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Abstract: A spacelike constant angle surface in E3
1 (Minkowski 3-space) is defined by its unit normal

vector field forms a constant angle with some fixed vector direction. In this paper, we use the Frenet
frame to express the surface and construct a family of spacelike constant angle surfaces which possess
the given curve as isoparametric curve. The normal vector of each surface forms a constant angle with
a fixed vector lying in the spacelike cone and in the timelike cone respectively. Finally, we give some
representative examples.
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1. Introduction

A Helix, as we all know, is an interesting curve in science and nature. It is defined by its tangent
lines making a constant angle with a fixed vector. A closely concept is the constant angle surface
which tangent planes make a constant angle with a fixed constant vector in the ambient space. For the
interests from theory of mathematics and physics and real applications, in recent years, more and more
researchers studied on constant angle surfaces. The main applications of constant angle surfaces are for
light such as liquid, crystal, shape from shading problem. Cermelli [1] focused on examples motivated
by the physics of interfaces in liquid crystals and of layered fluids. As described by Munteanu and Nis-
tor in [2], Cernelli [1] studied how constant angle surfaces may be used to describe interfaces which
occur in special equilibrium configurations of nematic and smectic C liquid crystals and to determine
the shape of disclination cores in nematics. Dillen etc. [3,4] studied surfaces whose unit normal makes
a constant angle with the R-direction in product spaces S2×R and H2×R. S2 is unit 2 sphere and H2 is
hyperbolic plane. Munteanu and Nistor [2] studied constant angle surfaces in Euclidean 3-space. They
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gave an approach to classify all surfaces whose unit normal vector makes a constant angle with a fixed
direction. In view of the property of the constant angle, Özkaldi and Yayli [5] gave a classification of
special developable surfaces and some conical surfaces.

As well known, comparing with Euclidean 3-space (E3), Minkowski 3-space (E3
1) is more compli-

cated. There are many papers focused on the properties of surface in Minkowski 3-space [6–9]. López
and Munteanu [10] studied the classification for the spacelike surfaces whose the normals make a con-
stant angle with a timelike constant direction. Subsequently, Şaffak, Güler and Kasap [11] discussed
the classifications for the spacelike surfaces by choosing the constant direction spacelike. They also
showed that the minimal spacelike constant angle surfaces are planes. A closely related concept is the
constant slope surfaces whose normal makes a constant angle with the position vector. Recently, con-
stant slope surfaces have been widely discussed, we can refer to [12–15]. Minkowski space has many
different properties with Euclidean space mainly because of the metric in E3

1 is not positive definite
metric. The distance function in E3

1 can be positive, negative or zero. Therefore, the vectors in E3
1

can be classified into three types: spacelike vectors, timelike vectors and lightlike vectors according to
the sign of the distance function. Different with Euclidean space, there doesn’t exist a natural concept
angle between two arbitrary vectors because of the causal character of the vector in E3

1. Only when
the two vectors are not lightlike vectors, it is possible to define the angle between them. By using
the Frenet trihedron frame, Wang etc. [16] gave an expression of parametric surface. In Minkowski
3-space, we can express the surface pencil in the same way. Therefore, we consider the construction
of the spacelike surface in E3

1 based on this expression. We give the concrete expression of the con-
stant angle spacelike surface family through an isoparametric curve. This is different from the methods
in [10] and [11]. The construction of proposed method is easy and we can see the conclusion from the
Theorems 2,4,6,8 and the Examples. We not only distinguish the cases according to the fixed unit vec-
tor lying in the spacelike cone and in the timelike cone, but also in any cases we consider the principal
normal vectors of the given curve are spacelike and timelike respectively. We assume that the fixed
unit vector possesses more general expressions. The coefficients of the fixed unit vector can help us to
control the shape of the surface more conveniently.

We organize the structure of the paper as follows. In Section 2, we simply introduce the relevant
concepts and results of differential geometry of curve and surface in E3

1. In Section 3, for a given
non-null parametric curve r(s), where s is arc-length parameter, by using Frenet frame, we construct a
family of spacelike surfaces which make constant angle with the fixed vector which lying in the space-
like cone and in the timelike cone respectively. Under this expression, the normal vector and fixed unit
vector can be expressed by the tangent vector T(s), normal vector N(s) and binormal vector B(s) of the
curve r(s). This expression provides a new method to study the constant surface in Minkowski 3-space.
At the same time, the spacelike surface family possess r(s) as isoparametric curve. Moreover, we give
some representative examples. Finally, we conclude the whole paper in Section 4.

2. Preliminaries

In the Lorentz-Minkowski space E3
1 = (R3, <, >), the metric <, > can be defined by

< x, y >= x1y1 + x2y2 − x3y3,

where x = (x1, x2, x3), y = (y1, y2, y3). We call this metric <, > as Lorentzian metric.
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Since the metric is not positive, there exist three different vectors in E3
1. A vector x ∈ E3

1 is called
spacelike if < x, x >> 0 or x = 0. It is timelike when < x, x >< 0 and lightlike if < x, x >= 0 and
x , 0. Similarly, an arbitrary curve R = R(s), s ∈ I in E3

1 is called spacelike, timelike or lightlike if all
of its velocity vectors R

′

(s) are spacelike, timelike or lightlike for all s ∈ I.
Moreover, the Lorentzian vector product of x and y is a vector denoted by x×y = (x2y3− x3y2, x3y1−

x1y3,−(x1y2 − x2y1)), where x = (x1, x2, x3) and y = (y1, y2, y3).
The angle between two vectors in E3

1 is defined by the following definitions. We can refer to [12,13].
In Definitions 1–4, g(, ) represents the Lorentz metric.

Definition 1. In E3
1, given two spacelike vectors x and y which span a spacelike vector subspace, then

|g(x, y)| ≤ ‖x‖‖y‖. Then there exists a unique real number α, such that

|g(x, y)| = ‖x‖‖y‖ cosα,

we call α the Lorentzian spacelike angle between x and y.

Definition 2. In E3
1, given two spacelike vectors x and y which span a timelike vector subspace, then

|g(x, y)| > ‖x‖‖y‖. Then there exists a unique real number α, such that

|g(x, y)| = ‖x‖‖y‖ coshα,

we call α the Lorentzian timelike angle between x and y.

Definition 3. Let x and y be positive or negtive timelike vectors in E3
1. Then there exists α satisfies

|g(x, y)| = ‖x‖‖y‖ coshα,

where α is a unique non-negative real number, we called it the Lorentzian timelike angle between x
and y.

Definition 4. Suppose x and y be a spacelike vector and a positive timelike vector in E3
1 respectively.

Then there exists α satisfies

|g(x, y)| = ‖x‖‖y‖ sinhα.

The α is a unique non-negative real number, we called it the Lorentzian timelike angle between x and
y.

We call a parametric surface X(s, t) a spacelike or timelike surface when the unit normal vector

N(s, t) =
Xs(s, t) × Xt(s, t)
‖Xs(s, t) × Xt(s, t)‖

(2.1)

of the surface is timelike of spacelike on each point of the surface.
In this paper, we will study the construction of a family of spacelike surfaces which form a constant

angle with a fixed vector lying in the spacelike cone and in the timelike cone respectively.
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3. Spacelike constant angle surface family

Let R(s), s ∈ [0, L] be a parametric curve in E3
1, where s is the arc-length parameter. Assume

R
′′

(s) , 0 for all s ∈ [0, L]. When R
′

(s) is a spacelike (resp. timelike, lightlike) vector, R(s) is called
spacelike (resp. timelike, lightlike) at s. In the following section, we assume R(s) be a spacelike curve.
We consider the spacelike surfaces which form a constant angle α with a fixed unit constant vector L.
When the surface is spacelike, its normal vector is timelike. Denote ‖L‖ = 1, since there doesn’t exist
the angle concept between any vector with a lightlike vector, then we always assume L does not lie in
the light cone. We discuss the constant spacelike surface from two different cases.

3.1. The constant vector L lying in the timelike cone

In this case, we assume the fixed unit constant vector lies in timelike cone, i.e., < L,L >= −1. Since
the given curve R(s) is spacelike, there are two cases according to the causal characters of e′(s) and
e(s) = R

′

(s).
(a) e′(s) is a spacelike vector
In this case, k(s) = |e′(s)| is the curvature of R(s). n(s) = e′(s)/k(s) and b(s) = e(s) × n(s) are the

normal vector and binormal vector respectively. The corresponding Frenet equations are given by

e
′

(s) = k(s)n(s),
n
′

(s) = −k(s)e(s) + τ(s)b(s),
b
′

(s) = τ(s)n(s),

and τ(s) = − < n′ , b > is the torsion of r(s). Moreover

e(s) × n(s) = b(s), e(s) × b(s) = n(s),n(s) × b(s) = −e(s).

The parametric surface through the given curve R(s) can be expressed by

X(s, t) = R(s) + f (s, t)e(s) + g(s, t)n(s) + h(s, t)b(s), s ∈ [0, L], t ∈ [0,T ]. (3.1)

Because R(s) is the isoparametric curve, then there exists t0 ∈ [0,T ], such that

f (s, t0) = g(s, t0) = h(s, t0).

The unit normal vector N(s, t) can be defined as

N(s, t) =

∂X(s,t)
∂s ×

∂X(s,t)
∂t

‖
∂X(s,t)
∂s ×

∂X(s,t)
∂t ‖

.

After simple computation, we have

N(s, t) =
λ1(s, t)e(s) + λ2(s, t)n(s) + λ3(s, t)b(s)√
−(λ1(s, t))2 − (λ2(s, t))2 + (λ3(s, t))2

(3.2)

where

λ1(s, t) = −( f (s, t)k(s) +
∂g(s, t)
∂s

+ h(s, t)τ(s))
∂h(s, t)
∂t

(3.3)
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+ (g(s, t)τ(s) +
∂h(s, t)
∂s

)
∂g(s, t)
∂t

,

λ2(s, t) = −(g(s, t)τ(s) +
∂h(s, t)
∂s

)
∂ f (s, t)
∂t

(3.4)

+ (1 +
∂ f (s, t)
∂s

− g(s, t)k(s))
∂h(s, t)
∂t

,

λ3(s, t) = −( f (s, t)k(s) +
∂g(s, t)
∂s

+ h(s, t)τ(s))
∂ f (s, t)
∂t

(3.5)

+ (1 +
∂ f (s, t)
∂s

− g(s, t)k(s))
∂g(s, t)
∂t

.

Substitute t = t0 in Eqs (3.3)–(3.5), we can get

λ1(s, t0) = 0, λ2(s, t0) =
∂h(s, t0)
∂t

, λ3(s, t0) =
∂g(s, t0)
∂t

.

Let X(s, t) be a constant angle surface. Since the angle between the unit normal vector and a fixed
timelike vector is constant, according to the Theorem 3.4 of paper [10], the unit normal must depend
on only one parameter. Thus the following relation holds.

∂N(s, t)
∂t

= 0 (3.6)

⇐⇒
∂

∂t
(

λi(s, t)√
−(λ1(s, t))2 − (λ2(s, t))2 + (λ3(s, t))2

) = 0

⇐⇒
λi(s, t)√

−(λ1(s, t))2 − (λ2(s, t))2 + (λ3(s, t))2
= σi(s), i = 1, 2, 3.

Substitute t = t0 into the above equation, we have

λi(s, t)√
−(λ1(s, t))2 − (λ2(s, t))2 + (λ3(s, t))2

=
λi(s, t0)√

−(λ1(s, t0))2 − (λ2(s, t0))2 + (λ3(s, t0))2
. (3.7)

That is

λ1(s, t) = 0, (3.8)

λ2(s, t)√
−(λ2(s, t))2 + (λ3(s, t))2

=

∂h(s,t0)
∂t√

−(∂h(s,t0)
∂t )2 + (∂g(s,t0)

∂t )2
, (3.9)

λ3(s, t)√
−(λ2(s, t))2 + (λ3(s, t))2

=

∂g(s,t0)
∂t√

−(∂h(s,t0)
∂t )2 + (∂g(s,t0)

∂t )2
. (3.10)

Then

N(s, t) =

∂h(s,t0)
∂t n(s) +

∂g(s,t0)
∂t b(s)√

−(∂h(s,t0)
∂t )2 + (∂g(s,t0)

∂t )2
. (3.11)
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Moreover, the fixed unit vector L can be expressed

L = u(s)e(s) + v(s)n(s) + w(s)b(s), (3.12)

where u(s), v(s),w(s) are continuous functions. Since L is a timelike vector, then u2(s)+v2(s)−w2(s) =

−1. Computing the first derivative of L, we have

L
′

= (u
′

(s) − v(s)k(s))e(s) + (u(s)k(s) + v
′

(s) + w(s)τ(s))n(s) + (v(s)τ(s) + w
′

(s))b(s).

Since L is a constant vector, there are the following relations:

u
′

(s) = v(s)k(s),
v
′

(s) = −u(s)k(s) − w(s)τ(s), (3.13)
w
′

(s) = −v(s)τ(s).

Let α be a hyperbolic constant angle between N(s) which is the timelike normal vector and the fixed
unit timelike vector L, then we have

< N(s),L >=

∂h(s,t0)
∂t v(s) − ∂g(s,t0)

∂t w(s)√
−(∂h(s,t0)

∂t )2 + (∂g(s,t0)
∂t )2

= − coshα. (3.14)

According to the above analysis, we can get the following theorem.

Theorem 1. The necessary and sufficient conditions of a spacelike surface X(s, t) through the isopara-
metric curve R(s) whose spacelike e′(s) forms a constant angle with a fixed constant timelike vector
are it satisfies (3.8), (3.9), (3.10) and (3.14).

Next, we give another condition of spacelike constant angle surface. Since λ1(s, t) = 0, suppose
∂g(s,t)
∂t , 0, ∂h(s,t)

∂t , 0, we have

g(s, t)τ(s) +
∂h(s, t)
∂s

= ( f (s, t)k(s) +
∂g(s, t)
∂s

+ h(s, t)τ(s))
∂h(s, t)
∂t

/
∂g(s, t)
∂t

.

Substituting it in Eq (3.4), (3.5), we can get

λ2(s, t) =
∂h(s, t)
∂t

F(s, t),

λ3(s, t) =
∂g(s, t)
∂t

F(s, t),

where F(s, t) = −
∂ f (s,t)
∂t ( f (s, t)k(s) +

∂g(s,t)
∂s + h(s, t)τ(s))/∂g(s,t)

∂t + (1 +
∂ f (s,t)
∂s − g(s, t)k(s)). That is

λ2(s, t)√
−(λ2(s, t))2 + (λ3(s, t))2

=

∂h(s,t)
∂t√

−(∂h(s,t)
∂t )2 + (∂g(s,t)

∂t )2
,

λ3(s, t)√
−(λ2(s, t))2 + (λ3(s, t))2

=

∂g(s,t)
∂t√

−(∂h(s,t)
∂t )2 + (∂g(s,t)

∂t )2
.

According to Eq (3.6), we have g(s, t) = p(s)h(s, t) or h(s, t) = q(s)g(s, t), then we have Theorem 2.
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Theorem 2. Given the spacelike curve R(s) with spacelike e′(s), the surface X(s, t) possessing R(s)
as isoparametric curve forms a constant angle with a fixed constant timelike vector if and only if the
following conditions hold.

(1) w(s)2 − cosh2 α , 0,

g(s, t) = p(s)h(s, t), (3.15)

f (s, t) =
τ(s)(p2(s)−1)−p

′
(s)

k(s) h(s, t), (3.16)

p(s) =
v(s)w(s)±coshα

√
w2(s)−v2(s)+cosh2 α

w2(s)−cosh2 α
. (3.17)

(2)

h(s, t) = q(s)g(s, t), (3.18)

f (s, t) =
τ(s)(1−q2(s))+q

′
(s)

k(s)q(s) g(s, t), (3.19)

q(s) =
v(s)w(s)±coshα

√
w2(s)−v2(s)+cosh2 α

v2(s)+cosh2 α
. (3.20)

Proof. We only prove condition (1) here, and the condition (2) can be proved in the same way.
Substituting Eq (3.15) in λ1(s, t) = 0, we can get Eqs (3.16). Then according to

< N(s, t),L >=

∂h(s,t)
∂t v(s) − ∂g(s,t)

∂t w(s)√
−(∂h(s,t)

∂t )2 + (∂g(s,t)
∂t )2

= − coshα,

we can derive the condition (3.17).
Conversely, if the surface X(s, t) satisfies the condition (1) or (2), then < N(s, t),L >= − coshα

holds. �

Example 1. A parametric spacelike Helix is given by

R(s) = (
√

2 sin s,
√

2 cos s, s), 0 ≤ s ≤ 2π,

with spacelike normal vector and timelike binormal vector.
By computing, we can get

e(s) = (
√

2 cos s,−
√

2 sin s, 1)
n(s) = (− sin s,− cos s, 0),
b(s) = (cos s,− sin s,

√
2),

k(s) =
√

2, τ = 1.

By using Eqs (3.12) and (3.13), we can get the coefficients u(s) = −1, v(s) = 0,w(s) =
√

2. Let
α = 2, t0 = 0 and we choose g(s, t) = t. According to Theorem 2, we obtain a spacelike constant angle
surface X1(s, t;α) which passes through the given curve R(s) (see Figure 1(a)). For α = 3, t0 = 0, if we
choose g(s, t) = st, we can obtain another spacelike constant angle surface X2(s, t; 3) which is shown
in Figure 1(b).
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(a) The surface P1(s, t, 2) (b) The surface P2(s, t; 3)

Figure 1. The spacelike constant angle surfaces with spacelike helix.

(b) The vector T
′

(s) is timelike
In this case, k(s) =

√
− < T′(s),T′(s) >,N(s) = T

′

(s)/k(s) and B(s) = T(s) × N(s). The corre-
sponding Frenet equations are given by

T
′

(s) = k(s)N(s),
N
′

(s) = k(s)T(s) + τ(s)B(s),
B
′

(s) = τ(s)N(s),

and τ(s) =< N
′

,B >. Moreover

T(s) × N(s) = B(s),T(s) × B(s) = N(s),N(s) × B(s) = T(s).

The parametric surface through the given curve r(s) can be expressed by

P(s, t) = r(s) + u(s, t)T(s) + v(s, t)N(s) + w(s, t)B(s), s ∈ [0, L], t ∈ [0,T ]. (3.21)

The unit normal vector of the surface P(s, t) is given by

n(s, t) =
ϕ1(s, t)T(s) + ϕ2(s, t)N(s) + ϕ3(s, t)B(s)√
−(ϕ1(s, t))2 + (ϕ2(s, t))2 − (ϕ3(s, t))2

, (3.22)

where

ϕ1(s, t) = (u(s, t)k(s) +
∂v(s, t)
∂s

+ w(s, t)τ(s))
∂w(s, t)
∂t

(3.23)

− (v(s, t)τ(s) +
∂w(s, t)
∂s

)
∂v(s, t)
∂t

,

ϕ2(s, t) = −(v(s, t)τ(s) +
∂w(s, t)
∂s

)
∂u(s, t)
∂t

(3.24)

+ (1 +
∂u(s, t)
∂s

+ v(s, t)k(s))
∂w(s, t)
∂t

,

ϕ3(s, t) = −(u(s, t)k(s) +
∂v(s, t)
∂s

+ w(s, t)τ(s))
∂u(s, t)
∂t

(3.25)

+ (1 +
∂u(s, t)
∂s

+ v(s, t)k(s))
∂v(s, t)
∂t

.

Similar to section (a), we have the following theorems.
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Theorem 3. The spacelike surface P(s, t) through the isoparametric curve r(s) with timelike T
′

(s)
makes a constant angle with a fixed constant timelike vector if and only if it satisfies the following
conditions,

ϕ1(s, t) = 0,
ϕ2(s,t)√

(ϕ2(s,t))2−(ϕ3(s,t))2
=

∂w(s,t0)
∂t√

( ∂w(s,t0)
∂t )2−( ∂v(s,t0)

∂t )2
,

ϕ3(s,t)√
(ϕ2(s,t))2−(ϕ3(s,t))2

=
∂w(s,t0)

∂t√
( ∂w(s,t0)

∂t )2−( ∂v(s,t0)
∂t )2

,

< n(s, t),A >=
−
∂w(s,t0)

∂t y(s)+ ∂v(s,t0)
∂t z(s)√

( ∂w(s,t0)
∂t )2−( ∂v(s,t0)

∂t )2
= − cosh θ.

Theorem 4. Given the spacelike curve r(s) with timelike T
′

(s), the surface P(s, t) possessing r(s) as
isoparametric curve makes a constant angle with a fixed constant timelike vector if and only if the
following conditions hold.

(1)

v(s, t) = h(s)w(s, t),

u(s, t) =
τ(s)(h2(s)−1)−h

′
(s)

k(s) w(s, t),

h(s) =
y(s)z(s)±cosh θ

√
z2(s)−y2(s)+cosh2 θ

z2(s)+cosh2 θ

(2) y2(s) − cosh2(θ) , 0

w(s, t) = l(s)v(s, t),

u(s, t) =
τ(s)(1−l2(s))+l

′
(s)

k(s)l(s) v(s, t),

l(s) =
y(s)z(s)±cosh θ

√
z2(s)−y2(s)+cosh2 θ

y2(s)−cosh2 θ
.

Example 2. Let r(s) = (sinh ( s
√

2
), s
√

2
, cosh ( s

√
2
)) be a spacelike Helix with timelike normal vector and

spacelike binormal vector. After computation, we have

T(s) = (

√
2

2
cosh (

√
2

2
s),

√
2

2
,

√
2

2
sinh (

√
2

2
s)),

N(s) = (sinh (

√
2

2
s), 0, cosh (

√
2

2
s)),

B(s) = (

√
2

2
cosh (

√
2

2
s),−

√
2

2
,

√
2

2
sinh (

√
2

2
s)),

k(s) =
1
2
, τ =

1
2
,

and x(s) = −
√

2
2 sinh (

√
2

2 s), y(s) = cosh (
√

2
2 s), z(s) = −

√
2

2 sinh (
√

2
2 s). Let θ = 2, t0 = 0. By choosing

w(s, t) = t, we can obtain a spacelike constant angle surface P1(s, t; 2) which passes through the given
curve r(s) (see Figure 2(a)). For θ = 3, t0 = 0,w(s, t) = st, we can obtain another spacelike constant
angle surface P2(s, t; 3) which is shown in Figure 2(b).
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(a) The surface P1(s, t, 2) (b) The surface P2(s, t; 3)

Figure 2. The spacelike constant angle surfaces with spacelike helix.

3.2. The constant vector A lying in the spacelike cone

In this case, the fixed unit constant vector lies in spacelike cone, i.e., < A,A >= 1. Similar to
Section 3.1, we can get the corresponding conclusions.

(a) The vector T
′

(s) is spacelike
Let θ be the constant angle between the timelike normal vector n(s, t) and the fixed unit spacelike

vector A, then we have

< n(s),A >=

∂w(s,t0)
∂t y(s) − ∂v(s,t0)

∂t z(s)√
−(∂w(s,t0)

∂t )2 + (∂v(s,t0)
∂t )2

= − sinh θ. (3.26)

The corresponding theorems are as follows.

Theorem 5. The spacelike surface P(s, t) through the isoparametric curve r(s) with spacelike T
′

(s)
makes a constant angle with a fixed constant spacelike vector if and only if it satisfies (3.8), (3.9), (3.10)
and (3.26).

Theorem 6. Given the spacelike curve r(s) with spacelike T
′

(s), the surface P(s, t) possessing r(s) as
isoparametric curve makes a constant angle with a fixed constant spacelike vector if and only if the
following conditions hold.

(1) z(s)2 − sinh2 θ , 0,

v(s, t) = h(s)w(s, t), (3.27)

u(s, t) =
τ(s)(h2(s)−1)−h

′
(s)

k(s) w(s, t), (3.28)

h(s) =
y(s)z(s)±sinh θ

√
z2(s)−y2(s)+sinh2 θ

z2(s)−sinh2 θ
. (3.29)

(2)

w(s, t) = l(s)v(s, t), (3.30)

u(s, t) =
τ(s)(1−l2(s))+l

′
(s)

k(s)l(s) v(s, t), (3.31)

l(s) =
y(s)z(s)±sinh θ

√
z2(s)−y2(s)+sinh2 θ

y2(s)+sinh2 θ
. (3.32)
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Example 3. In this example, we consider a spacelike circle

r(s) = (cosh θ cos s, cosh θ sin s,− sinh θ).

where θ is the constant angle. After computation, we have

T(s) = (− sin s, cos s, 0),
N(s) = (− cos s,− sin s, 0),
B(s) = (0, 0,−1),
k(s) = 1, τ = 0.

and x(s) = − sin s, y(s) = − cos s, z(s) = 0. We show two spacelike constant angle surfaces P(s, t) from
the surface family in Figure 3(a) and 3(b).

(a) The surface P1(s, t) (b) The surface P2(s, t)

Figure 3. The spacelike constant angle surfaces with spacelike circle.

(b) The vector T
′

(s) is timelike

Theorem 7. The spacelike surface P(s, t) through the isoparametric curve r(s) with timelike T
′

(s)
makes a constant angle with a fixed constant spacelike vector if and only if it satisfies the following
conditions,

ϕ1(s, t) = 0,
ϕ2(s,t)√

(ϕ2(s,t))2−(ϕ3(s,t))2
=

∂w(s,t0)
∂t√

( ∂w(s,t0)
∂t )2−( ∂v(s,t0)

∂t )2
,

ϕ3(s,t)√
(ϕ2(s,t))2−(ϕ3(s,t))2

=
∂w(s,t0)

∂t√
( ∂w(s,t0)

∂t )2−( ∂v(s,t0)
∂t )2

,

< n(s, t),A >=
−
∂w(s,t0)

∂t y(s)+ ∂v(s,t0)
∂t z(s)√

( ∂w(s,t0)
∂t )2−( ∂v(s,t0)

∂t )2
= − sinh θ.

where ϕ1(s, t), ϕ2(s, t), ϕ3(s, t) are given by Eqs (3.24)–(3.26).

Theorem 8. Given the spacelike curve r(s) with timelike T
′

(s), the surface P(s, t) passing through the
isoparametric curve r(s) is a spacelike constant angle surface if and only if the following conditions
hold,

AIMS Mathematics Volume 5, Issue 6, 6341–6354.



6352

(1)

v(s, t) = h(s)w(s, t),

u(s, t) =
τ(s)(h2(s)−1)−h

′
(s)

k(s) w(s, t),

h(s) =
y(s)z(s)±sinh θ

√
z2(s)−y2(s)+sinh2 θ

z2(s)+sinh2 θ
.

(2) y2(s) − sinh2(θ) , 0

w(s, t) = l(s)v(s, t),

u(s, t) =
τ(s)(1−l2(s))+l

′
(s)

k(s)l(s) v(s, t),

l(s) =
y(s)z(s)±sinh θ

√
z2(s)−y2(s)+sinh2 θ

y2(s)−sinh2 θ
.

Example 4. In this example, given a spacelike circle

r(s) = (sinh s, 0, cosh s)

with timelike normal vector. Then we have

T(s) = (cosh s, 0, sinh s),
N(s) = (sinh s, 0, cosh s),
B(s) = (0,−1, 0),
k(s) = 1, τ = 0,

and x(s) = cosh s, y(s) = − sinh s, z(s) = 0. Figure 4(a) and 4(b) show the two constant surfaces from
the surface family.

(a) The surface P1(s, t) (b) The surface P2(s, t)

Figure 4. The spacelike constant angle surfaces with spacelike circle.

4. Conclusions

In this paper, we present an approach for constructing a spacelike constant angle surface family
which passes through the given isoparametric curve in Minkowski 3-space. We consider the fixed
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vector lies in the spacelike cone and in the timelike cone respectively. Each of the family makes a
constant angle with a fixed unit vector and we derive the necessary and sufficient condition of the
constant spacelike surface through the isoparametric curve. It will very be interesting to implement
our method for real life applications although the motivation of the paper is from mathematics. We
will study it in future.
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7. Á. G. Horváth, Isometries of Minkowski geometries, Linear Algebra Appl., 512 (2017), 172–190.

8. E. Kasap, F. T. Akyildiz, Surface with common geodesic in Minkowski 3-space, Appl. Math. Com-
put., 177 (2006), 260–270.

9. J. O. Baek, Q. M. Cheng, Y. J. Suh, Complete space-like hypersurfaces in locally symmetric Lorentz
spaces, J. Geom. Phys., 49 (2004), 231–247.
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