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1. Introduction

Let Ω be an open subset of Rn. For any s ∈ (0, 1) and p ∈ [1,∞), we can define the fractional
Sobolev space W s,p(Ω). The study on fractional Sobolev space is a classical topic in functional
analysis and harmonic analysis and the theory of fractional Sobolev space has been widely applied in
different fields, such as optimization, phase transition, anomalous diffusion, material science,
non-uniform elliptic problems, gradient potential theory etc (see [10]). In 1991, Kováčik and
Rákosnı́k studied variable exponential spaces Lp(x) and W1,p(x) (see [17]). Since then, some scholars
have successively studied the theories and applications of these spaces (see [7, 9, 11–14, 20, 21] and
their related references). With the vigorous development of variable index space theory, in recent
years, some scholars have focused their research on the variable exponent fractional Sobolev spaces.
In 2017, Kaufmann, Rossi and Vidal extended the constant exponent p of fractional Sobolev space to
variable exponent p(x, y) type (not only that, but also another variable exponent q(x)), and studied the
compact embedding of these spaces and obtained the existence and uniqueness of solutions for
non-local problems of p(x)-Laplacian equations by means of these spaces (see [16]).

Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary, and q : Ω̄ −→ (1,∞) and p : Ω̄ ×

Ω̄ −→ (1,∞) be two continuous functions bounded away from 1 and ∞. Assume that p is symmetric,
i.e. p(x, y) = p(y, x). For s ∈ (0, 1), the variable exponent Sobolev fractional space is defined as
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follows in [16]:

W s,q(x),p(x,y)(Ω) :=
{

u ∈ Lq(x)(Ω) :
"

Ω×Ω

|u(x) − u(y)|p(x,y)

λp(x,y)|x − y|n+sp(x,y) dxdy < ∞ for some λ > 0
}
. (1.1)

On the spaces defined in this way, scholars set up certain conditions to study trace
theorem (see [8]), indefinite weights of p(x, y)-Laplace equations (see [19]), non-local eigenvalues
with variable exponential growth conditions (see [2]), separability, reflexivity, density and a class of
nonlocal fractional problems (see [6]), a priori bounds and multiplicity of solutions for nonlinear
elliptic problems involving the fractional p(·)-Laplacian (see [15]), extension domains (see [4]),
strong comparison principle for the fractional p(x)-Laplace operators, sub-super-solution method for
the nonlocal equations involving the fractional p(x)-Laplacian (see [5]) and so on.

Due to the need of research, some scholars limited the exponent of the variable exponent fractional
Sobolev spaces above to L p̄(x)(Ω), i.e. replace q(x) in the definition with p̄(x), where p̄(x) = p(x, x),
see for example [2].

In [3], the author adjusted the definition of (1.1) to give another form of variable exponent fractional
Sobolev space:

X :=
{

u ∈ L p̄(x)(Ω) :
"

Q

|u(x) − u(y)|p(x,y)

λp(x,y)|x − y|n+sp(x,y) dxdy < ∞ for some λ > 0
}
, (1.2)

where the integral is extended from Ω × Ω to Q = R2n \ (CΩ × CΩ) with CΩ = Rn \ Ω. The authors
used the closed subspace X0 := {u ∈ X : u = 0 a.e. in Rn \ Ω} to study the p(x)-Kirchhoff Dirichlet
boundary problem M(

!
Q
|u(x)−u(y)|p(x,y)

λp(x,y) |x−y|n+sp(x,y) dxdy)(−4p(x))su(x) = λ|u(x)|r(x)−2u(x) in Ω,

u(x) = 0 in Rn \Ω,
(1.3)

where (−4p(x))su(x) =
∫
Rn

|u(x)−u(y)|p(x,y)

λp(x,y) |x−y|n+sp(x,y) dy for all x ∈ Rn. Some basic properties, such as reflexivity,
completeness, separability, uniform convexity, were also obtained.

In [23], the authors considered such variable order fractional Sobolev space H s(·,·)
0 (Ω), where for

any function u ∈ L2(Ω) satisfying u = 0 in Rn \Ω,

[u]s(·,·) =

("
Rn×Rn

|u(x) − u(y)|2

|x − y|n+2s(x,y) dxdy
) 1

2

< ∞.

They studied an elliptic equation involving variable exponent driven by the fractional Laplace
operator with variable order derivative.

In this paper we want to define a new kind of variable exponent fractional Sobolev spaces similar
to the ones in [3] and [23], but with the variable order s(x) and the variable exponent p(x)+p(y)

2 . Some
basic properties of this kind of spaces are discussed and an application on so called s(·)-p(·)-Laplacian
equations is given.
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2. Concepts and basic properties of W s(·),p(·)(Ω)

Throughout this paper, without specification, we will generally assume that Ω is a Lebesgue
measurable subset of Rn with positive measure. The set of all Lebesgue measurable functions on Ω is
represented by L(Ω). We begin with some basic notations and concepts.

Definition 2.1. Let P(Ω) be the set of all Lebesgue measurable functions p(·) : Ω → [1,∞] and S(Ω)
be the set of all Lebesgue measurable functions s(·) : Ω→ (0, 1).

Given p(·) ∈ P(Ω), s(·) ∈ S(Ω), denote

p+ = ess sup
x∈Ω

p(x), p− = ess inf
x∈Ω

p(x),

s+ = ess sup
x∈Ω

s(x), s− = ess inf
x∈Ω

s(x).

For convenience, we set
Ω∞ = {x ∈ Ω : p(x) = ∞}.

Definition 2.2. For p(·) ∈ P(Ω) and u ∈ L(Ω), define the modular associated with p(·) by

ρp(·),Ω(u) =

∫
Ω\Ω∞

|u(x)|p(x)dx + ‖u‖L∞(Ω∞).

Definition 2.3. For p(·) ∈ P(Ω), s(·) ∈ S(Ω) and u ∈ L(Ω), define ϕ by

ϕs(·),p(·),Ω(u) =

"
(Ω\Ω∞)×(Ω\Ω∞)

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy + ‖u‖L∞(Ω∞).

It is easy to verify that ϕs(·),p(·),Ω is a pseudonorm on L(Ω) (see [18]), i.e.
1. ϕs(·),p(·),Ω(0) = 0,
2. ϕs(·),p(·),Ω(−u) = ϕs(·),p(·),Ω(u),
3. ϕs(·),p(·),Ω(αu + βv) ≤ αϕs(·),p(·),Ω(u) + βϕs(·),p(·),Ω(v) for α, β ≥ 0, α + β = 1.

Definition 2.4. For p(·) ∈ P(Ω), the variable exponential Lebesgue space is defined as:

Lp(·)(Ω) :=
{
u ∈ L(Ω) : ∃λ > 0, s.t. ρp(·),Ω(

u
λ

) < ∞
}
,

which is a Banach space with the following norm

‖u‖Lp(·)(Ω) = inf
{
λ > 0 : ρp(·),Ω(

u
λ

) < 1
}
.

See [7, 9, 13, 14, 17].

Definition 2.5. For p(·) ∈ P(Ω), s(·) ∈ S(Ω), the variable exponential fractional Sobolev space is
defined as

W s(·),p(·)(Ω) :=
{
u ∈ Lp(·)(Ω) : ∃λ > 0, s.t. ϕs(·),p(·),Ω(

u
λ

) < ∞
}
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with the seminorm
[u]W s(·),p(·)(Ω) = inf

{
λ > 0 : ϕs(·),p(·),Ω(

u
λ

) < 1
}

and the norm
‖u‖W s(·),p(·)(Ω) = ‖u‖Lp(·)(Ω) + [u]W s(·),p(·)(Ω).

It is easy to verify that under this norm W s(·),p(·)(Ω) is a Banach space.
Take any Cauchy sequence {un} ⊂ W s(·),p(·)(Ω). For any ε > 0, there exists N ∈ N, such that

whenever n,m > N, we have ‖un − um‖W s(·),p(·)(Ω) < ε. So ‖un − um‖Lp(·)(Ω) < ε. By the completeness of
Lp(·)(Ω), there exists u0 ∈ Lp(·)(Ω) such that ‖un − u0‖Lp(·)(Ω) → 0 as n → ∞, from which we obtain {un}

converges to u in measure. Since [un − um]W s(·),p(·)(Ω) < ε, by Propositions 2.4 below and Fatou Lemma,
we have [un − u0]W s(·),p(·)(Ω) → 0 as n → ∞. That is ‖un − u0‖W s(·),p(·)(Ω) → 0 as n → ∞. Next we prove
u0 ∈ W s(·),p(·)(Ω). By Propositions 2.4 below once more, we get n0 such that

ϕs(·),p(·),Ω(
un0

λ
−

u0

λ
) < 1, for all λ > 0.

Take λ0 > 0 such that ϕs(·),p(·),Ω(
un0
λ0

) < ∞, then"
(Ω\Ω∞)×(Ω\Ω∞)

(|u0(x) − u0(y)| − |un0(x) − un0(y)|)
p(x)+p(y)

2

λ
p(x)+p(y)

2
0 |x − y|n+

p(x)s(x)+p(y)s(y)
2

dxdy + ‖
un0 − u0

λ0
‖L∞(Ω∞) < 1. (2.1)

In view of the inequalities: for 1 ≤ p < ∞ and a ≥ 0, b ≥ 0,

(a + b)p ≤ 2p−1(ap + bp),

add "
(Ω\Ω∞)×(Ω\Ω∞)

|un0(x) − un0(y)|
p(x)+p(y)

2

λ
p(x)+p(y)

2
0 |x − y|n+

p(x)s(x)+p(y)s(y)
2

dxdy

to both sides of inequality (2.1), then we get ϕs(·),p(·),Ω( u0
λ0

) < ∞.
Example. Let Ω be bounded and closed, s(·) ∈ S(Ω) with 0 < s− ≤ s+ < 1 and p(·) ∈ P(Ω) with

p+ < ∞. f is Lipschitz continuous on Ω and | f | ≤ 1, then f ∈ W s(·),p(·)(Ω).
Indeed, first we have

ρp(·),Ω( f ) =

∫
Ω

| f (x)|p(x)dx ≤ |Ω|.

Second we have

ϕs(·),p(·),Ω( f ) =

∫
Ω

∫
Ω

| f (x) − f (y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy

=

∫
Ω

∫
Ω∩{y∈Rn:|x−y|≥1}

| f (x) − f (y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy

+

∫
Ω

∫
Ω∩{y∈Rn:|x−y|<1}

| f (x) − f (y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy

= I1 + I2
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We estimate I1 and I2 respectively. As∫
Ω

∫
Ω∩{y∈Rn:|x−y|≥1}

| f (x)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy ≤
∫

Ω

( ∫
{z∈Rn:|z|≥1}

1
|z|n+s− dz

)
dx

since n + s− > n, the integral
∫
{z∈Rn:|z|≥1}

1
|z|n+s− dz is convergent. Then we get

I1 ≤ 2p+−1
∫

Ω

∫
Ω∩{y∈Rn:|x−y|≥1}

| f (x)|
p(x)+p(y)

2 + | f (y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy < ∞.

On the other hand,

I2 ≤

∫
Ω

∫
Ω∩{y∈Rn:|x−y|<1}

M|x − y|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy

≤ M
∫

Ω

( ∫
{z∈Rn:|z|<1}

1
|z|n+p+(s+−1) dz

)
dx

< ∞,

where M is the Lipschitz constant. Since n + p+(s+ − 1) < n, the integral
∫
{z∈Rn:|z|<1}

1
|z|n+p+(s+−1) dz is

convergent. We conclude that ϕs(·),p(·),Ω( f ) is finite.
In this article, without confusion, [u]W s(·),p(·)(Ω), ρp(·),Ω(u) and ϕs(·),p(·),Ω(u) can be abbreviated as [u],

ρ(u) and ϕ(u) respectively.

Definition 2.6. Let uk, u ∈ W s(·),p(·)(Ω). We say that uk is ϕ-convergent to u if there exists λ > 0 such
that ϕ(λ(uk − u)) → 0 as k → ∞ and we denote this convergence by uk

ϕ
−→ u. We say that uk is

[ · ]-convergent to u if [uk − u]→ 0 as k → ∞ and we denote this convergence by uk
[ · ]
−−→ u.

Definition 2.7. Let X be a normed linear space. If every chord of the unit sphere of X has its midpoint
below the surface of the unit sphere, then X is called strictly convex.

For the variable exponent p(·, ·) : Ω → [1,∞] which is symmetry, i.e. p(x, y) = p(y, x) on Ω × Ω,
denote

p̄+ = ess sup
(x,y)∈Ω×Ω

p(x, y), p̄− = ess inf
(x,y)∈Ω×Ω

p(x, y),

Ω̃∞ = {(x, y) ∈ Ω ×Ω : p(x, y) = ∞}.

In view of Definitions 2.2 and Definitions 2.4, we can define modular ρ̄p(·,·) and variable exponent
Lebesgue spaces Lp(·,·) on Ω ×Ω. The conclusions on Lp(·)(Ω) can be moved to Lp(·,·)(Ω ×Ω).

Proposition 2.1. If u ∈ W s(·),p(·)(Ω) and [u] > 0, then ϕ( u
[u] ) ≤ 1. Further, ϕ( u

[u] ) = 1 for all non-trivial
u ∈ W s(·),p(·)(Ω) if p+

Ω\Ω∞
< ∞.

Proof. Fix a decreasing sequence {λk} such that λk → [u]. Then by Fatou Lemma and the definition
of [ · ],

ϕ(
u

[u]
) ≤ lim inf

k→∞
ϕ(

u
λk

) ≤ 1.
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Now suppose that p+
Ω\Ω∞

< ∞, but assume to the contrary that ϕ( u
[u] ) < 1, then for all λ, 0 < λ < [u],

have

ϕ(
u
λ

) = ϕ
( [u]
λ

u
[u]

)
≤

( [u]
λ

)p+(Ω\Ω∞)

ϕ(
u

[u]
).

Therefore, we can find λ sufficiently close to [u] such that ϕ( u
λ
) < 1. But by the definition of [ · ],

we must have ϕ( u
λ
) ≥ 1. From this contradiction we see that equality holds. �

Corollary 2.1. Assume that u ∈ W s(·),p(·)(Ω).
1. If [u] ≤ 1,then ϕ(u) ≤ [u];
2. If [u] > 1,then ϕ(u) ≥ [u];
3. [u] ≤ ϕ(u) + 1.

Proof. 1. If u = 0, it is immediate that the conclusion holds. Now suppose that 0 < [u] ≤ 1, by
Proposition 2.1, ϕ( u

[u] ) ≤ 1, and so

ϕ(u) = ϕ([u]
u

[u]
) ≤ [u]ϕ(

u
[u]

) ≤ [u].

2. If [u] > 1, then for all λ, [u] > λ > 1, by the definition of [ · ], we have ϕ( u
λ
) ≥ 1 and further

1
λ
ϕ(u) ≥ 1. Let λ→ [u], we come to the conclusion.

3. By 1. and 2., it is immediate. �

Proposition 2.2. [u] ≤ 1 and ϕ(u) ≤ 1 are equivalent in W s(·),p(·)(Ω).

Proof. If ϕ(u) ≤ 1, by definition of [ · ], we obtain directly [u] ≤ 1. On the other hand, if [u] ≤ 1, for
any λ > 1, we have ϕ( u

λ
) ≤ 1, furthermore by Fatou Lemma ϕ(u) ≤ lim inf

λ→1+
ϕ( u

λ
) ≤ 1. �

Proposition 2.3. Suppose |Ω∞| = 0, then for any u ∈ W s(·),p(·)(Ω),

min{ϕ(u)
1

p− , ϕ(u)
1

p+ } ≤ [u] ≤ max{ϕ(u)
1

p− , ϕ(u)
1

p+ }.

Proof. If u = 0, it is immediate. Consider the case u , 0. If p+ < ∞, 0 < [u] ≤ 1, then we need only
to prove that

ϕ(u)
1

p− ≤ [u] ≤ ϕ(u)
1

p+ .

If [u] > 1, it is similar to get ϕ(u)
1

p+ ≤ [u] ≤ ϕ(u)
1

p− .
By the definition of ϕ,

ϕ(u)
[u]p− ≤ ϕ(

u
[u]

) ≤
ϕ(u)
[u]p+ .

By Proposition 2.1 ϕ( u
[u] ) = 1, so the desired result is true.

If p+ = ∞, then ϕ(u)
1

p+ = 1, so the right hand inequality holds and we need only to prove the left
hand inequality. By Corollary 2.1, ϕ(u) ≤ 1. Since |Ω∞| = 0,

ϕ
( u

ϕ(u)
1

p−

)
=

"
Ω×Ω

|u(x) − u(y)|
p(x)+p(y)

2

ϕ(u)
p(x)+p(y)

2p− |x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy

≥ ϕ(u)
1

ϕ(u)
= 1,

from which it follows ϕ(u)
1

p− ≤ [u]. �
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Proposition 2.4. For {uk} ⊂ W s(·),p(·)(Ω), [uk]→ 0 as k → ∞ if and only if ϕ(λuk)→ 0 for all λ > 0. In
particular, [·]-convergent implies ϕ-convergent.

Proof. Necessity. For any 0 < ε < 1, λ > 0, h > 1, there exists K0 > 0 such that whenever k ≥ K0,
there holds [λhuk] < ε < 1. By 1. of Corollary 2.1, we have ϕ(λhuk) ≤ 1, so

ϕ(λuk) ≤
1
h
ϕ(λhuk) ≤

1
h
.

There exists H > 0 such that 1
h < ε whenever h ≥ H. Take K = max{K0,H}, then when k ≥ K,

ϕ(λuk) ≤ ε.
Sufficiency. Assume that ϕ(λuk)→ 0 as k → ∞, there exists K0 > 0 such that ϕ(λuk) < 1 whenever

k ≥ K0. Further we have [λuk] ≤ 1, so

[uk] ≤
1
λ
.

For any ε > 0, there exists λ0 > 0 such that 1
λ
< ε whenever λ ≥ λ0. Choose K = max{K0, λ0}.

When k ≥ K, there holds [uk] ≤ ε. �

Proposition 2.5. If p+
Ω\Ω∞

< ∞, then [·]-convergent and ϕ-convergent are equivalent in W s(·),p(·)(Ω).

Proof. Necessity. By Proposition 2.4, it is immediate.
Sufficiency. Let uk

ϕ
−→ 0 as k → ∞, then there exists λ0 > 0 such that ϕ(λ0uk) → 0. By

Proposition 2.4, we need only to prove that for any λ > 0, λuk
ϕ
−→ 0 as k → ∞. Noticing that

ϕ(λuk) ≤ (( λ
λ0

)p+(Ω\Ω∞) + λ
λ0

)ϕ(λ0uk), we come to the conclusion. �

Proposition 2.6. If |Ω| < +∞ and p+ < ∞, then for u ∈ W s(·),p(·)(Ω) and {uk} ⊂ W s(·),p(·)(Ω), the
following statements are equivalent:

1. uk
‖·‖
−→ u .

2. uk
ρ
−→ u and uk

ϕ
−→ u .

3. uk → u in measure and for some γ > 0 and δ > 0, ρ(γuk)→ ρ(γu), ϕ(δuk)→ ϕ(δu).

Proof. The equivalence between statements 1 and 2 can be obtained from Theorem 2.69 in [7] and
Proposition 2.5. Now we prove the equivalence between statements 2 and 3.

If statement 2 holds, by Theorem 2.69 in [7], we just have to prove that for some δ > 0, ϕ(δuk) →
ϕ(δu). Since uk → u in measure, thus

|uk(x) − uk(y)|
p(x)+p(y)

2 → |u(x) − u(y)|
p(x)+p(y)

2

on Ω ×Ω in measure.
Moreover, if |Ω| < +∞, then

|uk(x) − uk(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

→
|u(x) − u(y)|

p(x)+p(y)
2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

on Ω ×Ω in measure.
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By the inequality

|uk(x) − uk(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

≤2p+−1
(
|(uk(x) − u(x)) − (uk(y) − u(y))|

p(x)+p(y)
2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

+
|u(x) − u(y)|

p(x)+p(y)
2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

)
and Vitali Convergence Theorem we deduce that ϕ(uk)→ ϕ(u), so statement 3 holds.

On the other hand, assume that statement 3 holds. Now suppose that uk → u in measure and for
some δ > 0, ϕ(δuk)→ ϕ(δu). We may assume without loss of generality that δ = 1. Then we have

|(uk(x) − u(x)) − (uk(y) − u(y))|
p(x)+p(y)

2 → 0

on Ω ×Ω in measure and

|(uk(x) − u(x)) − (uk(y) − u(y))|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

→ 0

on Ω ×Ω in measure. Combining the inequalities above, we get

|(uk(x) − u(x)) − (uk(y) − u(y))|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

≤2p+−1
(
|uk(x) − uk(y)|

p(x)+p(y)
2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

+
|u(x) − u(y)|

p(x)+p(y)
2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

)
and ϕ(uk)→ ϕ(u), i.e. uk

ϕ
−→ u. �

Corollary 2.2. If p+
Ω\Ω∞

< ∞, then for any ε > 0, there exists δ > 0 such that for any u ∈ W s(·),p(·)(Ω)
with ϕ(u) ≤ δ, we have [u] < ε.

It is immediate by Proposition 2.5.

Proposition 2.7. ϕ is lower semicontinuous, i.e. if uk
[ · ]
−−→ u as k → ∞, then ϕ(u) ≤ lim inf

k→∞
ϕ(uk).

Proof. We prove in following two cases.
1. ϕ(u) < ∞.

Let uk, u ∈ W s(·),p(·)(Ω), uk
[ · ]
−−→ u as k → ∞. By Propositio 2.4, lim

k→∞
ϕ(λ(uk − u)) = 0 for any λ > 0.

Let ε ∈ (0, 1
2 ). By the convexity of ϕ,

ϕ((1 − ε)u) = ϕ
(1
2

u +
1 − 2ε

2
(u − uk) +

1 − 2ε
2

uk

)
≤

1
2
ϕ(u) +

1
2
ϕ
(
(1 − 2ε)(u − uk) + (1 − 2ε)uk

)
≤

1
2
ϕ(u) +

2ε
2
ϕ
(1 − 2ε

2ε
(u − uk)

)
+

1 − 2ε
2

ϕ(uk).
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Letting k → ∞, by Fatou Lemma, we have

ϕ((1 − ε)u) ≤
1
2
ϕ(u) +

1 − 2ε
2

lim inf
k→∞

ϕ(uk).

Next letting ε→ 0+, by Fatou Lemma,

ϕ(u) ≤
1
2
ϕ(u) +

1
2

lim inf
k→∞

ϕ(uk),

from which we come to the conclusion.
2. ϕ(u) = ∞.
It is immediate that the conclusion holds if lim inf

k→∞
ϕ(uk) = ∞. Now suppose lim inf

k→∞
ϕ(uk) < ∞.

Denote λ0 = sup{λ > 0, ϕ(λu) < ∞}. Because u ∈ W s(·),p(·)(Ω), λ0 > 0. By ϕ(u) = ∞, we know λ0 ≤ 1.
Next we prove that λ0 < (0, 1). Assume that λ0 ∈ (0, 1), then choose λ1 ∈ (λ0, 1) and α ∈ (0, 1) such

that
λ1 − λ0

λ0
+ α + λ0 = 1.

We have

ϕ(λ1u) = ϕ
(
(λ1 − λ0)u + λ0(u − uk) + λ0uk

)
≤
λ1 − λ0

λ0
ϕ(λ0u) + αϕ

(
λ0

α
(u − uk)

)
+ λ0ϕ(uk).

Letting k → ∞, we get

ϕ(λ1u) ≤
λ1 − λ0

λ0
ϕ(λ0u) + λ0 lim inf

k→∞
ϕ(uk)

≤ (1 − α) lim inf
k→∞

ϕ(uk) < ∞,

which contradicts the definition of λ0. Therefore λ0 < (0, 1), i.e. λ0 ≤ 1. As λ0 = 1, for any λ ∈ (0, 1),
ϕ(λu) < ∞. According to the conclusion of first case

ϕ(λu) ≤ lim inf
k→∞

ϕ(λuk) ≤ lim inf
k→∞

ϕ(uk)

by Fatou Lemma. Further we get

ϕ(u) ≤ lim inf
λ→1−

ϕ(λu) ≤ lim inf
k→∞

ϕ(uk),

then we complete the proof. �

Theorem 2.1. 1. If p+ < ∞, then W s(·),p(·)(Ω) is separable. 2. If 1 < p− ≤ p+ < ∞, then W s(·),p(·)(Ω) is
reflexive.

Proof. We only prove the first conclusion, the second conclusion is similar. By p+ < ∞, we know that
Lp(·)(Ω) and L

p(·)+p(·)
2 (Ω × Ω) are separable. By Theorem 1.22 in [1], we have Lp(·)(Ω) × L

p(·)+p(·)
2 (Ω × Ω)

is also separable. Define the mapping
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T : W s(·),p(·)(Ω) −→ Lp(·)(Ω) × L
p(·)+p(·)

2 (Ω ×Ω)

u 7−→
(
u(x),

u(x) − u(y)

|x − y|
2n

p(x)+p(y) +
p(x)s(x)+p(y)s(y)

p(x)+p(y)

)
.

It is easy to show that T : W s(·),p(·)(Ω)→ T (W s(·),p(·)(Ω)) is an isometric mapping. As W s(·),p(·)(Ω) is
a Banach space, T (W s(·),p(·)(Ω)) is a closed subspace in Lp(·)(Ω) × L

p(·)+p(·)
2 (Ω × Ω) and by Theorem 1.21

in [1], T (W s(·),p(·)(Ω)) is separable, i.e. W s(·),p(·)(Ω) is separable. �

Theorem 2.2. If 1 < p(x) ≤ p+ < ∞, then W s(·),p(·)(Ω) is strictly convex.

Proof. Here we use the following equivalent definition of strictly convex spaces. Let (X, ‖ · ‖) be
normed linear space, (X, ‖ · ‖) is called strictly convex if for every u ∈ X, v ∈ X, u , 0, v , 0, the
equality ‖u + v‖ = ‖u‖ + ‖v‖ implies u = λv, where λ is positive.

For every u ∈ W s(·),p(·)(Ω), v ∈ W s(·),p(·)(Ω), u , 0, v , 0, ‖u + v‖W s(·),p(·)(Ω) = ‖u‖W s(·),p(·)(Ω) + ‖v‖W s(·),p(·)(Ω),
we assert that

‖u + v‖Lp(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖v‖Lp(·)(Ω).

Indeed by the definition of ‖ · ‖W s(·),p(·)(Ω), we have

‖u + v‖Lp(·)(Ω) + [v + v]W s(·),p(·)(Ω) = ‖u‖Lp(·)(Ω) + [u]W s(·),p(·)(Ω) + ‖v‖Lp(·)(Ω) + [v]W s(·),p(·)(Ω).

If ‖u + v‖Lp(·)(Ω) < ‖u‖Lp(·)(Ω) + ‖v‖Lp(·)(Ω), we obtain

[u + v]W s(·),p(·)(Ω) > [u]W s(·),p(·)(Ω) + [v]W s(·),p(·)(Ω)

which is contradict to the fact [u + v]W s(·),p(·)(Ω) ≤ [u]W s(·),p(·)(Ω) + [v]W s(·),p(·)(Ω).
By Theorem 1 in [21], (Lp(·)(Ω), ‖ · ‖Lp(·)(Ω)) is strictly convex, then there exists λ > 0 such that

u = λv. �

Remark. Singer introduced k-strict convexity in [22]. It is defined as follows: the normed space
(X, ‖ · ‖) is k-strictly convex, if for any x0, x1, · · · , xk ∈ X, ‖x0 + x1 + · · · + xk‖ = ‖x0‖ + ‖x1‖ + · · · + ‖xk‖

implies x0, x1, · · · , xk is linearly dependent. It is easy to see that strictly convex is 1-strictly convex. If
the normed space (X, ‖ · ‖) is k-strictly convex, then for any m ≥ k, the normed space (X, ‖ · ‖) must be
m-strictly convex. So if 1 < p(x) ≤ p+ < ∞, W s(·),p(·)(Ω) is k-strictly convex.

Theorem 2.3. If |Ω| < +∞ and p+ < ∞, then the set of all bounded measurable functions is dense in
W s(·),p(·)(Ω).

Proof. For any u ∈ W s(·),p(·)(Ω), define a sequence of functions

uk(x) =


u(x), if |u(x)| ≤ k,

k, if u(x) > k, k = 1, 2, · · · .
−k, if u(x) < −k,
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Then we have that
1. uk(x)→ u(x), a.e. in Ω;
2. |uk(x)| ≤ |u(x)|;
3. |uk(x) − uk(y)| ≤ |u(x) − u(y)|, for any x, y ∈ Ω.
By Lebesgue Dominated Convergence Theorem, we have that ρ(uk) → ρ(u), ϕ(uk) → ϕ(u). By

Proposition 2.6, we have uk
‖·‖
−→ u . �

3. An application

In this section, we discuss the Dirichlet boundary value problems of s(x)-p(x)-Laplacian equations.
First let W s(·),p(·)

0 (Ω) denote the closure of C∞0 (Ω) in W s(·),p(·)(Ω), i.e.

W s(·),p(·)
0 (Ω) = C∞0 (Ω)

‖·‖Ws(·),p(·)(Ω) .

Define the s(x)-p(x)-Laplacian operator F as

F u(x) :=
∫

Ω

|u(x) − u(y)|
p(x)+p(y)

2 −2(u(x) − u(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dy.

Let Ω be a bounded domain in Rn, p(·) and s(·) be continuous, 1 < p− ≤ p+ < ∞. f : Ω × R → R

is a Carathéodory function and satisfies the following conditions:
(f1) There exist q(x) with 1 < q(x) ≤ q+ < p− and constant C > 0 such that | f (x, t)| ≤ C(1 + |t|q(x)−1)

for a.e. x ∈ Ω and each t ∈ R.
(f2) There exists µ > 1 such that µF(x, t) ≤ f (x, t)t for a.e. x ∈ Ω and all t ∈ R, where

F(x, t) =

∫ t

0
f (x, τ)dτ.

(f3) For a.e. x ∈ Ω, f (x, t) is monotonically decreasing with respect to t.
Consider {

F u(x) = f (x, u(x)), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(3.1)

Definition 3.1. We say that u ∈ W s(·),p(·)
0 (Ω) is a weak solution of problem (3.1) if for all v ∈ W s(·),p(·)

0 (Ω)
we have "

Ω×Ω

|u(x) − u(y)|
p(x)+p(y)

2 −2(u(x) − u(y))(v(x) − v(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy =

∫
Ω

f (x, u(x))v(x)dx.

Theorem 3.1. Problem (3.1) has a unique weak solution in W s(·),p(·)
0 (Ω) .

Corresponding to the problem (3.1), consider the energy functional I : W s(·),p(·)
0 (Ω)→ R defined by

I(u) =

"
Ω×Ω

|u(x) − u(y)|
p(x)+p(y)

2

p(x)+p(y)
2 |x − y|n+

s(x)p(x)+s(y)p(y)
2

dxdy −
∫

Ω

F(x, u(x))dx.

We know that the critical point of I is the weak solution of the problem (3.1), so we only examine
the critical point of I. Before proving Theorem 3.1, we give two theorems to be used. Theorem 3.2 can
be inferred from Theorems 1.3 and 1.7 in [24], and Theorem 3.3 is derived from [7].
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Theorem 3.2. Let X be a real reflexive Banach space. If the real functional I : X → R is coercive,
strictly convex, and has bounded Gâteaux differential in X, then I has a unique minimum point, which
is of course also a critical point.

Theorem 3.3. Let p(·), q(·) ∈ P(Ω) and suppose |Ω \ Ω
q(·)
∞ | < ∞. Then Lp(·) ⊂ Lq(·) if and only if

q(x) ≤ p(x) a.e.. Furthermore
‖ f ‖q(·) ≤ (1 + |Ω \Ω

q(·)
∞ |)‖ f ‖p(·).

Our task is to verify that I is coercive, strictly convex, and has bounded Gâteaux differential in
W s(·),p(·)

0 (Ω), so that the only minimum point of I is the critical point, which is the weak solution of the
problem (3.1).

Proof of Theorem 3.1.
1. Existence of bounded Gâteaux differential.
Let I(u) = ψ(u) + φ(u), with

ψ(u) =

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

p(x)+p(y)
2 |x − y|n+

s(x)p(x)+s(y)p(y)
2

dxdy,

φ(u) =

∫
Ω

F(x, u(x))dx.

We consider the Gâteaux derivative of ψ and φ respectively.
First let u, h ∈ W s(·),p(·)

0 (Ω). Given x, y ∈ Ω and 0 < |t| < 1, by Mean Value Theorem, there exists
θ ∈ (0, 1) such that

|(u(x) − u(y)) + t(h(x) − h(y))|
p(x)+p(y)

2 − |u(x) − u(y)|
p(x)+p(y)

2

p(x)+p(y)
2 |t||x − y|n+

s(x)p(x)+s(y)p(y)
2

=
|(u(x) − u(y)) + θt(h(x) − h(y))|

p(x)+p(y)
2 −2(u(x) − u(y))(h(x) − h(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

≤
||u(x) − u(y)| + |h(x) − h(y)||

p(x)+p(y)
2 −2(u(x) − u(y))(h(x) − h(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

.

The Hölder inequality implies that∫
Ω

∫
Ω

||u(x) − u(y)| + |h(x) − h(y)||
p(x)+p(y)

2 −2(u(x) − u(y))(h(x) − h(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy < ∞.

Hence by Lebesgue Dominated Convergence Theorem, we obtain

< ψ′(u), h >=

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2 −2(u(x) − u(y))(h(x) − h(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy.

On the other hand, for any h ∈ W s(·),p(·)
0 (Ω) consider
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< φ′(u), h > = lim
t→0

φ(u + th) − φ(u)
t

= lim
t→0

∫
Ω

f (x, u + θth)hdx, 0 ≤ θ ≤ 1.

Since (f1) implies

| f (x, u + θth)h| ≤ C|1 + |u + θth|q(x)−1||h|

≤ C
[q(x) − 1

q(x)
|1 + |u + θth|q(x)−1|

q(x)
q(x)−1 +

1
q(x)
|h|q(x)

]
≤ C

[q+

q−
2

1
q−−1 (1 + |u|q(x) + |h|q(x)) +

1
q−
|h|q(x)

]
≤ C

[
1 + |u|q(x) + |h|q(x)

]
,

by (f1) once more and Theorem 3.3, we have

W s(·),p(·)
0 (Ω) ⊂ Lp(·)(Ω) ⊂ Lq(·)(Ω).

According to Lebesgue Dominated Convergence Theorem, we know that

< φ′(u), h >=

∫
Ω

f (x, u(x))h(x)dx.

It is immediate that I′ is linear, so now we verify that I′ is a bounded functional of h ∈ W s(·),p(·)
0 (Ω).

By Hölder inequality,

| < ψ′(u), h > | ≤
∫

Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2 −1|h(x) − h(y)|

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy

≤ C
∥∥∥∥∥ |u(x) − u(y)|

p(x)+p(y)
2 −1

|x − y|(n+
s(x)p(x)+s(y)p(y)

2 ) p(x)+p(y)−2
p(x)+p(y)

∥∥∥∥∥
L

p(x)+p(y)
p(x)+p(y)−2 (Ω×Ω)

×

∥∥∥∥∥ |h(x) − h(y)|

|x − y|(n+
s(x)p(x)+s(y)p(y)

2 ) 2
p(x)+p(y)

∥∥∥∥∥
L

p(x)+p(y)
2 (Ω×Ω)

= C[u][h]
≤ C‖u‖‖h‖.

By Hölder inequality, (f1) and Theorem 3.3,

| < φ′(u), h > | ≤
∫

Ω

| f (x, u(x))||h(x)|dx

≤ C(
∫

Ω

|h(x)|dx +

∫
Ω

|u|q(x)−1|h(x)|dx)

≤ C‖h‖L1(Ω) + C‖u‖Lq(·)(Ω)‖h‖Lq(·)(Ω)

≤ C(1 + ‖u‖)‖h‖.
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2. I is coercive.
By Young inequality,

I(u) =

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

p(x)+p(y)
2 |x − y|n+

s(x)p(x)+s(y)p(y)
2

dxdy −
∫

Ω

F(x, u(x))dx

≥

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

p(x)+p(y)
2 |x − y|n+

s(x)p(x)+s(y)p(y)
2

dxdy −
∫

Ω

| f (x, u(x))
u(x)
µ
|dx

≥

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

p(x)+p(y)
2 |x − y|n+

s(x)p(x)+s(y)p(y)
2

dxdy −
∫

Ω

C
µ

(|u(x)| + |u(x)|q(x))dx

≥
1
p+

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy −
C|Ω|
µ
−

C
µ

∫
Ω

|u(x)|q(x)

q(x)
−

∫
Ω

|u(x)|q(x)dx.

If we assume ‖u‖ > 1, then we have

I(u) ≥
1
p+
‖u‖p− − (

C
µ

+ 1)‖u‖q
+

−
C|Ω|
µ

.

So as ‖u‖ → +∞, I(u)→ +∞.
3. I is strictly convex.
By p− ≥ 1, we know that any u, v ∈ W s(·),p(·)

0 (Ω), ψ(u+v
2 ) < 1

2ψ(u) + 1
2ψ(v).

By (f3), we have φ( u+v
2 ) ≥ 1

2φ(u) + 1
2φ(v), so we assert that I is strictly convex.

Therefore, according to Theorem 3.2, we get the unique minimum value point of I, which is the
weak solution of the problem (3.1). �

4. Conclusions

We define a class of variable exponent fractional Sobolev spaces W s(·),p(·)(Ω), which is a subspace
of Lp(·)(Ω), and has variable order s(x) and variable exponent p(x)+p(y)

2 . W s(·),p(·)(Ω) is a Banach space
under the given norm. We give some basic properties, such as the closed unit ball is equivalent in the
sense of [ · ] and ϕ, and that the [ · ]-convergent and ϕ-convergent are equivalent, norm convergent is
equivalent to the ρ-convergent and the ϕ-convergent. If the exponent p(x) satisfies certain conditions,
we obtain that W s(·),p(·)(Ω) is reflexive, separable, strictly convex and the set of all bounded measurable
functions is dense in W s(·),p(·)(Ω). As an application, we obtain the existence and uniqueness of weak
solutions in W s(·),p(·)

0 (Ω) for Dirichlet boundary value problems of s(x) − p(x)-Laplacian equations.
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