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Keywords: warped product; characterizations; integrability conditions; shape operators
Mathematics Subject Classification: 58C40, 53C42, 35P15

1. Introduction

The warped product is used to form a different semi-Riemannian manifolds. Such construction is
of benefit in General Relativity, black holes study and cosmological models. The product manifold
metric, at this case, turns to non-degenerate. The warped product manifolds were inaugurated by
Bishop and O’Neill [12] to extend the Riemannian product manifolds. This idea concerning warped
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product submanifolds was given by Chen [15, 16]. Extending such a concept, recently, Uddin
et al. [22] studied the non existence case of warped product semi-slant submanifold in terms of
M = Mϑ × f MT whith Mϑ and MT are proper slant and invariant submanifolds of the nearly
cosymplectic manifold. Using the warped product semi-slant submanifold of type M = MT × f Mϑ, the
geometric inequality is obtained in [22] which disclosed the connection between the second
fundamental form, slant immersion and warping function. Similarly, in [2, 4] it has been classified the
warped product submanifolds at Sasakian (cosymplectic) manifolds with pointwise slant embedding.
Characterization theorems for warped product submanifold at Kenmotsu manifold having the fiber is
the slant submanifold, were proved in [3, 5]. A number of authors extended the warped product
submanifolds idea in almost contact manifolds [as in [1, 6–8, 16] and references therein]. Studying the
previous articles, an important question is arisen. Why we choose nearly cosymplectic structure?
Answer is that cosymplectic structure does not admits any type of warped product semi-slant
submanifold [19], while a near cosymplectic manifold has a nontrivial warped product semi-slant
submanifolds in the shape of M = MT × f Mϑ see [22, 24]. Therefore such a class force to us to study
in a nearly cosymplectic manifold. At the first part of this present paper, we derive integrability
theorems under some restrictions.

Remark 1.1. We will use the following abberiation throughout the paper: “WPSSS” for Warped
product sem-slant submanifold, “WF” for warping function, “RM” for Riemannian manifold, “SSS”
for semi-slant submanifold and “NCM” for nearly cosymplectic manifold M̃.

More precisely, we prove the following finding for invariant distribution.

Theorem 1.1. An invariant distributionD⊕ < ζ > of a SSS M in a NCM M̃ is integrable if and only if
the following equality holds

2g(∇W0W1,W2) = csc2ϑ

(
g(h(W0,ϕW1),FW2)−2g(h(W0,W1),FTW2) + g(h(W1,ϕW0),FW1)

)
, (1.1)

for any W0,W1 ∈ Γ(D⊕ ζ) and W2 ∈ Γ(Dϑ).

Similarly, for a slant distribution we get the next integrability result.

Theorem 1.2. The slant distributionDϑ of a SSS M in a NCM M̃ is integrable if and only if

sin2ϑg(∇W2W3,W1) =
1
2

{
g(h(W1,W2),FTW3) + g(h(W1,W3),FTW2)

−g(h(ϕW1,W2),FW3)−g(h(ϕW1,W3),FW2) +η(W1)g(∇̃W3ζ,W2)
}
, (1.2)

for any W1 ∈ Γ(D⊕ ζ) and W2,W3 ∈ Γ(Dϑ).

The results Theorem 1.1 and 1.2 will required for proof of main theorem of this paper. Next, we
provide the characterizations of a class of SSS for being the class of WPSSS in a NCM by using the
result of Hiepko [18]. Hence, we give the characterization theorem for a WPSSS of a NCM which is
an important result of this study.
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Theorem 1.3. A semi-slant submanifold M of a NCM M̃ having the integrable distributions D and
Dϑ, is locally a WPSSS of the type M = MT × f Mϑ if and only if

(i) AFW2ϕW1 =(W1λ)W2, and (ii) AFTW2W1 =
1
3

cos2ϑ(W1λ)W2, (1.3)

for all W1 ∈ Γ(D⊕ ζ) and W2 ∈ Γ(Dϑ). For all W3 ∈ Γ(Dϑ), it is also satisfied that W3λ = 0, for a
positive function λ = ln f on MT .

As a direct result of Theorem 1.3 in a sense of Papaghiuc [21] which shown that the class of semi-
slant submanifold is generality of class of CR-submanifold with slant angle ϑ = π

2 . Therefore, we
substitute ϑ = π

2 in (1.3), then we get following result.

Corollary 1.1. A CR-submanifold M of NCM M̃ having the integrable distributions D and D⊥, is
locally the CR-warped product of type M = MT × f M⊥ if and only if

(i) AϕW2W1 = (ϕW1λ)W2, (1.4)

for all W1 ∈ Γ(D⊕ ζ) and W2 ∈ Γ(D⊥). For all W3 ∈ Γ(D⊥), it is also satisfied that Wλ = 0, for the
positive function λ = ln f on MT .

Remark 1.2. Interestingly to notice that Corollary 1.1 coincides with Theorem 3.1 in [24] and hence
Theorem 1.3 is generalized Theorem 3.1 in [24]. Also, we give immediately consequences of our
results.

Now, we give another interesting theorem

Theorem 1.4. A mixed totally geodesic WPSSS M = MT × f Mϑ in a NCM M̃ is a usual Riemannian
product manifold of MT and Mϑ.

The paper is organized as follows: In section 2, we highlight some preliminaries and formulas
which are useful for our literature. In section 3, we give the definition of semi-slant submanifolds and
provide the proofs of integrability theorems. In section 4, we define warped product manifolds and
give the proof of characterization theorem.

2. Preliminaries

The odd-dimensional C∞-manifold (M̃,g) associated to almost contact structure (ϕ,ζ,η) is referred
to as the almost contact metric manifold fulfilling coming properties:

ϕ2 = −I +η⊗ ζ, η(ζ) = 1, ϕ(ζ) = 0, η◦ϕ = 0, (2.1)
g(ϕW1,ϕW2) = g(W1,W2)−η(W1)η(W2), η(W1) = g(W1, ζ), (2.2)

∀ W1,W2 ∈ Γ(T M̃) (see, for instance [10, 11]). A cosymplectic manifold [17, 22, 23] regarding
Riemannian connection is contained the almost contact metric manifold which satisfied the next
equation

(∇̃W1ϕ)W1 = 0, (2.3)
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It follows for a nearly cosymplectic manifold

(∇̃W1ϕ)W2 + (∇̃W2ϕ)W1 = 0, (2.4)

for all vector fields W1,W2 are tangent to M̃. The Gauss and Weingarten formulas which specifying
the relation between Levi-Civitas connections ∇ on a submanifold M and ∇̃ on ambient manifold M̃
are given by (for more detail see [16])

∇̃W1W2 = ∇W1W2 + h(W1,W2) (2.5)

∇̃W1ξ = −AξW1 +∇⊥W1
ξ, (2.6)

for every W1, W2 ∈ Γ(T M) and ξ ∈ Γ(T⊥M), in which h and Aξ have this next relation

g(h(W1,W2), ξ) = g(AξW1,W2) (2.7)

The next relation is that

ϕW1 = TW1 + FW1, (2.8)

in which FW1 and TW1are normal and tangential elements of ϕW1, respectively. If M is invariant and
anti-invariant then FW1 as well as TW1 are zero, in the same order. Similarly, we have

ϕξ = tξ+ f ξ (2.9)

where tξ (resp. f ξ) are tangential (resp. normal) components of ϕξ. The covariant derivative of the
endomorphism ϕ is explained by

(∇̃W1ϕ)W2 = ∇̃W1ϕW2−ϕ∇̃W1W2, ∀W1,W2 ∈ Γ(T M̃). (2.10)

In case the tangential and normal elements of (∇̃W1ϕ)W2 using PW1W2 and QW1W2, for a nearly
cosymplectic manifold, it is satisfied that

(i) PW1W2 +PW2W1 = 0, (ii) QW1W2 +QW2W1 = 0, (2.11)

where W1,W2 are tangential to M̃. For more details on properties of P and Q, see [22].
There is a motivating class of submanifolds presented as slant submanifolds class. For any not zero

vector W1 tangential to M about p, in which W1 is not proportional to ζp, 0 ≤ ϑ(W1) ≤ π/2 is referred
to the angle between ϕW1 and TpM which is named as Wirtinger angle. If ϑ(W1) is constant for any
W1 ∈ TpM− < ζ > at point p ∈ M, therefore M is referred to as the slant submanifold [13] and ϑ is then
slant angle of M. The following necessary and sufficient condition is an important for this paper which
known as characterization slant submanifold and was proved in [13], a submanifold M is slant if and
only if the equality holds

T 2 = λ(−I +η⊗ ζ), (2.12)

for a constant λ ∈ [0,1] in which λ = cos2ϑ, where T is an endomorphism defined in (2.8). The
following alliances are resulted from Eq (2.12).

g(TW1,TW2) = cos2ϑ
{
g(W1,W2)−η(W1)η(W1)

}
(2.13)
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g(FW1,FW2) = sin2ϑ
{
g(W1,W2)−η(W1)η(W2)

}
, (2.14)

∀ W1,W2 ∈ Γ(T M). The following result which was derived in [9] is the necessary and sufficient
condition M to remain slant if

(a) tFW1 =sin2ϑ(−W1 +η(W1)ζ)
and

(b) f FW1 =−FTW1, (2.15)

for any W1 ∈ Γ(T M).

3. Semi-slant submanifolds

A generality of CR-submanifold in a almost Hermitian manifold by utilizing slant distribution was
described using N. Papaghiuc [21]. Such submanifolds are referred to as semi-slant submanifold. This
is determined by Cabererizo [14] in an almost contact manifold, i.e.,

Definition 3.1. The Riemannian submanifold M is called a semi-slant in M̃, in case it is spanned by
two perpendicular distributions D and Dϑ that is T M = Dϑ ⊕D⊕ 〈ζ〉. For more classification see
in [9, 22].

Remark 3.1. A semi-slant submanifold is referred to as a mixed totally geodesic if h(W1,W2) = 0, for
any W1 ∈ Γ(Dϑ) and W2 ∈ Γ(D).

Now, we construct the integrability conditions of the distributions involving in the meaning of a semi-
slant submanifold in a nearly cosymplectic manifold.

Proof of Theorem 1.1 and 1.2

Proof of Theorem 1.1 From the Lie bracket, we get

g([W0,W1],W2) = g(∇̃W0W1,W2)−g(∇̃W1W0,W2).

From (2.2) and ζ is orthogonal toDϑ, we get

g([W0,W1],W2) = g(∇̃W0W1,W2)−g(ϕ∇̃W1W0,ϕW2).

Then by utilizing (2.8) and (2.11), we attain

g([W0,W1],W2) =g(∇̃W0W1,W2) + g(∇̃W1W0,ϕTW2) + g((∇̃W1ϕ)W0,FW2)
− (∇̃W1ϕW0,FW2).

Thus by (2.3), (2.8) as well as (2.5), we have

g([W0,W1],W2) =g(∇̃W0W1,W2) + g(∇̃W1W0,T 2W2) + g(∇̃W1W0,FTW2)
−g((∇̃W0ϕ)W1,FW2)−g(h(W1,ϕW0),FW2).
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Utilizing (2.13), (2.5) as well as (2.11), resulted in

g([W0,W1],W2) =g(∇̃W0W1,W2)− cos2ϑg(∇̃W1W0,W2) + g(h(W0,W1),FTW2)
−g(∇̃W0ϕW1,FW2)−g(∇̃W0W1,ϕFW2)−g(h(W1,ϕW0),FZ).

Using (2.9) and (2.5), then we derive

g([W0,W1],W2) =g(∇̃W0W1,W2)− cos2ϑg(∇̃W1W0,W2) + g(h(W0,W1),FTW2)
−g(h(W0,ϕW1),FW2)−g(∇̃W0W1, tFW2)−g(∇̃W0W1, f FW2)
−g(h(W1,ϕW0),FW2).

Finally, from (2.15), we achieve that

g([W0,W1],W2) =g(∇̃W0W1,W2)− cos2ϑg(∇̃W1W0,W2) + 2g(h(W0,W1),FTW2)

+ sin2ϑg(∇̃W0W1,W2)−g(h(W0,ϕW1),FW2)−g(h(W1,ϕW0),FW2).

That is the result which we wanted.

Corollary 3.1. The distribution D⊕ ζ is the totally geodesic foliation of a SSS M in NCM M̃ if and
only if

g(h(W0,W1),FTW2) =
1
2

{
g(h(W0,ϕW1),FW2) + g(h(W1,ϕW0),FW2)

}
,

for all W0,W1 ∈ Γ(D⊕ ζ) and W2 ∈ Γ(Dϑ).

Proof. From the total geodesic folition defintion, for every W0,W1 ∈ Γ(D⊕ζ), then ∇W0W1 ∈ Γ(D⊕ζ).
Putting this in the Eq (1.1), we get required result. �

Proof of Theorem 1.2

By the property of Lie bracket, we have

g([W2,W3],W0) = g(∇̃W2W3,W0)−g(∇̃W3W2,W0).

By (2.2), we get

g([W2,W3],W0) = g(∇̃W2W3,W0)−g(ϕ∇̃W3W2,ϕW0) +η(W0)g(∇̃W3ζ,W2).

Using (2.11), we obtain

g([W2,W3],W0) = g(∇̃W2W3,W0) + g((∇̃W3ϕ)W2,ϕW0)−g(∇̃W3ϕW2,ϕW0) +η(W0)g(∇̃W3ζ,W2).

Thus from (2.3) and (2.8), then above equation take the form

g([W2,W3],W0) =g(∇̃W2W3,W0)−g((∇̃W2ϕ)W3,ϕW0)−g(∇̃W3TW2,ϕW0)
−g(∇̃W3 FW2,ϕW0) +η(W0)g(∇̃W3ζ,W2).
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Utilizing (2.2), (2.11) and (2.6), we achieve that

g([W2,W3],W0) =2g(∇̃W2W3,W0)−g(∇̃W2ϕW3,ϕW0) + g(ϕ∇̄W3TW2,W0)
+ g(h(ϕW0,W3),FW2) +η(W0)g(∇̃W3ζ,W2)

Utilizing (2.8), (2.2) and (2.11), we get

g([W2,W3],W0) =2g(∇̃W2W3,W0) + g(h(ϕW0,W3),FW2) + g(ϕ∇̃W2TW3,W0)
−g(∇̃W2 FW3,ϕW0)−g((∇̃W3ϕ)TW2,W0) + g(∇̃W3ϕTW2,W0)
+η(W0)g(∇̃W3ζ,W2).

From (2.13), (2.6) (2.11) and (2.8), we obtain

g([W2,W3],W0) =2g(∇̃W2W3,W0) + g(h(ϕW0,W3),FW2) + g(∇̃W2T 2W3,W0)

+ g(∇̃W2 FTW3,W0) + g(h(ϕW0,W2),FW3)− cos2ϑg(∇̃W3W2,W0)
−g(AFTW2W0,W3)−g(PW2TW3,W0)−g(PW3TW2,W0)
+η(W0)g(∇̃W3ζ,W2).

Using (2.13) and (2.6), we derive

g([W2,W3],W0) =2g(∇̃W2W3,W0) + g(h(ϕW0,W3),FW2) + g(h(ϕW0,W2),FW3)

−g(AFTW2W0,W3)−g(AFTW3W0,W2)− cos2ϑg(∇̃W3W2,W0)

− cos2ϑg(∇̃W2W3,W0)) +η(W0)g(∇̃W3ζ,W2)
−g(PW2TW3,W0)−g(PW3TW2,W0). (3.1)

Now we compute last two terms of above equation by using property P (see [13]) as follows

g(PW2TW3,W0) =−g(TW3,PW2W0) = −(ϕW3,PW2W0)
=g(W3,ϕPW2W0)
=−g(W3,PW2ϕW0) = (PW2W3,ϕW0).

Thus by the hypothesis and property of Lie Bracket in Eq (3.1), we arrive at

sin2ϑg([W2,W3],W0) =2g(∇̃W2W3,W0) + g(h(ϕW0,W3),FW2) + g(h(ϕW0,W2),FW3)
−g(AFTW2W0,W3)−g(AFTW3W0,W2) +η(W0)g(∇̃W3ζ,W2)

−2cos2ϑg(∇̄W2W3,W0))−g(PW2W3 +PW3W2,ϕW0).

Applying the structure equation (2.12), we obtain

sinθ g([W2,W3],W0) =2sin2ϑg(∇̃W2W3,W0) + g(h(ϕW0,W3),FW2) + g(h(ϕW0,W2),FW3)
−g(AFTW2W0,W3)−g(AFTW3W0,W2) +η(W0)g(∇̃W3ζ,W2).

Hence, our assertion has got proven. The proof is completed.

An application of Theorem 1.2, we introduce
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Corollary 3.2. The slant distributionDϑ of SSS M in a NCM M̃, is the totally geodesic foliation in M
if and only if

g(h(ϕW0,W3),FZ2) + g(h(ϕW0,W2),FW3) = g(AFTW2W0,W3) + g(AFTW3W0,W2).

for any W0 ∈ Γ(D⊕ ζ) and W2,W3 ∈ Γ(Dϑ).

Proof. From the definition totally geodesic folition, for every W2,W3 ∈ Γ(Dϑ), then ∇W2W3 ∈ Γ(Dϑ).
Inserting this in the Eq (1.2), we get required result. �

4. Warped product submanifolds

Suppose M = M1 × f M2 is the smooth Riemannian manifold associating to warped product metric
g = g1 + f 2g2 in which f is a WF on M. This idea was given in [12] and derived the formula;

∇W2W0 = ∇W0W2 = (W0 ln f )W2, (4.1)

For all W0,W1 ∈ Γ(T M1) and W2,W3 ∈ Γ(T M2). The gradient of ln f is denoted by ∇ ln f and defined
as:

g(∇ ln f ,W0) = W0 ln f .

Remark 4.1. The warped product manifold M = M1× f M2 becomes trivial if f is a constant function.

Remark 4.2. The base M1 is totally geodesic and fiber M2 is totally umbilical in WPM M = M1× f M2.

The two kinds of the warped product submanifolds are described as the products between proper
slant submanifolds and invariant submanifolds follows by Definition 3.1, and it can be expressed as:

(i) M = Mϑ× f MT
(ii) M = MT × f Mϑ,

where Mϑ and MT are slant as well as invariant submanifolds, in the same order. For the first case,
we recall the following finding which obtained by Uddin et al. [22] which stats that a WPSSS of type
M = Mϑ× f MT does not exist in a NCM M̃. Therefore, we shall consider non-trivial WPSSS in terms
of M = MT × f Mϑ in a NCM M̃. The following results were proved in [22] related to such type warped
product semi-slant in nearly cosymplectic manifold.

Lemma 4.1. [22] A WPSSS M = MT × f Mϑ in a NCM M̃ has the coming relations

(i) ζ ln f = 0,
(ii) g(h(W0,W1),FW2) = 0,

(iii) g(h(W2,ϕW0),FW2) = (W0λ)||W2||
2,

(iv) g(PW0W2,TW2) = 2g(h(W0,W2),FTW2),

for all W2 ∈ Γ(T Mϑ) and W0,W1 ∈ Γ(T MT ).

There is a another interesting lemma.
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Lemma 4.2. [22] A WPSSS M = MT × f Mϑ in a NCM M̃ satisfying the relation

g(h(W0,W2),FTW2) = −g(h(W0,TW2),FW2),=
1
3

(W0 ln f )cos2ϑ||W2||
2,

for all W2 ∈ Γ(T Mϑ and W0 ∈ Γ(T MT ).

Recalling the result of S. Hiepko [18], it is suitable to prove such characterization theorems for a
WPSSS. The main result will be proved now.

Proof of Theorem 1.3

Let M = MT × f Mϑ is a WPSSS in a NCM M̃ with Mϑ and MT are proper slant and invariant
submanifolds of M̃. Therefore, the first part direct follows Lemmas 4.1 (iii) and Lemma 4.2 together
Eq (2.7).

Conversely let M is a SSS with condition (1.3) is satisfied. As we assumed that invariant distribution
is integrable in hypothesis of theorem. From Theorem 1.1, we have necessary and sufficient condition
of the integrability ofD⊕ ζ is

2sin2ϑg(∇W0W1,W2) = g(AFW2ϕW0,W1) + g(AFW2ϕW1,W0)−2g(AFTW2W0,W1).

for W2 ∈ Γ(Dϑ) and W0,W1 ∈ Γ(D⊕ ζ). Thus relation (1.3)(i)-(ii) imply that

2sin2ϑg(∇W0W1,W2) = (W0λ)g(W2,W1) + (W1λ)g(W0,W2)−
2
3

cos2ϑ(W0λ)g(W1,W2).

which implies that

sin2ϑg(∇W0W1,W2) = 0.

As we have seen that Dϑ is proper slant then sinϑ , 0, which means that ∇W0W1 ∈ Γ(D⊕ ζ) for any
W0,W1 ∈ Γ(D⊕ ζ), it is concluded that the leaves ofD⊕ ζ are totally geodesic in M into an immersion
of M̃. Also from Theorem 1.2, it can be seen that the slant distribution Dϑ is integrable if and only if
the following equation holds

sin2ϑg(∇W2W3,W0) =
1
2

{
g(h(W0,W2),FTW3) + g(h(W0,W3),FTW2)

−g(h(ϕW0,W2),FW3)−g(h(ϕW0,W3),FW2) +η(W0)g(∇̃W3ζ,W2)
}
.

Then above equation can be written by using (2.7).

2sin2ϑg(∇W2W3,W0) =g(AFTW2W0,W3))−g(AFW2ϕW0,W3)
+ g(AFTW3W0,W2)−g(AFW3ϕW0,W2) +η(W0)g(∇̃W3ζ,W2).

Thus from (1.3)(i)-(ii), we obtain

2sin2ϑg(∇W2W3,W0) =
2
3

cos2ϑ(W0λ)g(W2,W3)−2(W0λ)g(W3,W2) +η(W0)g(∇̃W3ζ,W2).
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It implies that

sin2ϑg(∇W2W3,W0) =

(cos2ϑ−3
3

)
(W0λ)g(W2,W3) +

1
2
η(W0)g(∇̃W3ζ,W2). (4.2)

Moreover, we also assumed that Dϑ to be integrable, thus we consider a integral manifold Mϑ of Dϑ,
that is, Mϑ is leaf of integrable distribution Dϑ and hϑ is the second fundamental form resulting from
immersion Mϑ in M. Therefore, equation (4.2) becomes

g(hϑ(W2W3,W0) =
1
3

{
cot2ϑ−3csc2ϑ

}
(W0λ)g(W2,W3) +

1
2

csc2ϑη(W0)g(∇̃W3ζ,W2). (4.3)

By interchanging W2 and W3 in above equation, we obtain

g(hϑ(W2W3,W0) =
1
3
{
cot2ϑ−3csc2ϑ

}
(W0λ)g(W2,W3) +

1
2

csc2ϑη(W0)g(∇̃W2ζ,W3). (4.4)

Using (4.3) and (4.4), we attain

2g(hϑ(W2W3,W0) =
2
3

{
cot2ϑ−3csc2ϑ}(W0λ)g(W2,W3)

+
1
2

csc2ϑη(W0){g(∇̃W2ζ,W3) + g(∇̃W3ζ,W2)
}
.

Thus from the definition of gradient and killing vector field ξ for a nearly cosymplectic manifold [see
(2.1) in [17]], we get

g(hθ(W2W3,W0) =
1
3

{
cot2ϑ−3csc2ϑ

}
g(W2,W3)g(∇λ,W0),

which leads to

hϑ(W2,W3) =
1
3

{
cot2ϑ−3csc2ϑ

}
g(W2,W3)∇λ.

Hence,it is concluded that Mϑ is totally umbilical in M having the following mean curvature vector

Hϑ =
1
3

(cot2ϑ−3csc2ϑ)∇λ,

where ∇λ is the gradient of λ. However, by direct computations as we known that Z(λ) = 0, we derive

g(∇ϑW2
∇λ,W0) = −g(∇λ,∇ϑW0

W2). (4.5)

Furthermore, ∇λ ∈ Γ(T MT ) as MT is a totally geodesic in M by Remark 4.2, consequently

∇ϑW0
W2 ∈ Γ(T Mϑ),

for any W0 ∈ Γ(D⊕ ζ) and W2 ∈ Γ(Dϑ). By equation (4.5), we get

g(∇ϑW2
∇λ,W0) = 0.

This shows that the mean curvature vector Hθ of Mϑ is parallel reciprocal to the normal connection
∇ϑ of Mϑ in M. Therefore, the spherical condition is fulfilled, such that Mϑ is an extrinsic sphere in
M. Using the result of Hiepko (cf. [18]), M is the non-trivial warped product submanifold of the form
M = MT × f Mϑ, in which MT and Mϑ are the integral manifold ofD⊕ ζ andDϑ, in the same order. It
completes this proof.
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Proof of Theorem 1.4

Thus from Lemma 4.2, for all W2 ∈ Γ(T Mϑ and W1 ∈ Γ(T MT ), we get

g(h(W1,W2),FTW2) = −g(h(W1,TW2),FW2) +
1
3

(W1 ln f )cos2ϑ||W2||
2.

As we assumed that M is mixed totally geodesic submanifold, that is h(W1,W2) = h(W1,TW2) = 0, for
all W2 ∈ Γ(Dϑ) and W0 ∈ Γ(D⊕ ζ).

This implies cos2ϑ(W1 ln f )||W2||
2 = 0. But M is proper slant submanifold, then cosϑ , 0, that is

(W1 ln f )||W2||
2 = 0. Hence (W1 ln f ) = 0, i.e, the warping function f is a constant on M and the proof

is completed via Remark 4.1.
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