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1. Introduction

The Choquet integral with respect to a fuzzy measure was proposed by Murofushi and Sugeno [13].
It was introduced by Choquet [4] in potential theory with the concept of capacity in 1950s. So far
many studies have been devoted to a discrete case because their wide application in decision-making.
In fact, there are many applications of the Choquet integral as an aggregation function, it has been
used for utility theory in the field of economic theory [3, 6], fuzzy reasoning [21], pattern recognition,
information fusion and data mining [6, 14], in particular, for multi-criteria decision making [7], and
also as a psychological model of subjective preference [22], and so on. As Sugeno’s description in [19],
due to a wide range of applications for Choquet integral in decision problems, so far many studies have
been devoted to a discrete case. However, the analytic properties of the Choquet integrals of set-valued
functions with respect to fuzzy measure have not been fully discussed, including the properties of the
primitives functions of Choquet integrals, the representation of Choquet integrals and the derivative of
integral primitive functions in some sense, and so on. Indeed, integrals of set-valued function had been
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studied by Aumann [1]. Jang et al. [10] defined Choquet integrals of set-valued functions by using
the measurable selection functions, that is by the Aumann’s approach, and it has been discussed and
generalized by Gong, Jang, Pap et al. [8, 10, 11, 16, 18]. In 2018, Paternain et al. [17] proposed a new
approach for the interval-valued Choquet integral that takes into account every possible permutation
fitting to the considered ordinal structure of data. Wu et al. [9] defined real-valued Choquet integrals
for set-valued functions by

(C)
∫

A
F(x)dµ =

∫ ∞

0
µ(Fα ∩ A)dα, (1)

where F is a measurable set-valued function, Fα = {x|F(x) ∩ [α,∞] , ∅}, α ≥ 0. Specially, it could
be computed by the Choquet integral of a real-valued function, that is (C)

∫
A

F(x)dµ = (c)
∫

A
f (x)dµ,

where f (x) = sup F(x), x ∈ X.
It is well known that set-valued functions F(t) = [0, et] and G(t) = [t, et] defined on a compact

convex set [0, 1] are quite different, but the integral values are equal by Eq (1) since their sup F(x) and
sup G(x) are equal completely. Based on this consideration, we propose a new kind of real-valued major
Choquet integral, real-valued minor Choquet integral and interval-valued Choquet integrals for set-
valued functions, and investigate some properties, such as the representations of the Choquet integral
of set-valued functions with respect to a fuzzy measure, the characteristics of the primitive of Choquet
integral for set-valued functions as a Radon-Nikodym property in some sense, and so on. It shows
that these results we obtained in this paper are consistent with the results of [10, 11] for a compact-
convex-set-valued function, and we notice that the method proposed in this paper is more simply than
the calculations in [10, 11].

This paper is organized as follows. Section 2 presents some concepts on fuzzy measures and
Choquet integral of set-valued functions. Also, the main definition of Choquet integral of set-valued
functions in this paper is given. Section 3 defines major and minor Choquet integrals for set-valued
function and shows the basic transformation theorem. Section 4 shows the representation theorem of
Choquet integrals for set-valued functions as a Radon-Nikodym properties. Section 5 discusses some
properties of the primitives functions of Choquet integrals. Section 6 introduces a simple representation
of Choquet integral for set-valued functions with respect to a distorted probability measure. Section 7
concludes this paper.

2. Preliminaries and Definitions

This section introduces some notations and basic concepts on fuzzy measures, Choquet integrals,
set-valued functions and distorted fuzzy measure. Also, the main definition of Choquet integral of
set-valued functions in this paper is given.

Let X be a nonempty set and A a σ−algebra on X. A fuzzy measure on X is a set function µ :
A −→ [0,∞] satisfying the following conditions [23]:

(1) µ(φ) = 0;
(2) A ∈ X, B ∈ X, A ⊂ B implies µ(A) ≤ µ(B);
(3) In X, if A1 ⊂ A2 · · · ⊂ An · · · and

⋃∞
0 An ∈ A, then µ(

⋃∞
n=1 An) = lim

n→∞
µ(An);

(4) In X, if A1 ⊃ A2 · · · ⊃ An ⊃ · · · , An ∈ A, and there exist a n0, such that µ(An0) < ∞, then
µ(
⋂∞

n=1 An) = lim
n→∞

µ(An).
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If µ is a fuzzy measure, then (X,A, µ) is said to be a fuzzy measure space. R+ = [0,∞] denotes the
set of extended nonnegative real numbers. P(R+)\{∅} denotes the class of all the nonempty subsets of
R+.

Remark 2.1. Let m : R+ −→ R+ be a continuous and increasing function and m(0) = 0. A fuzzy
measure µ = µm, a distorted Lebesgue measure, is defined by µm(·) = m(λ(·)). Similarly, let m :
[0, 1] −→ [0, 1] and m(0) = 0. A fuzzy measure µ = µm = m ◦ p, a distorted Probability measure, is
defined by µm(·) = m(p(·)).

Note that µm is induced from the Lebesgue measure λ a monotone transformation where µm([a, b]) =

m(λ([a, b])) = m(b − a).

Definition 2.1. [4] Let (X,A, µ) be a fuzzy measure space, f : X −→ R+ be a measurable real-valued
function. Then the Choquet integral of f on A is defined as

(c)
∫

A
f dµ =

∫ ∞

0
µ( fα ∩ A)dα,

where fα = {x| f (x) ≥ α}, α ≥ 0, and the right part is the Lebesgue integral.

Let (X,A, µ) be a fuzzy measure space. A set-valued mapping F : X −→ P(R+)\{∅} is said to be
measurable if its graph is measurable, i.e., {(w, r) ∈ X × R+ : r ∈ F(w)} ∈ A ×B, where B is the Borel
algebra of R+ (refer to [5]).

Definition 2.2. [9] Let (X,A, µ) be a fuzzy measure space, F : X −→ P(R+)\{∅} be a measurable
set-valued function. Then the real-valued Choquet integral of F on A is defined as

(C)
∫

A
Fdµ =

∫ ∞

0
µ(Fα ∩ A)dα,

where Fα = {x|F(x) ∩ [α,∞] , ∅}, α ≥ 0, and the right part is the Lebesgue integral.

Remark 2.2. (i) Instead of (C)
∫

X
Fdµ, we will write (C)

∫
Fdµ;

(ii) If F is a Choquet integrably bounded set-valued function, then F is Choquet integrable;
(iii) A set-valued function F : X −→ R+ is said to be measurable if

F−1(A) = {x ∈ X|F(x) ∩ A , ∅} ∈ A

for every A ∈ A(R+), whereA(R+) is the Borel algebra of R+.

Note that if F(x) degenerates into a real-valued function f (x), Fα ∩ A = {x| f (x) ≥ α}(α ≥ 0),
then the above mentioned definition of the Choquet integral of set-valued functions is consistent with
Definition 2.1. Furthermore, unless otherwise stated, in this paper, (C)

∫
, (c)
∫
,
∫

respectively denote
the Choquet integral of set-valued functions, real-valued functions and the Lebesgue integral.

Definition 2.3. Let (X,A, µ) be a fuzzy measure space, F : X −→ P(R+)\{∅} be a measurable set-
valued function. Then major Choquet integral, minor Choquet integral, Choquet integrals of F on A
are defined respectively by

(C)
∫

A
Fdµ =

∫ ∞

0
µ(Fα ∩ A)dα,
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(C)
∫

A

Fdµ =

∫ ∞

0
µ(A \ {x|F(x) ∩ [0, α) , ∅})dα,

and

(C)
∫

A
Fdµ = [(C)

∫
A

Fdµ, (C)
∫

A
Fdµ],

where Fα = {x|F(x) ∩ [α,∞] , ∅}, α ≥ 0. right part is the Lebesgue integral.

Remark 2.3. When F(x) degenerates into a nonnegative real-valued function f (x), then Fα ∩ A =

{x| f (x) ≥ α}(α ≥ 0) and A \ {x|F(x) ∩ [0, α) , ∅} = {x|F(x) ∩ [α,+∞] , ∅}. Thus, Definition 3.2 is
consistent with the classical Choquet integral of real-valued functions.

Lemma 2.1. [9] Let F : X −→ P(R+)\{∅} be a measurable set-valued function, E ∈ A. Then
(1) (C)

∫
E

Fdµ =
∫ ∞

0
µ(Fᾱ ∩ E)dα, where Fᾱ = {x|F(x) ∩ (α,∞] , ∅}, α ≥ 0;

(2) (C)
∫

E
Fdµ = (c)

∫
E

gdµ, where g(x) = sup F(x), x ∈ E.

Theorem 2.1. Let (X,A, µ) be a fuzzy measure space, F : X −→ P(R+)\{∅} be a measurable set-valued
function, A ∈ A, f +(x) = sup F(x), f −(x) = inf F(x). Then

(C)
∫

A
Fdµ = (c)

∫
A

f +dµ,

(C)
∫

A

Fdµ = (c)
∫

A
f −dµ,

and
(C)
∫

A
Fdµ = [(c)

∫
A

f −dµ, (c)
∫

A
f +dµ].

Proof. Since (C)
∫

A
Fdµ =

∫ ∞
0
µ(Fα ∩ A)dα, then by Lemma 2.1 (2), we have

(C)
∫

A
Fdµ = (c)

∫
A

f +dµ.

Let Fα = {x|F(x) ∩ [α,∞] , ∅}, f −α = {x| f −(x) ∩ [α,+∞] , ∅}, then ( f −α )c = {x| f −(x) ∩ [0, α) , ∅}. It
is easy to prove that ( f −α )c = {x|F(x) ∩ [0, α) , ∅}. In fact, for any t ∈ ( f −α )c, inf F(t) < α, there exists
a y ∈ F(t) such that y < α. It means that F(t) ∩ [0, α) , ∅. That is to say, t ∈ {x|F(x) ∩ [0, α) , ∅}.
Therefore, ( f −α )c ⊆ {x|F(x) ∩ [0, α) , ∅}.

Conversely, for any t ∈ {x|F(x) ∩ [0, α) , ∅}, F(t) ∩ [0, α) , ∅, there exists a y ∈ F(t) such that
y < α. It follows that inf F(t) < α, i.e. f −(t) < α. That is, {x|F(x) ∩ [0, α) , ∅} ⊆ ( f −α )c. Thus
( f −α )c = {x|F(x) ∩ [0, α) , ∅}. We obtain

(c)
∫

A
f −dµ =

∫ ∞

0
µ( f −α ∩ A)dα =

∫ ∞

0
µ(A \ ( f −α )c)dα

=

∫ ∞

0
µ(A \ {x|F(x) ∩ [0, α) , ∅})dα = (C)

∫
A

Fdµ.

Naturally,

(C)
∫

A
Fdµ = [(c)

∫
A

f −dµ, (c)
∫

A
f +dµ].

The proof is complete. �
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Example 2.1. Let ([0, 1],A, µ) be a fuzzy measure space, F(x) = [0, ex] and G(x) = [x, ex] be set-
valued functions on [0, 1]. Then f −(x) = inf F(x) = 0, f +(x) = sup F(x) = ex, g−(x) = inf G(x) =

x, g+(x) = sup G(x) = ex. For f +(x) = ex, we have

f +
α = {x|ex ≥ α} =


[0, 1], 0 ≤ α ≤ 1,
[lnα, 1] 1 < α ≤ e,
∅, α > e.

It follows by Definition 2.1,

(c)
∫

[0,1]
f +(x)dµ =

∫ +∞

0
µ( f +

α ∩ [0, 1])dα =

∫ 1

0
µ([0, 1])dα +

∫ e

1
µ([lnα, 1])dα

= µ([0, 1]) +

∫ e

1
µ([lnα, 1])dα.

Obviously, (c)
∫

[0,1]
f −(x)dµ = 0.

Thus, by the Theorem 2.1,

(C)
∫

[0,1]
F(x)dµ = [0, µ([0, 1]) +

∫ e

1
µ([lnα, 1])dα].

For g−(x) = inf G(x) = x, we have

g−α = {x|x ≥ α} =

{
[α, 1], 0 ≤ α ≤ 1,
∅, α > 1.

It follows by Definition 2.1,

(c)
∫

[0,1]
g−(x)dµ =

∫ +∞

0
µ(g−α ∩ [0, 1])dα =

∫ 1

0
µ([α, 1])dα.

Thus, by the Theorem 2.1,

(C)
∫

[0,1]
G(x)dµ = [

∫ 1

0
µ([α, 1])dα, µ([0, 1]) +

∫ e

1
µ([lnα, 1])dα].

However, if we define Choquet integral of F on A according to Definition 2.2, and by Lemma 2.1, the
Choquet integrations of F and G equal to µ([0, 1]) +

∫ e

1
µ([lnα, 1])dα, although the interval-valued

functions F and G are different on [0, 1].

Remark 2.4. Theorem 2.1 shows that Definition 2.3 is consistent with the results of Aumann-type
Choquet integral in [11] for interval-valued functions, but we notice that the method proposed in this
paper is simpler than the calculations in [11].
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3. The representation and properties for the Choquet integral of the set-valued functions

Let µ be a distorted fuzzy measure and consider µ([τ, t]) for a closed interval[τ, t], then µ([τ, t])
is increasing for t and decreasing for τ. Throughout the paper, let m(t) and f (t) be continuously
differentiable functions. Let µ([τ, t]) be differentiable with respect to τ on [0, t] for every t > 0.
We require the regularity condition that µ({t}) = 0 holds for every t ≥ 0. Let µ′([τ, t]) denote
(∂/∂τ)µ([τ, t]), if µ is a distorted Lebesgue measure µm, then µ′([τ, t]) = −m′(t − τ). For set-valued
function F : X −→ P(R+)\{∅}. For convenience, f +(x) = sup F(x) and f −(x) = inf F(x) respectively
denotes major function and minor function of F(x). Furthermore, the definitions of major Choquet
integral, minor Choquet integral and interval-valued Choquet integral for set-valued function, play
important roles in discussing the problems concerning the representation theorem.

Definition 3.1. Let F : X −→ P(R+)\{∅} be a strictly monotone increasing set-valued function, if major
function f +(x) = sup F(x) and minor function f −(x) = inf F(x) are strict monotone increasing.

Lemma 3.1. [19] Let f (t) be nonnegative measurable and strictly increasing function. Then the
Choquet integral of f (t) with respect to µ on [0, t] is represented as

(c)
∫

[0,t]
f (τ)dµ(τ) = −

∫ t

0
µ′([τ, t]) f (τ)dτ,

In particular, for µ = µm, then

(c)
∫

[0,t]
f (τ)dµm(τ) =

∫ t

0
m′(t − τ) f (τ)dτ.

Theorem 3.1. Let F : X −→ P(R+)\{∅} be a measurable and strictly increasing set-valued function,
f +(x) and f −(x) be continuous differentiable real-valued functions, where f −(x) = inf F(x), f +(x) =

sup F(x). Then the Choquet integral of F(t) with respect to µ on [0, t] is represented as

(C)
∫

[0,t]
F(τ)dµ = −

∫ t

0
µ′([τ, t]) f +(τ)dτ,

(C)
∫

[0,t]

F(τ)dµ = −

∫ t

0
µ′([τ, t]) f −(τ)dτ,

and

(C)
∫

[0,t]
Fdµ = [−

∫ t

0
µ′([τ, t]) f −(τ)dτ,−

∫ t

0
µ′([τ, t]) f +(τ)dτ].

In particular, for µ = µm, then

(C)
∫

[0,t]
F(τ)dµm =

∫ t

0
m′(t − τ) f +(τ)dτ,

(C)
∫

[0,t]

F(τ)dµm =

∫ t

0
m′(t − τ) f −(τ)dτ,

and

(C)
∫

[0,t]
Fdµm = [

∫ t

0
m′(t − τ) f −(τ)dτ,

∫ t

0
m′(t − τ) f +(τ)dτ].
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Proof. For f +(x) = sup F(x). By Theorem 2.1, we have

(C)
∫

[0,t]
Fdµ = (c)

∫
[0,t]

f +dµ,

and

(c)
∫

[0,t]
f +dµ =

∫ ∞

0
µ({x| f + ≥ α} ∩ [0, t])dα

=

∫ f +(0)

0
µ([0, t])dα +

∫ f +(t)

f +(0)
µ([( f +(α))−1, t])dα

= µ([0, t]) f +(0) +

∫ f +(t)

f +(0)
µ([( f +(α))−1, t])dα.

On the other hand,∫ f +(t)

f +(0)
µ([( f +(α))−1, t])dα =

∫
[0,t]

µ([τ, t])( f +(τ))′dτ

= u([τ, t]) f +(τ)|t0 −
∫

[0,t]
µ′([τ, t]) f +(τ)dτ

= µ({t}) f +(t) − µ([0, t]) f +(0) −
∫

[0,t]
µ′([τ, t]) f +(τ)dτ,

where α = f +(τ), and ( f +(τ))′dτ = dα. Note that µ({t}) = 0, f +(0) = 0.
That is

(C)
∫

[0,t]
F(τ)dµ = −

∫ t

0
µ′([τ, t]) f +(τ)dτ.

Especially, µ = µm, then −µ′([τ, t]) = m′(t − τ), we obtain

(C)
∫

[0,t]
F(τ)dµm =

∫ t

0
m′(t − τ) f +(τ)dτ.

Similarly, we can also obtain

(C)
∫

[0,t]

F(τ)dµm =

∫ t

0
m′(t − τ) f −(τ)dτ.

Since F(x) = [ f −(x), f +(x)], thus

(C)
∫

[0,t]
Fdµ = (c)

∫
[0,t]

[ f −, f +]dµ = [(c)
∫

[0,t]
f −dµ, (c)

∫
[0,t]

f −dµ]

= [−
∫ t

0
µ′([τ, t]) f −(τ)dτ,−

∫ t

0
µ′([τ, t]) f +(τ)dτ].

Note that f − = inf F(x) or f + = sup F(x) is a constant function M. By Theorem 1, we have
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(C)
∫

[0,t]
F(τ)dµ = (c)

∫
[0,t]

Mdµ = M · µ([0, t]),

(C)
∫

[0,t]

F(τ)dµ = (c)
∫

[0,t]
Mdµ = M · µ([0, t]).

Hence, f − and f + is a constant function, Theorem 3.1 still holds. Therefore, we have the following
corollary. �

Theorem 3.2. Let F : X −→ P(R+)\{∅} be a measurable and increasing set-valued functions, f +(x)
and f −(x) be continuous differentiable real-valued function, where f −(x) = inf F(x), f +(x) = sup F(x).
Then

(C)
∫

[0,t]
F(τ)dµ = −

∫ t

0
µ′([τ, t]) f +(τ)dτ,

(C)
∫

[0,t]

F(τ)dµ = −

∫ t

0
µ′([τ, t]) f −(τ)dτ,

and

(C)
∫

[0,t]
Fdµ = [−

∫ t

0
µ′([τ, t]) f −(τ)dτ,−

∫ t

0
µ′([τ, t]) f +(τ)dτ].

In particular, for µ = µm, then

(C)
∫

[0,t]
F(τ)dµm =

∫ t

0
m′(t − τ) f +(τ)dτ,

(C)
∫

[0,t]

F(τ)dµm =

∫ t

0
m′(t − τ) f −(τ)dτ,

and

(C)
∫

[0,t]
Fdµm = [

∫ t

0
m′(t − τ) f −(τ)dτ,

∫ t

0
m′(t − τ) f +(τ)dτ].

Example 3.1. Let F(x) = [x, ex] be a set-valued function, µ = µm be a distorted Lebesgue measure,
and m(x) = x2. Then f +(x) = sup F(x) = ex, f −(x) = inf F(x) = x,m′(t− τ) = 2(t− τ). By Theorem 3.2,
we have

(C)
∫

[0,t]
F(τ)dµ =

∫ t

0
m′(t − τ) f +(τ)dµ =

∫ t

0
2(t − τ)eτdτ = 2(et − t − 1),

(C)
∫

[0,t]

F(τ)dµ =

∫ t

0
m′(t − τ) f −(τ)dτ =

∫ t

0
2(t − τ)τdτ =

1
3

t3.

Hence
(C)
∫

[0,t]
Fdµ = [

1
3

t3, 2(et − t − 1)].

Especially, when t = 1, we could obtain the following statement.

(C)
∫

[0,1]
Fdµ = [

1
3
, 2(e − 2)].
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Example 3.2. Let F(x) = [0, ex] and G(x) = [x, ex] be two set-valued functions on [0, 1], µ = µm

be a distorted Lebesgue measure, and m(x) = x2. Then f −(x) = inf F(x) = 0, f +(x) = sup F(x) =

ex, g−(x) = inf G(x) = x, g+(x) = sup G(x) = ex. By Example 2.1,

(C)
∫

[0,1]
F(x)dµ = [0, µ([0, 1]) +

∫ e

1
µ([lnα, 1])dα].

(C)
∫

[0,1]
G(x)dµ = [

∫ 1

0
µ([α, 1])dα, µ([0, 1]) +

∫ e

1
µ([lnα, 1])dα].

Since µ(·) = µm(·) = m(λ(·)) is a distorted Lebesgue measure, and the distorted function m(x) = x2,

then

µ([0, 1]) +

∫ e

1
µ([lnα, 1])dα = 1 +

∫ 1

0
(1 − lnα)2dα = 1 + 2e − 5 = 2(e − 2),

∫ 1

0
µ([α, 1])dα =

∫ 1

0
(1 − α)2dα =

1
3
.

Therefore,

(C)
∫

[0,1]
Fdµm = [

1
3
, 2(e − 2)].

Obviously, the result coincides with Example 3.1.

4. Radon-Nikodym properties of the Choquet integral for the set-valued functions

As Sugeno’s description in article [19], due to a wide range of applications for Choquet integral in
decision problems, so far many studies have been devoted to a discrete case. However, the analytic
properties of the Choquet integrals of set-valued functions with respect to fuzzy measure have not
been fully discussed, including the properties of the primitives functions of Choquet integrals, the
representation of Choquet integrals and the derivative of integral primitive functions in some sense, and
so on. It will be discussed in this section by using the definitions of real-valued major Choquet integral,
real-valued minor Choquet integral and interval-valued Choquet integrals for set-valued functions.

Given two continuous increasing and nonnegative real-valued functions g1(x), g2(x) with g1(0)
= g2(0) = 0, and a fuzzy measure µm. How to define a continuous increasing and differentiable set-
valued function F(x), such that

g1(t) = (C)
∫

[0,t]

F(τ)dµm(τ), g2(t) = (C)
∫

[0,t]
F(τ)dµm(τ).

Definition 4.1. [19] For a real-valued function f (t) on [a, b], we call F (s) =
∫ +∞

0
e−st f (t)dt the

Laplace transformation of f (t) if
∫ +∞

0
e−st f (t)dt with respect to s is convergent. We denote its Laplace

transformation as F (s) = L[ f (t)] and the inverse Laplace transformation as f (t) = L−1[F (s)].

Theorem 4.1. Let (X,A, µ) be a fuzzy measure space, g1(t) and g2(t) be nonnegative continuous
real-valued functions. F : [0,+∞) −→ P(R+)\{∅} be a measurable set-valued function with
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g1(t) = (C)
∫

[0,t]
F(τ)dµ, g2(t) = (C)

∫
[0,t]

F(τ)dµ, f +(x) and f −(x) be strictly monotone increasing and

continuously differentiable, where f −(x) = inf F(x), f +(x) = sup F(x). Then

G1(s) = sM(s)F1(s), g1(t) = L−1[sM(s)F1(s)],

G2(s) = sM(s)F2(s), g2(t) = L−1[sM(s)F2(s)],

where G1(s) = L[g1(t)],G2(s) = L[g2(t)], M(s) = L[m(t)], F1(s) = L[ f −(t)],F2(s) = L[ f +(t)]

Proof. By Theorem 3.1, we have

(C)
∫

[0,t]
F(τ)dµ = −

∫ t

0
µ′([τ, t]) f +(τ)dτ,

(C)
∫

[0,t]

F(τ)dµ = −

∫ t

0
µ′([τ, t]) f −(τ)dτ,

That is,

g1(t) = −

∫ t

0
µ′([τ, t]) f −(τ)dτ, g2(t) = −

∫ t

0
µ′([τ, t]) f +(τ)dτ.

Thus, we obtain

G2(s) =

∫ +∞

0
e−stg2(t)dt =

∫ +∞

0
e−st
∫ t

0
m′(t − τ) f +(τ)dτdt.

On the other hand, ∫ +∞

0
e−st
∫ t

0
m′(t − τ) f +(τ)dτdt

=

∫ +∞

0

∫ +∞

τ

e−stm′(t − τ) f +(τ)dtdτ

=

∫ +∞

0
f +(τ)[e−stm(t − τ)|+∞τ −

∫ +∞

τ

m(t − τ)de−st]dτ

=s
∫ +∞

0
f +(τ)[e−sτ

∫ +∞

0
e−s(t−τ)m(t − τ)d(t − τ)]dτ

=s
∫ +∞

0
f +(τ)e−sτM(s)dτ

=sM(s)
∫ +∞

0
e−sτ f +(τ)dτ

=sM(s)F2(s).

Therefore, G2(s) = sM(s)F2(s). Correspondingly, g2(t) = L−1[sM(s)F2(s)].
Similarly, we can also obtain

G1(s) = sM(s)F1(s), g1(t) = L−1[sM(s)F1(s)].

The proof is complete. �
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Example 4.1. Let F(t) = [ 1
2 t, t], distorted function m(t) = tn, then f −(t) = inf F(t) = 1

2 t, f +(t) =

sup F(t) = t. By Laplace transformation, we obtain

M(s) =

∫ +∞

0
tne−stdt = n!/sn+1,

F1(s) =

∫ +∞

0

1
2

te−stdt = 1/2s2, F2(s) =

∫ +∞

0
te−stdt = 1/s2.

According to Theorem 4.1, we have

G2(s) = sM(s)F2(s) = n!/sn+2,

Thus
g2(t) = L−1[sM(s)F2(s)] = tn+1/(n + 1).

By the same way, we have

g1(t) = L−1[sM(s)F1(s)] = tn+1/2(n + 1).

Theorem 4.2. Let (X,A, µ) be a fuzzy measure space, g1(t) and g2(t) be nonnegative continuous real-
valued functions. Then there exists F : [0,+∞) −→ P(R+)\{∅} being a measurable set-valued function,
such that

g1(t) = (C)
∫

[0,t]

F(τ)dµ, g2(t) = (C)
∫

[0,t]
F(τ)dµ,

furthermore

[g1(t), g2(t)] = (C)
∫

[0,t]
F(τ)dµ.

Proof. Make f +(t) = L−1[G2(s)/sM(s)]. By Theorem 3.2, we have

(C)
∫

[0,t]
F(τ)dµ =

∫ t

0
m′(t − τ) f +(τ)dτ.

We just need to prove that f + is nonnegative continuous and differentiable increasing, and satisfying

g2(t) =

∫ t

0
m′(t − τ) f +(τ)dτ.

Note that F(t) = [ f −(t), f +(t)]. In fact, since g1(t) is nonnegative continuous and differentiable on
[0,+∞), so f +(t) is also nonnegative continuous and differentiable. It is easy to calculate that∫ t

0
m′(t − τ) f +(τ)dτ = L−1[L[

∫ t

0
m′(t − τ) f +(τ)dτ]]

and

L[
∫ t

0
m′(t − τ) f +(τ)dτ] =

∫ +∞

0
e−st
∫ t

0
m′(t − τ) f +(τ)dτdt
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=

∫ +∞

0

∫ +∞

τ

e−stm′(t − τ) f +(τ)dtdτ

=

∫ +∞

0
f +(τ)[e−stm(t − τ)|+∞τ −

∫ +∞

τ

m(t − τ)de−st]dτ

=s
∫ +∞

0
f +(τ)[e−sτ

∫ +∞

0
e−s(t−τ)m(t − τ)d(t − τ)]dτ

=s
∫ +∞

0
f +(τ)e−sτM(s)dτ

=sM(s)
∫ +∞

0
e−sτ f +(τ)dτ

=sM(s)F2(s)
=sM(s) · G2(s)/sM(s)
=G2(s).

Therefore,

g2(t) =

∫ t

0
m′(t − τ) f +(τ)dτ.

Similarly, make f −(t) = L−1[G1(s)/sM(s)], we can also obtain

g1(t) =

∫ t

0
m′(t − τ) f −(τ)dτ.

Then by Theorem 3.2, we get

[g1(t), g2(t)] = (C)
∫

[0,t]
F(τ)dµ.

where G1(s) = L[g1(t)],G2(s) = L[g2(t)], M(s) = L[m(t)]. F1(s) = L[ f −(t)],F2(s) = L[ f +(t)]. The
proof is complete. �

Example 4.2. Let g1(t) = t2, g2(t) = e2t − 1 and distorted function m(t) = t + 1
2at2, a > 0, by Laplace

transformation, we have

M(s) =

∫ +∞

0
(t +

1
2

at2)e−stdt =
1
s2 +

a
s3 ,

G1(s) =

∫ +∞

0
t2e−stdt = 2/s3,G2(s) =

∫ +∞

0
(e2t − 1)e−stdt =

a
s(s − a)

,

Hence, by Theorem 4.2, there exists F(t) = [ f −(t), f +(t)], and

f −(t) = L−1[G1(s)/sM(s)] =
2
a

(1 − e−at),

f +(t) = L−1[G2(s)/sM(s)] =
1
2

(e2t + e−2t) = cosh(2t).
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5. The primitive function characterization of the Choquet integral for set-valued functions

Definition 5.1. [12, 15] Let (X,A, µ) be a fuzzy measure space.
(1) µ is said to be weakly null-additive if for any A, B ∈ A, µ(A) = µ(B) = 0 implies µ(A ∪ B) = 0;
(2) µ is said to have strong order continuity if for any An ⊂ A, A ∈ A with µ(A) = 0, An ↓ A implies

µ(An) −→ 0;
(3) µ is said to have pseudo-metric generating property if for any ε > 0, there is δ > 0, such that

µ(A ∪ B) < ε, whenever A, B ∈ A, and µ(A) ∨ µ(B) < δ;
(4) µ is said to have property (S) if for any An ⊂ A with µ(An) −→ 0, there exists a subsequence Ani

of An such that µ(lim
i→∞

(Ani)) = 0.

Definition 5.2. Let (X,A, µ) be a fuzzy measure space, and ν be a set-valued function, denoted by
ν(A) = [ν−(A), ν+(A)], ∀A ∈ A. Then

(1) ν is said to be weakly null-additive if for any A, B ∈ A, ν(A) = ν(B) = 0 (i.e., ν−(A) = ν−(B) =

0, ν+(A) = ν+(B) = 0) implies ν(A ∪ B) = 0 (i.e., ν−(A ∪ B) = 0, ν+(A ∪ B) = 0);
(2) ν is said to have strong order continuity if for any An ⊂ A, A ∈ A with ν(A) = 0 (i.e., ν−(A) =

0, ν+(A) = 0), An ↓ A implies ν(An) −→ 0 (i.e., ν−(An) −→ 0, ν+(An) −→ 0);
(3) ν is said to have pseudo-metric generating property if for any ε > 0, there is δ > 0, such

that ν(A ∪ B) < ε (i.e., ν−(A ∪ B) < ε, ν+(A ∪ B) < ε), whenever A, B ∈ A, and ν(A) ∨ ν(B) <

δ (i.e., ν−(A) ∨ ν−(B) < δ, ν+(A) ∨ ν+(B) < δ);
(4) ν is said to have property (S) if for any An ⊂ A with ν(An) −→ 0 (i.e., ν−(An) −→ 0, ν+(An) −→

0), there exists a subsequence Ani of An such that ν(lim
i→∞

(Ani)) = 0 (i.e., ν−(lim
i→∞

(Ani)) = 0, ν+(lim
i→∞

(Ani)) =

0).

In the following, let F be a nonnegative measurable set-valued function. For any A ∈ A, the set-
valued function ν is defined as ν(A) = [ν−(A), ν+(A)], where ν−(A) = (C)

∫
A
Fdµ, ν+(A) = (C)

∫
A
Fdµ.

Theorem 5.1. If µ is weakly null-additive, then ν(A) = [ν−(A), ν+(A)] is also weakly null-additive.

Proof. For any A, B ∈ A with ν+(A) = ν+(B) = 0, let Fα = {x|F(x) ∩ [α,∞] , ∅}, α ≥ 0, from the
definitions of ν+(A) and the major Choquet integral, we have

ν+(A) =

∫ ∞

0
µ(Fα ∩ A)dα =

∫ ∞

0
µ(Fα ∩ B)dα = ν+(B) = 0,

in the case of the Lebesgue measure, µ(Fα ∩ A) = 0 and µ(Fα ∩ B) = 0 almost everywhere for
α ∈ [0,+∞). By the monotonicity of the Lebesgue measure, we have

µ(Fα ∩ A) = µ(Fα ∩ B) = 0⇒ µ[(Fα ∩ A) ∪ (Fα ∩ B)] = 0.

Thus

ν+(A ∪ B) = (C)
∫

A∪B
Fdµ =

∫ ∞

0
µ(Fα ∩ (A ∪ B))dα

=

∫ ∞

0
µ[(Fα ∩ A) ∪ (Fα ∩ B)]dα = 0.
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By the same way, we can also obtain

ν−(A ∪ B) = (C)
∫

A∪B

Fdµ = 0.

Therefore, ν(A ∪ B) = [(C)
∫

A∪B
Fdµ, (C)

∫
A∪B

Fdµ] = 0, so ν(A) is weakly null-additive.
The proof is complete. �

Theorem 5.2. Let (X,A, µ) be a fuzzy measure space, F be a measurable set-valued function and
Choquet integrable on X. For ν(A) = [ν−(A), ν+(A)], ν−(A) = (C)

∫
A
Fdµ, ν+(A) = (C)

∫
A
Fdµ, we have

(1) If µ(A) = 0, then ν(A) = 0;
(2) If {An} ⊂ A, µ({An}) −→ 0, then ν({An}) −→ 0;
(3) ν is a fuzzy measure.

Proof. (1) Obviously.
(2) By {An} ⊂ A, µ({An}) −→ 0, hence µ(Fα ∩ An) ≤ µ(Fα ∩ X), then

µ(Fα ∩ An) −→ 0.

Since F(x) is Choquet integrable, thus

ν+(X) = (C)
∫

Fdµ =

∫ ∞

0
µ(Fα ∩ X)dα < ∞.

By the dominated convergence theorem of the Lebesgue integral, we obtain

ν+(An) = (C)
∫

An

Fdµ =

∫ ∞

0
µ(Fα ∩ An)dα −→ 0,

That is ν+({An}) −→ 0.
Similarly, we can also obtain ν−({An}) = (C)

∫
An

Fdµ −→ 0, therefore, ν({An}) −→ 0.

(3) ν is a fuzzy measure, we just need to prove that ν satisfies the following conditions:
i) ν(∅) = 0.
ii) For any A, B ∈ A, A ⊂ B, since µ(Fα ∩ A) ≤ µ(Fα ∩ B). Thus, we have

ν+(A) = (C)
∫

A
Fdµ =

∫ ∞

0
µ(Fα ∩ A)dα

≤ (C)
∫

B
Fdµ =

∫ ∞

0
µ(Fα ∩ B)dα = ν+(B).

Similarly, we can also obtain

ν−(A) = (C)
∫

A

Fdµ ≤ (C)
∫

B

Fdµ = ν−(B).

Hence, ν(A) ≤ ν(B).
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iii) For A1 ⊂ A2 · · · ⊂ An · · · , An ∈ A, Since F(x) is Choquet integrable, i.e. ν+(An) ≤ ν+(X) < ∞,
and ν+(An) is monotone increasing, hence lim

n→∞
ν+(An) exists.

On the other hand,

ν+(An) = (C)
∫

An

Fdµ =

∫ ∞

0
µ(Fα ∩ An)dα, µ(Fα ∩ An) ≤ µ(Fα ∩ X).

By the Lebesgue integral dominated convergence theorem, we have

lim
n→∞

ν+(An) =

∫ ∞

0
lim
n→∞

µ(Fα ∩ An)dα =

∫ ∞

0
µ(Fα ∩

∞⋃
n=1

An)dα = ν+(
∞⋃

n=1

An).

That is ν+(
⋃∞

n=1 An) = lim
n→∞

ν+(An).

Similarly, we can also obtain ν−(
⋃∞

n=1 An) = lim
n→∞

ν−(An). Thus

ν(
∞⋃

n=1

An) = lim
n→∞

ν(An).

iv) For A1 ⊃ A2 · · · ⊃ An ⊃ · · · , An ∈ A, Since F(x) is Choquet integrable, i.e. ν+(An) ≤ ν+(X) < ∞,
and ν+(An) is monotone decreasing, hence lim

n→∞
ν+(An) exists.

On the other hand,

ν+(An) = (C)
∫

An

Fdµ =

∫ ∞

0
µ(Fα ∩ An)dα, µ(Fα ∩ An) ≤ µ(Fα ∩ X).

By the Lebesgue integral dominated convergence theorem, we have

lim
n→∞

ν+(An) =

∫ ∞

0
lim
n→∞

µ(Fα ∩ An)dα =

∫ ∞

0
µ(Fα ∩

∞⋂
n=1

An)dα = ν+(
∞⋂

n=1

An).

Similarly, we can also obtain

ν−(
∞⋂

n=1

An) = lim
n→∞

ν−(An).

Therefore, ν(
⋂∞

n=1 An) = lim
n→∞

ν(An).
The proof is complete. �

Theorem 5.3. Let (X,A, µ) be a fuzzy measure space, F be a measurable set-valued function and
Choquet integrable on X, ν(A) = [ν−(A), ν+(A)], ν−(A) = (C)

∫
A
Fdµ, ν+(A) = (C)

∫
A
Fdµ. If µ has

strong order continuity, then ν also has strong order continuity.

Proof. For any A ∈ A, {An} ⊂ A, An ↓ A, and ν(A) = 0, denotes Fα = {x|F(x) ∩ [α,∞] , ∅}, i.e.

ν+(A) = (C)
∫

A
Fdµ =

∫ ∞

0
µ(Fα ∩ A)dα = 0.
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Thus, in the case of the Lebesgue measures, µ(Fα ∩ A) = 0 almost everywhere for α ∈ [0,+∞). By µ
is strong order continuity, and µ(A) = 0, hence, µ(Fα ∩ An) ↓ 0.
On the other hand, since F(x) is Choquet integrable, we have

(C)
∫

An

Fdµ =

∫ ∞

0
µ(Fα ∩ An)dα ≤

∫ ∞

0
µ(Fα ∩ X)dα = (C)

∫
Fdµ < ∞.

By the Lebesgue integral dominated convergence theorem, we have

ν+(An) = (C)
∫

An

Fdµ =

∫ ∞

0
µ(Fα ∩ An)dα −→ 0.

By the same way, we can also obtain

ν−(An) = (C)
∫

An

Fdµ −→ 0.

Therefore, ν(An) = [(C)
∫

An

Fdµ, (C)
∫

An
Fdµ]→ 0, so ν has strong order continuity.

The proof is complete. �

Theorem 5.4. Let (X,A, µ) be a fuzzy measure space, F be a measurable set-valued function and
Choquet integrable on X, ν(A) = [ν−(A), ν+(A)], ν−(A) = (C)

∫
A
Fdµ, ν+(A) = (C)

∫
A
Fdµ. If µ has

pseudo-metric generating property, then ν also has pseudo-metric generating property.

Proof. Let Fα = {x|F(x) ∩ [α,∞] , ∅}. Since F(x) is Choquet integrable, then

ν+(X) = (C)
∫

Fdµ =

∫ ∞

0
µ(Fα ∩ X)dα < ∞.

Thus, for every ε > 0, there exist a, b(0 < a < b) such that∫ a

0
µ(Fα)dα +

∫ ∞

b
µ(Fα)dα <

ε

2
.

Becuase µ has pseudo-metric generating property, then there exist δ > 0, for any A, B ∈ A and µ(A) ∨
µ(B) < δ such that

µ(A ∪ B) <
ε

2(b − a)
,

for ε > 0, let δ1 = aδ, by ν(A) ∨ ν(B) < δ1(i.e. ν+(A) ∨ ν+(B) < δ1), we have∫ a

0
µ(Fα ∩ A)dα ∨

∫ a

0
µ(Fα ∩ B)dα < δ1.

On the other hand, µ has pseudo-metric generating property, by the monotonicity of µ, for any α ∈
[a,∞), we obtain µ(Fα ∩ A) ∨ µ(Fα ∩ B) < δ, then for any α ∈ [a,∞), we have

µ(Fα ∩ (A ∪ B)) <
ε

2(b − a)
,
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i.e. ∫ b

a
µ(Fα ∩ (A ∪ B))dα <

ε

2
.

Hence

ν+(A ∪ B) = (C)
∫

A∪B
Fdµ

=

∫ a

0
µ(Fα ∩ (A ∪ B))dα +

∫ b

a
µ(Fα ∩ (A ∪ B))dα +

∫ ∞

b
µ(Fα ∩ (A ∪ B))dα

≤

∫ a

0
µ(Fα)dα +

∫ ∞

b
µ(Fα)dα +

∫ b

a
µ(Fα ∩ (A ∪ B))dα

<
ε

2
+
ε

2
= ε.

Similarly, we can also obtain

ν−(A ∪ B) = (C)
∫

A∪B

Fdµ < ε.

Thus, ν(A ∪ B) = [(C)
∫

A∪B
Fdµ, (C)

∫
A∪B

Fdµ] < ε, so µ has pseudo-metric generating property.
The proof is complete. �

Theorem 5.5. Let (X,A, µ) be a fuzzy measure space, F be a measurable set-valued function and
Choquet integrable on X. ν(A) = [ν−(A), ν+(A)], ν−(A) = (C)

∫
A
Fdµ, ν+(A) = (C)

∫
A
Fdµ, if µ has

property (S ), then ν also has property (S ).

Proof. Let {An} ⊂ A, µ({An}) −→ 0, Fα = {x|F(x) ∩ [α,∞] , ∅}, then µ(Fα ∩ An) −→ 0,
i.e.

ν+(An) = (C)
∫

An

Fdµ =

∫ ∞

0
µ(Fα ∩ An)dα −→ 0.

Hence, for any α ≥ 0, by the Lebesgue integral theory, measurable function sequence {µ(Fα∩An)}n −→
0. According to Riesz Theorem from real analysis, there exists subsequence {µ(Fα ∩ An}k, such that

{µ(Fα ∩ An}k −→ 0(k → ∞).

By the monotony of µ, we obtain {µ(Fα ∩ An}k −→ 0. We suppose that µ(Fα ∩ An) −→ 0(n→ 0), then
µ(F 1

2
∩ An) −→ 0(n → 0) if α = 1

2 . By the property (S ) of µ, so there exists a subsequence A(1)
ni of An

such that
µ(lim

i→∞
(F 1

2
∩ Ani)) = 0,

there must be µ(F 1
2
∩ A(1)

ni ) −→ 0(n→ 0). Hence, there exists a subsequence A(2)
ni of A(1)

ni , we have

µ(lim
i→∞

(F 1
22
∩ A(2)

ni
)) = 0.

Repeating this procedure, we can obtain a subsequence A( j)
ni of An such that

{A( j)
ni
}i ⊃ {A( j+1)

ni
}i, µ(lim

i→∞
(F 1

2k
∩ A( j)

ni
)) = 0.
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Let Ani = A( j)
ni , for any α > 0, there exists a with 1

2a < α, and

∞⋂
i=1

∞⋃
i= j

(Fα ∩ Ani) =

∞⋂
i=a

∞⋃
i= j

(Fα ∩ Ani) ⊂
∞⋂

i=a

∞⋃
i= j

(Fα ∩ A j
ni

) ⊂
∞⋂

i=a

∞⋃
i= j

(Fα ∩ Aa
ni

)

⊂

∞⋂
i=a

∞⋃
i= j

(F 1
2a
∩ A1

ni
) =

∞⋂
i=1

∞⋃
i= j

(F 1
2a
∩ Aa

ni
) = lim

i→∞
(F 1

2a
∩ Am0

ni
).

for α > 0, it follows that

0 ≤ µ(lim
i→∞

(Fα ∩ Ani)) ≤ µ(lim
i→∞

(F 1
2m0
∩ Am0

ni
)) = 0.

That is

ν+(lim
i→∞

(Ani)) =

∫ ∞

0
µ(lim

i→∞
(Fα ∩ Ani))dα = 0.

Similarly, we can also obtain ν−(lim
i→∞

(Ani)) = 0. Therefore, ν(lim
i→∞

(Ani)) = 0, so µ also has property (S ).
The proof is complete. �

6. The Choquet integral of the set-valued functions under distorted fuzzy measures

The properties of the Choquet integrals with respect to fuzzy measures have been studied
extensively. This section we discussed the representation of the Choquet integral for set-valued
functions with respect to a distorted fuzzy measure by probability measure p [2].

Definition 6.1. [20] Let f (x) be a continuous function. We say that f (x) does not have plateaus when
Aα = {x| f (x) = α} is finite for all α.

Lemma 6.1. [20] Let X = [0, 1], f (x) be a continuous function without plateaus. Let µ be a distorted
probability measure µm = m ◦ p with m(x) a continuous strictly monotonic function with m(1) = 1
and p a probability such that p({x}) = 0 for all x. Then there exists a monotone increasing function
f ∗ : X −→ X such that

(c)
∫

f (x)dm ◦ p = (c)
∫

f ∗(x)dm ◦ p.

Theorem 6.1. Let X = [0, 1], F : X −→ P(X)\{∅} be measurable set-valued function, f − and f + be
continuous differentiable and not have plateaus, µm = m ◦ p is a distorted fuzzy measure by probability
measure, and satisfying: (i) m(x) is a continuous strictly monotonic function with m(1) = 1; (ii)
p({x}) = 0 for all x. Then, there exists a monotone increasing set-valued function G : X −→ P(X)\{∅},
such that

(C)
∫

F(x)dm ◦ p = (C)
∫

G(x)dm ◦ p.

Proof. By Theorem 3.2, we have

(C)
∫

Fdm ◦ p = (c)
∫

f +dm ◦ p,
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(C)
∫

Fdm ◦ p = (c)
∫

f −dm ◦ p.

Since f +(x) is a continuous differentiable and not have plateaus, according to Lemma 6.1, there exists
a monotone increasing function g+ : X −→ X such that

(c)
∫

f +dm ◦ p = (c)
∫

g+dm ◦ p.

Similarly, we also obtain exists a monotone increasing function g− : X −→ X, such that

(c)
∫

f −dm ◦ p = (c)
∫

g−dm ◦ p.

On the other hand, due to F(x) = [ f −(x), f +(x)], we have

(C)
∫

Fdm ◦ p = [(c)
∫

f −dm ◦ p, (c)
∫

f +dm ◦ p].

Hence, there exists a monotone increasing set-valued function G(x) = [g−(x), g+(x)] with g+(x) =

sup G(x) and g−(x) = inf G(x) , such that

(C)
∫

G(x)dm ◦ p = (c)
∫

g+(x)dm ◦ p,

(C)
∫

G(x)dm ◦ p = (c)
∫

g−(x)dm ◦ p.

Therefore
(C)
∫

F(x)dm ◦ p = (C)
∫

G(x)dm ◦ p.

The proof is complete. �

7. Conclusion

The aim of this paper is attempt to discuss the representation of Choquet integral of set-valued
functions with respect to fuzzy measures and the characteristic of its primitive. We firstly define
and discuss real-valued major Choquet integral, real-valued minor Choquet integral and interval-
valued Choquet integrals for set-valued functions with respect to fuzzy measures, which achieved the
domination of the Choquet integral of set-valued functions with respect to fuzzy measures. Meanwhile,
the calculation of the Choquet integral for set-valued function is investigated, and we have shown a
basic representation theorem of Choquet integral for set-valued function as a Radon-Nikodym property
in some sense. On the other hand, the characteristics of the primitive of the Choquet integral for
set-valued functions are investigated. At the same time, we discussed the representation for Choquet
integral of set-valued functions with respect to a distorted fuzzy measure by probability measure which
is a classically fuzzy measure. Our results improve and generalize the corresponding results of [9]. In
the future research, we shall discuss some applications for Choquet integral of set-valued functions
with respect to fuzzy measures.
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