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1. Introduction and preliminary results

The theory of inequalities of convex functions is part of the general subject of convexity since a
convex function is one whose epigraph is a convex set. Nonetheless it is a theory important per se,
which touches almost all branches of mathematics. Probably, the first topic who make necessary the
encounter with this theory is the graphical analysis. With this occasion we learn on the second
derivative test of convexity, a powerful tool in recognizing convexity. Then comes the problem of
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finding the extremal values of functions of several variables and the use of Hessian as a higher
dimensional generalization of the second derivative. Passing to optimization problems in infinite
dimensional spaces is the next step, but despite the technical sophistication in handling such
problems, the basic ideas are pretty similar with those underlying the one variable case.

The objective of this paper is to present the fractional Hadamard and Fejér-Hadamard inequalities in
generalized forms. We start from the integral operators containing generalized Mittag-Lefller function
defined by Prabhaker in [25].

Definition 1.1. Let o, 7,p be positive real numbers and w € R. Then the generalized fractional
integral operators containing Mittag-Leffler function € rwa) and eg rwp S for a real valued
continuous function f are defined by:

&wafﬂw:1f?x—nFU£Awu—¢VVUML (L.1)

b
(s )0 = [ =07 B2 (0t - 07 p 0 12

where the function E% ,(7) is the generalized Mittag-Leffler function; Ef_.(f) = Yro, r(g;)frf)n! and (p), =
T(p+n)

T(p)
Fractional integral operators associated with generalized Mittag-Leffler function play a vital role in
fractional calculus. Different fractional integral operators have different types of properties and these
integral operators may be singular or non-singular depending upon their kernels. For example, the
global Riemann Liouville integral is a singular integral operator but the singularity is integrable.
Some new models [2, 7] have been designed due to the non-singularity of their defining integrals.
Fractional integral operators are useful in the generalization of classical mathematical concepts.
Fractional integral operators are very fruitful in obtaining fascinating and glorious results, for
example fractional order systems and fractional differential equations are used in physical and
mathematical phenomena. Many inequalities like Hadamard are studied in the context of fractional
calculus operators, see [1, 6, 8,20, 28].

After the existence of Prabhaker fractional integral operators, the researchers began to think in this
direction and consequently they further generalized and extended these operators in different ways
for instance see [14, 18, 23,29], and references therein. By using the Mittag-Leffler function these
fractional integral operators are generalized by many authors. In [27] Salim and Faraj defined the
following fractional integral operators involving an extended Mittag-Lefller function in the kernel.

Definition 1.2. Let o, 1,k, 6, p be positive real numbers and w € R. Then the generalized fractional
integral operators containing Mittag-Leffler function € :I;a)a‘r f and € réwb f for a real valued
continuous function f are defined by:

(mawa+ (X)_f(x D7 ES T (w(x = 0)7) f(n)dr, (1.3)

@&mwﬂif0>”WAw—meu (1.4)

where the function E”rk(t) is the generalized Mittag-Leffler function; E* ”;(t) 2ineo r(g(sjr% and
T(p+k
O = (18(_;)").
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Further fractional integral operators containing an extended generalized Mittag-Leffler function in
their kernels are defined as follows:

Definition 1.3. [18] Let w, 1,0, p,c € C, p,ar>0and0<k<r+a Let f € L,[a,b] and x € [a, b].

Then the generalized fractional integral operators ep oS and €7 rk ., Jf are defined by:
(Gf,:];z)m (x;p) = f (x—0)" lEngIf;C(w(x - 07 p)f(vdt, (1.5)
K, ’ K,
(&t A = [ =2 Bl = 2 0, (1.6)
where

Ep rkc Z ﬁp(p + l’lk, ¢ — P)(C)nktn
ot 4 B(p,c = p)T(an + D))

is the extended generalized Mittag-Leffler function.

(1.7)

Recently, Farid et al. defined a unified integral operator in [14] (see also [22]) as follows:

Definition 1.4. Let f, g : [a,b] — R, 0 < a < b be the functions such that f be positive and f € L[a, b]
and g be a differentiable and strictly increasing. Also let % be an increasing function on [a, o) and
w,T,6,p,¢ € C, R(1), R(6) > 0, R(c) > R(p) >0 with p >0,0,r>0and 0 < k < r + o. Then for
x € [a, b] the integral operators (,F**7*  £) and (gF¢prka f) are defined by:

o, T,0,w,at o, T,0,w

") — 8(0) ke

¢.0.r.k,c
(g O'T(Swa*f)( ; g(x) g(l‘) 0'1'6

(w(g(x) — g®)7; p) f(d(g(1)), (1.8)

¢(g(t) g( )) prkc
x 8- gx) Fora

The following definition of generalized fractional integral operator containing extended Mittag-
Leffler function in the kernel can be extracted by setting ¢(x) = x* in Definition 1.4.

GFom (s (w(g(®) — 8(x))7; p)f(Dd(g(1)). (1.9)

Definition 1.5. Let f,g : [a,b] — R, 0 < a < b be the functions such that f be positive and f €
Li[a,b] and g be a differentiable and strictly increasing. Also let w,7,6,p,¢c € C, R(1), R(5) > 0,
R(c) > R(p) >0with p >0,0,r>0and 0 < k < r+ o. Then for x € [a, b] the integral operators are
defined by:

(crorke L F)p) = f (1) — g EA (w(g() — ) pf(Dd(g(@),  (1.10)

b
(100 f) (xip) = f (8(1) — ) EX N (w(g() — g(0)7: ) f(D)d(g(r).  (1.11)
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The following remark provides some connection of Definition 1.5 with already known operators:

Remark 1. (i) If we take p = 0 and g(x) = x in equation (1.10), then it reduces to the fractional
integral operators defined by Salim and Faraj in [27].

(i1) If we take 6 = r = 1 and g(x) = x in (1.10), then it reduces to the fractional integral operators
gT'?T”lT’,]I’;)’m and gT‘Z”Lﬁ’;’b, containing generalized Mittag-Leffler function Eg”if’c(t; p) defined by
Rahman et al. in [26].

(iii) If we set p = 0,0 = r = 1 and g(x) = x in (1.10), then it reduces to integral operators containing
extended generalized Mittag-Leftler function introduced by Srivastava and Tomovski in [29].

(iv) If we take p = 0,0 = r = k = 1 and g(x) = x, (1.10) reduces to integral operators defined by
Prabhaker in [25] containing generalized Mittag-Leffler function.

(v) For p = w = 0 and g(x) = x in (1.10), then generalized fractional integral operators , 1 ke and

o,7,0,w,at

LY~ reduce to Riemann-Liouville fractional integral operators.

Our aim in this paper is to establish Hadamard and Fejér-Hadamard inequalities for generalized
fractional integral operators containing extended generalized Mittag-Leffler function for a monotone
increasing function via m-convex functions.

More than a hundred years ago, the mathematicians introduced the convexity and they established
a lot of inequalities for the class of convex functions. The convex functions are playing a significant
and a tremendous role in fractional calculus. Convexity has been widely employed in many branches
of mathematics, for instance, in mathematical analysis, optimization theory, function theory,
functional analysis and so on. Recently, many authors and researchers have given their attention to the
generalizations, extensions, refinements of convex functions in multi-directions.

Definition 1.6. A function f : [a,b] — R is said to be convex if

fx+ A=y <tf(x)+ (1 -0fQ)
holds for all x,y € [a,b] and t € [0, 1].

The m-convex function is a close generalization of convex function and its concept was introduced
by Toader [30].

Definition 1.7. A function f : [0,b] — R, b > 0 is said to be m-convex if for all x,y € [0, b] and
t€[0,1]

Sx+m(1 =0y) <t1f(x) + m(1 = 0)f(y)
holds for m € [0, 1].

If we take m = 1, we get the definition for convex function. An m-convex function need not be a
convex function.

Example 1. [24] A function f : [0, 0) — R defined by f(x) = x* = 5x* + 9x? — 5x is 13-convex but it
is not m-convex for m € (}—g, 1].

A lot of results and inequalities pertaining to convex, m-convex and related functions have been
produced (see, [11-20] and references therein). Many fractional integral inequalities like Hadamard
and Fejér-Hadamard are very important and researchers have produced their generalizations and
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refinements (see, [5] and references therein). Fractional inequalities have many applications, for
instance, the most fruitful ones are used in establishing uniqueness of solutions of fractional boundary
value problems and fractional partial differential equations. For instance the following Hadamard
inequality is given in [21]:

Theorem 1.8. Let f : [0,00) — R, be positive real function. Let a,b € [0, 00) with a < mb and
f € Lila,mb]. If f is m-convex on [a, mb), then the following inequalities for the extended generalized
fractional integrals hold:

f (“ ’ mb) (el 2mke1) ombs p)

2
< (€2275 F) mbs p) + m™ (" & 57 £) (43 p)
B 2
T+1 f(a) Zf(n%) m’w’ p,rk,c a
< 2 mb — a (eb_,(r,:i’l;ﬁ’ 1)(%’p)
m? W’ p,rk,c a . ’ _ w
(f(b) +mf(—))( € o1 1)(Z,P)],w = W-

In the upcoming section we will derive the Hadamard inequality for m-convex functions by means
of fractional integrals (1.10) and (1.11). This version of the Hadamard inequality gives at once the
Hadamard inequalities quoted in Section 2. Further we will establish the Fejér-Hadamard inequality
for these operators of m-convex functions which will provide the corresponding inequalities proved
in [31]. Moreover in Section 3 by establishing two identities error estimations of the Hadamard and
the Fejér-Hadamard inequalities are obtained.

2. Main results

Theorem 2.1. Let f,g : [a,b] —» R, 0 < a < b, Range (g) C [a, b], be the functions such that f be
positive and f € Ly[a, b], g be differentiable and strictly increasing. If f be m-convex m € (0, 1] and
g(a) < mg(b), then the following inequalities for fractional operators (1.10) and (1.11) hold:

f (—g @) mg (”)) (erorke, 1) (6™ (mg()): p)
(X5 0 9)) (8 mg0); p) 4™ (X5, (0 90) (87 (52): )
2
m 2 g(a)

< /
-2 mg(b) — g(a) 8 oT+1.6m7w b -

g( ) 0,1k,C -1 @ . ’ w
(f (&(®)) +mf ( ))(*”T“"”"”““hl)(g (m )”’ )]“’ ~ (mg(0) - g@)

Proof. By definition of m-convex function f, we have

g(a@) + mg(b)
2

2f( ) < f(tg(@) + m(1 = )g(b)) + mf (tg(b) i (1- t)ﬁ) @1

Further from (2.1), one can obtain the following integral inequality:
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1
2f (g(a) + mg(b)) f lT—lEPs’?k’C(wtO'; p)dl (22)
0

2 o,T,0
1
< [ B s @ + m1 - Dg(ba
° 1
+m f tT_lEg::%C(wt‘r; nf (tg(b) +(1 - t)%) dr.
0

Setting g(x) = tg(a) + m(1 — 1)g(b) and g(y) = tg(b) + (1 - t)% in (2.2), we get the following
inequality:

2f (g(a) + mg(b)) ( 0,15k,

5 ST 1) (g7 (mg(B)); p) (2.3)
0,1,k,c -1 . T+1 0,1,k,c -1 @ .
< (e ar(F 0 ) (7 mg®)): p) +m™ (0020, (Fo o)) |87 (5= )ip)-

Also by using the m-convexity of f, one can has

flagt@) + (1 = g(o 4 (1) + 1= 052 24
<t () (- (22
m m
This leads to the following integral inequality:
1
fo (T EL (@t p) f(ig(a) + m(1 — g(b)dt 2.5)

1
+m f ERS (ot p)f(tg(b)+(1 —t)@)dz
0 Y m

1
< m(f(g(b)) +mf ((%Z))) f £ ERS (wt; p)dt
0
1
+(f(g(a))—m2f (%)) f FEX(wt”; pdt.
0

Again by setting g(x) = tg(a) + m(1 —t)g(b), g(y) = tg(b) + (1 — t)”% in (2.5) and after calculation,
we get

(Y25, (F 0 0)) (6™ mg®); p) 4+ m™™ (75 (o) (g—l (%) ;p) 2.6)

<m™! [f(g(a)) B mzf(‘%) ( oprrke 1) (g—l (@) ;P)

mg(b) _ g(a) 8 “or+l,omow b_ m

+ (f(g(b)) +mf (%)) (e rr s 1) (g‘l (%) ; p)) :
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Combining (2.3) and (2.6) we get the desired result. O

Remark 2. e In Theorem 2.1, if we put m = 1, we get [31, Theorem 3.1 ]
e In Theorem 2.1, if we put g = I, we get [21, Theorem 3.1 ].

The following theorem gives the Fejér-Hadamard inequality for m-convex functions.

Theorem 2.2. Let f,g,h : [a,b] = R, 0 < a < b, Range (g), be the functions such that f be positive
and f € Li|a, b), g be a differentiable and strictly increasing and h be integrable and non-negative. If f
is m-convex, m € (0, 1], g(a) < mg(b) and g(a) + mg(b) — mg(x) = g(x), then the following inequalities
for fractional operator (1.11) hold:

2 (MO (vt o )¢ (52) o)

m
<(L+m) (Y00, (Fog)hoy)) (g‘1 (%a)) ;p)
—m2f (@
DI () (£2)

(g(b) _ %) 8 " or,o,w b

@ 0.1,k,C ° -1 @ . /— w _
+m(f sy ms ( m ))(gT”’T"S’“”bh g)(g ( m )’p )’w " (g -y

Proof. Multiplying both sides of (2.1) by 2™ (rg(b) + (1 - L) E2"5(wr”; p) and integrating
on [0, 1], we get

1
Zf(—g(a)+mg(b)) f f1h(zg(b)+(1—t)g(a))Ef;;:f‘g"(wt";p)dt @7
0

2 m
< fl lT_lh(l' g(a)) 0,Fk,c o.
< g() + (1 = DEZ ) B85t p) frg(@) + m(1 = )g(b)dr
0

1
on [ f—lh(tg<b>+<1—o%)Eﬁﬁ,";(wr“;p)f(rgw)+<1—r)g(“))dr.
0

m

Setting g(x) = tg(b) + (1 - t)%”) and also using g(a) + mg(b) —mg(x) = g(x) the following inequality
is obtained:

b
2f(g(a) +2mg( )) (ng)—’:’l;;)”b_h o g) (g—l (%) ’p) (2.8)
< (1+m) (g‘rg_”,if;ju,,b_(f og)(ho g)) (g‘1 (%a)) ; p) :

Multiplying both sides of inequality (2.4) with tT‘lh(tg(b)+(1 —t)%) Ef;?fs’c(wt";p) and

integrating on [0, 1], then setting g(x) = tg(b) + (1 — t)% and also using g(a) + mg(b) — mg(x) = g(x)
we have
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(1 +m) (X0 (Fog)hog)) (g‘1 (%) ;p) (2.9)
(@
_ U@ -7 (52) (174 hog) ( - (@ ) . )
m

g((b) _ é%) 8 " oro,w b ’

+m (f(g(b)) +mf (g (“))) (127 ho) (g-1 (%) : p) |

m2

Combining (2.8) and (2.9) we get the desired result. O

Remark 3. e In Theorem 2.2, if we put m = 1, then we get [31, Theorem 3.2].
e In Theorem 2.2, if we put g = I and p = 0, then we get results of [3].
e In Theorem 2.2, if we put g = I, then we get results of [4].

3. Error bounds

To find error estimates first we prove the following two lemmas.

Lemma 3.1. Let f,g : [a,mb] — R, 0 < a < mb, Range (g) C [a, mb] be the functions such that f
be positive and f o g € Li[a,mb] and g be a differentiable and strictly increasing. Also if f(g(x)) =
f(g(a) + g(mb) — g(x)), then the following equality for fractional operators (1.10) and (1.11) holds:

0,1,k,c N _ 0,1,k,c .
(gTO',T,d,w,a*f ° g) (mb’ p) - (8T0',T,6,(u,mb_ °© g) (a’ p)
0,1,k,c

(gTo-,r,é,w,mf o g) (mb; p) + (STS-’,:,I:S’L),mb, o g) (a; p)

> 3.1

Proof. By Definition 1.5 of the generalized fractional integral operator containing extended generalized
Mittag-Lefller function, we have

mb

(ke fog)mbipy= | (g(mb)— g0y EL A  (w(gmb) — g(x)”: p)f(g(0)d(g(x).  (3.2)

a

Replacing g(x) by g(a) + g(mb) — g(x) in (3.2) and using f(g(x)) = f(g(a) + g(mb) — g(x)), we have

mb
(100t o fog)mbip)= | (8(x) - g(@)™ ELN (w(g(x) - 8(a)”: p)f(g(x))d(g(x)).
This implies
(1008 o f 0 8) (mb: p) = (X255 fog)(asp). (3.3)
By adding (3.2) and (3.3), we get (3.1). O
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Lemma 3.2. Let f,g,h : [a,mb] — R, 0 < a < mb, Range (g), Range (h) C [a, mb] be the functions
such that f be positive and f o g, ho g € Li[a,mb], g be a differentiable and strictly increasing and
h be non-negative and continuous. If f’ o g € L[a, mb] and h(g(t)) = h(g(a) + g(mb) — g(t)), then the

Jfollowing equality for the generalized fractional integral operators (1.10) and (1.11) holds:

f(g(a)) +2f(g(mb)) I:(g.ri’:,l;;),a+h ° g) (mb, p) + (g‘rﬁ—’:—,];;u,mb_h o g) (a; p)]

— (55, o (f 0 9)(h 0 8)) (mb; p) + (XEe  (f 0 g)(h o @) (a: p)

mb t
= f [ f (g(mb) — g(5))"™ EL7 (w(g(mb) — g(5))”: p)h(g(s))d(g(s))

mb
- f (8(s) — 8@ EX" . (wig(s) - g(a))‘r;p)h(g(S))d(g(S))] J(8@)d(g(1)).

Proof. To prove the lemma, we have

mb t
f [ f (g(mb) — g(s))"™ EZ"N (w(g(mb) - g(s))”;mh(g(s))d(g(s»] £(g()d(g(1)
mb
= flgmb)) | (g(mb) — g(s)™™ B2 (w(g(mb) — g(5)7; p) h(g(s))d(g(s))
mb
- f ((g(mb) — g1 ELA (w(g(mb) = g(1)7: p)) F(3(1)h((1)d(g(1))
= f(g(mb)) (Y05 ho g) (mbs p) — (Y005 .(f 0 g)(h o g)) (mb: p).

By using Lemma 3.1, we have

mb t
f [ f (g(mb) — g(5))"™ EX74 ((g(mb) —g(S))‘T;P)h(g(S))d(g(S))] J'(8@)d(g(1))

_J g”b DI( ke o) ambs p)+ (075, o g) (@ p)]

(x2rke L (f 0 @)k o g)) (mb: p).

In the same way we have

mb mb
f [— (8(s) - g(a))T_lE(p,ﬁ,kgc(w(g(S) - g(@)”; p)h(g(s))d(g(s))] 1 (g(0)d(g(1)

_/ (gz(“)) (275 hog)(mbip) + (Y075 hog)(a:p)]

(00, (f 0 (0 @) (a5 p).

3.4)
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By adding (3.5) and (3.5), we get (3.4). |
By using Lemma 3.2, we prove the following theorem.

Theorem 3.3. Let f,g,h : [a,mb] —» R, 0 < a < mb, Range (g), Range (h) C [a, mb] be the functions
such that f be positive and (f o g) € Li[a, mb], where g be a differentiable and strictly increasing and
h be non-negative and continuous. Also let h(g(t)) = h(g(a) + g(mb) — g(t)) and |(f o g)’| is m-convex
on [a,b]. Then for k < r + R(0), the following inequality for fractional integral operators (1.10)
and (1.11) holds:

If (g(a@) +2f(g(mb)) (Y5758 ko g) mbi p) + (X075 hog)(asp) (3.5)

(T (F 0 @0 @) mb; p) + (X57KE, L, (f 0 )0 ) (@ )|

< | 2 lloo M(g(mb) — g(a))™!
- T(t+1)

(1= [If (g@) +mf (D)l

where || h ||o= sup |h(t)| and

tela,mb]

0= | [(sEme@\ 2] [ somn-gepn) )
ToT+2 g(mb)—g(a) g(mb)—g(a)

et | (g8 -s@) 2 [ smn-gcep) )
w2 |1\ b s@ S(mb)—g(a)

(s g@)\ T [ gomb)-g ()| (=) g(a) | ( gmb)-g( )\
Smb)—g(@ SGnb)—g(@ smbyg@ |\ gomb)-g(@)

Proof. Using Lemma 3.2, we have

1K, 1.k
) ngr,rT,a,i),mh ° g) (mb; p) + (gTﬁ',:,é,i),mb,h °© g) (a; p)]

(e (F 0 )0 2)) Gmb; p) + (X57K L (f 0 @)(ho ) s p)|

mb
<f
a

mb
- f (5(s) — (@)™ EX"5 (w(g(s) —g(a))“;mh(g(s))d(g(s»]

‘(f(g(a)) + f(g(mb))) (

[ f (8(mb) — g(s)™ ™ EL"5C (w(g(mb) — g(5))7: pA(g(5))d(8(s))

lf(g(t)ld(g(1)). (3.6)

Using the m-convexity of |(f o g)’| on [a, b], we have

g(mb) — g(1)
g(mb) — g(a)

81 — gla)

g(mb) — g(a) lf"(g®))l, 1 € [a,b]. (3.7)

lf" (gl < lf"(g(a)| +m

If we replace g(s) by g(a) + g(mb) — g(s) and using h(g(s)) = h(g(a) + g(mb) — g(s)), ¥’ = g~' (g(a) +
g(mb) — g(1)), in second integral in the followings, we get
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| () = st ELZ @ttty = 5507 pg(oD5)

mb
- f (8(5) — 8(@)" ™ ELT (w(g(s) — g(@)”: ph(g(s)d(g(s))

| [ oty = gt B Cwtgtmb) - 97 PG5 a5

- f (8(mb) — g(s)™ ™ EL"5C (w(g(mb) — g(5))”: pA(g(5))d(8(s))

f (8(mb) — g(s))™ EL"5 (w(g(mb) — g(5))”; ph(g(s))d(g(s)

I gmb) — g() ™ EXTE (w(g(mb) — g(s)7; ph(g(sDId(g(s)), 1 € [a, 222]

IA

(3.8)
I 1(8(mb) = g(s))™ " EX7 (w(g(mb) — g(5))7: pIh(g(s)Id(g(s)), 1 € [, mb].
By (3.6)—(3.8) and using absolute convergence of extended Mittag-Leffler function, we have

[ LD T (xprke o g) b ) + (V3 10 8) i)

(e (F 0 @) 0 @) Gmbs p) + (X2%E, L (f 0 @) ) @ p)|

atmb

7 +mb—t
< f ( f \(g(mb) — g(s))" ™ EL" (w(g(mb) —g(s))";p)h(g<s>)|d<g(s)))

g(mb)— 51,
X (g(mb) “e@ ! B et

Mu’(g(bm)d(g(m

mb t
a ( [ b = gt EL wtgmt) - g(o) p)h(g(s)>|d<g(s>))

% +mb—t
g(mb) —g(1) |, g - gla) 39)
o(mb) — o(a) — »)|d
X (g mb) — 2(@) |f (g(@)] + mg(mb) 2@ |f"(g( ))I) (g(0)
Il A lleo M o

 1(g(mb) - g(a))

{ f " (gmb) - g0 — (5() — g(@)")gmb) — g (glaNld(g(1)
+m f N ((g(mb) — g(1)" — (8(1) — g(@)Im(g(t) — g(@)If" (g(b)ld(g())
+ | ((8(0) = g(a)" ~ (g(mb) = g())")(g(mb) = gM)If" (g(@)ld(g(1))

zzzzzz

+m | (g(1) — g@)” = (g(mb) = g(0)Im(g(®) - g(a)lf (g(b))ld(g(®)|-

zzzzzz

After some calculations, we get
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at+mb

f " ((gmb) - g0 ~ (5(0) — g(@)") (g(mb) — g1 d(8(1))

mb
= f (80 = g(@)" = (glmb) = g0)") (81 ~ g(@)d(g()

T+1

_ (g(mb) — g(@)™ (smb) - g(%))T+2 ) (g(222) - g(a))

T+2 T+2 T+1
a+mb 7+2

b a+mb (g(T) - g(a))

(g(’" )-8 ))_ T+ D(T+2)
and
f " (gmb) - g)" ~ (g(t) - g(@)") (1) — g(@)d(g(®))
mb
= f ., (&)~ g(@)" = (g(mb) = g(0)") (g(mb) ~ g(1))d(g()
T+1
B (8(%) - g(a)) a+mb (g(mb) — g(a))™*
o T+ 1 (g(mb)_g( 2 ))+ T+ D(T+2)
(s — (@)™ (g0mb) — g(em))™
@+ hE+2 T+2
Using the above evaluations of integrals in (3.9), we get the required inequality (3.5). O

Remark 4. e In Theorem 3.3, if we put m = 1, then we get [31, Theorem ]
e In Theorem 3.3, if we put g = I and p = 0, then we get [3, Theorem 2.3].
e In Theorem 3.3, if we put g = I, p = 0 and m = 1, then we get [19, Theorem 2.3].
In Theorem 3.3, if we put g = I, then we get [4, Theorem |.
In Theorem 3.3, if we put g = I, m = 1, then we get [16, Theorem 2.3].
In Theorem 3.3, forw = p = 0, g = [ and h = 1 along with 7 = m = 1, then we get [9,
Theorem 2.2].
e In Theorem 3.3, if we putw = p =0, g =17 and h = 1 with m = 1, then we get [28, Theorem 3].

Theorem 3.4. Let f,g,h : [a,mb] — R, 0 < a < mb, Range (g), Range (h) C [a, mb] be the functions
such that f be positive, (f o g)’ € Li[a,mb], g be a differentiable and strictly increasing and h be
continuous. Also let h(g(t)) = h(g(a) + g(mb) — g(t)) and |(f o g)'|", g1 = 1 is m-convex. Then for
k < r+ R(0), the following inequality for fractional integral operators (1.10) and (1.11) holds:

‘(f(g(a)) +2f(g(mb))) [(ng;”rT’g’,cw’mh o g) (mb; p) + (8Tg;,k¢§,i),mb,h o g) (a; P)]

= [(eE7E o (F 0 @) 0 ) (mb: p) + (X075 (F 0 g)(h o @) (a p)]' (3.10)

< Nl M(gGmb) = g(a)™ L/ e@)it + mlf (b))l \ &
h T(t+1) 3 R

((1 _ gy (1 —Q)q'l)(

1 1
where || h ||o= sup |h(?)], i 1,
t€[a,mb]
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1 T+1
[ glmb)—g(exmy \TT g(4H)_g(a)
‘( Smb)—g(a) ) e ) and

| (s (st )
T+2 g(mb)—g(a) g(mb)—g(a)
et | f(sE8me@\ 2 [ sm-gcep) )
T T2 8(mb)—g(a) §(mb)—g(a)
(5@ (b)) | (s52)-0@) (b =g\
g(mb)—g(a) 8(mb)—g(a) g(mb)—g(a) 8(mb)—g(a) ’
Proof. Using Lemma 3.2, power mean inequality, (3.8) and m-convexity of |(f o g)’|?" respectively, we
have

o €

‘(f el + Sig (’"b))) (0575 ko g) mbs p) + (X575, o g) @i p)]

~[(ertke, . o @) o ) (mbi p) + (XS (f o 900 ) (@)

+m;H - (3.11)
[ (g(mb) — g(s))" " EX; ”f;c(w(g(mb) 8()7; p)h(g(s))d(g(s)) d(g(t))}
a+mb—t m
[ f (g(mb) — g(s))" ' EX: r6 (w(g(mb) — g(s))”; p)h(g(s)d(g(s)|1f '(g(t))l‘“]
Since |(f o g)'|?" is m-convex on [a, b], we have
g(mb) — g(1) g(1) — g(a)

| (g < —I (gla)I™ + —I (I (3.12)
f'(g oGmh) = I 2Gmb) = I

Using || h |lo= sup |h(?)], and absolute convergence of extended Mittag-Lefller function,

tela,mb]

inequality (3.11) becomes

‘(f S sS (g(’”"”) (Y55 ko g) (mbs p) + (Y275 hog) @i p)]

(e (F 0 @)t 0 ©)) Gmb; p) + (X5KE, L (f 0 @)(ho ) a p)|

1 . %[’ +mb—t
<l Al VT [f ( (g(mb) — g(S))”d(g(S))) d(g(n)

b t 1
" f ( f , <g(mb>-g(s»"‘d(g(s)))d(g(t))}

atmb

1 . ol a+mb—t
X hlles Mar [f (f (g(mb) — g(S))T_ld(g(S)))

g(mb) _g(t) v q1 g(t) _g(a)
X (g(mb) e B e@

b t
+ﬁ+mb (f b (g(mb)_g(s))T_ld(g(S)))

g(mb) —g(1) 1 g(r) —gla )
X(g(mb) e B e

q1

Lf (go)I" ) d(g(1)

1

If (g®)I” ) d(g(t))}

AIMS Mathematics Volume 5, Issue 6, 6325-6340.



6338

After integrating and simplifying above inequality, we get (3.10). O

Remark 5. e In Theorem 3.4, if we put m = 1, then we get [31, Theorem ].
e In Theorem 3.4, if we put g = I and p = 0, then we get [3, Theorem 2.6].
e In Theorem 3.4, if we put g = I, p = 0 and m = 1, then we get [19, Theorem 2.6].
e In Theorem 3.4, if we put g = I, then we get [4, Theorem ].
e In Theorem 3.4, if we put g = I,m = 1, then we get [16, Theorem 2.5].

4. Conclusions

This work provides the Hadamard and the Fejér-Hadamard inequalities for generalized extended
fractional integral operators involving monotonically increasing function. These inequalities are
obtained by using m-convex function which give results for convex function in particular. The
presented results are generalizations of several fractional integral inequalities which are directly
connected, consequently the well-known published results are quoted in remarks.
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