our results. The proved results
generalized and improved some of the results of the literature.
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