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Abstract: With p (n, k) denote the numerical value of the number of partitions of the natural number
n on exactly k parts. Form an arithmetic progression of k natural numbers with an arbitrary first value
x1 = p(J, k), and the difference d =m - LCM (1,2,...,k), where j and m an arbitrary natural numbers.
: k-1 i1\ s, s oy k=1 g
coeflicients ), (—1) ( ; ) p(j+i-d k). The last sum has a constant value equal to (-1)""" <,
regardless of the first selected member x; of the arithmetic progression. We call this sum the first
partition invariant, and it exists in all classes. In addition to these values there are a whole number of
other invariant values, but they exist only in some classes, and so forth.
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1. Introduction

Let n and k be two positive integers. Denote by p (n, k) the number of partitions of the positive
number n on exactly k parts. Then the partition class k is the sequence p (1,k),p(2,k),...,p(n,k),...
We already know, see [1], all these values can be divided into the highest dy = LCM (1,2, ...,k) sub
sequences, each of which is calculated by the same polynomial.

Choose a sequence of k natural numbers such that: the first member is arbitrary, and the rest form
an arithmetic progression with a difference d = m - dy, m € N, starting from the chosen first member.
For example:

xX1=J, xo=j+d, ..., xp,=j+(k-1)-d, jeN. (1.1)

The corresponding number of partitions of the class k for the elements of the previous arithmetic
progression’s values is:

pxi,k), pak), ..., plu.k). (1.2)

If the values, which are calculated using the same polynomial, multiplied by the corresponding
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binomial coefficients, form the alternate sum, we notice that the sum always has a value which is
independent of x;, no matter how we form the sequence (1.1).

For the partition function of classes we already know the following results, see [1, 2] for some
details:

1) The values of the partition function of classes is calculated with one quasi polynomial.

i1) For each class k the quasi polynomial consists of at most LCM (1,2, ..., k) different polynomials,
each of them consists of a strictly positive and an alternating part.

ii1) All polynomials within one quasi polynomial p (n, k) are of degree k — 1.

iv) All the coefficients with the highest degrees down to [’5‘] are equal for all polynomials (all of
strictly positive) and all polynomials differ only in lower coefficients (alternating part).

v) The form of any polynomial p (n, k) is:

k=2

p(n,k):alnk_l +an "+ -+ ay, (1.3)

where the coeflicients a;, ay, . . ., a; are calculated in the general form.

Let us forget for a moment that the coefficients ay, a,, ... are known in general form. Knowing that
all values for partitions class of the sequence (1.1) are obtained by one polynomial p (n, k), it is possible
to determine all unknown coeflicients in a completely different way from that given in papers [1, 2]. To
determine k unknowns, a k equation is required. For this purpose, it is sufficient to know all the values
of the sequence (1.2). To this end, we must form the system (1.4) and solve it. (For k = 10, see [3]).

a - XXM va X+ @ = p(x,k)

a X v a XA+ v = p o,k
1 2 2 2 k P(z ) (14)

a X a7+ a = p (g, k)

The system (1.4) can be solved by Cramer’s Rule. For further analysis, we need to find the following
determinants. We will start with the known Vandermonde determinant, see [4].

m—1 m—2
Xy 1 XY L 1
S A |
An=[2 72 =[] (i-x), m>1. (1.5)
Leteiom
m—1 m—2 .
xm 'xm

When we remove the first column and an arbitrary row from the previous determinant we obtain
the Vandermonde determinant of one order less. The following results are known, see [4] and are
needed for further exposure. If we remove the second column and an arbitrary a-th row from the
determinant (1.5) we get

ot ]
e e . i
xZ’_ll xZ’_f N AL N ' 16
el 3 N 1= X X — X; (1.6)
a+l atl  cc Tatl 0<i<m 0<i<j<m
-1 m—3
X" X X 1
m m m
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If we remove the third column and an arbitrary a-th row from the determinant (1.5) we get

x’l"‘1 x’l"‘2 x’1”‘4 oox 1
E - e e v v
b oA x|
a—1 a-1 a—1 — ey . (1 7)
xm—l xm—Z xm—4 X 1 - Xi+ Xj Xi Xj .
atl  Ta+l  Taxl ccc Taxd 1<i<j<m 0<i<j<m
m—1 m—2 -4
Xy o Xy X Xm 1

x’{"l xT‘z . xll’Jrl xll"l oox 1
m—1 m-2 b+1 b-1 oeslb1 #a Lj#a
A(a,b) _ *a=1  Xa-1 Koot Xgor oor Xa-d 1 — .
m = |am-1 m-2 b+l b1 = Aty Xy oo Xy Xi = Xj)-
X X . X X R TR |
a+l a+l at+l at+l 1<t <ty-<tp_1<m 0<i<j<m
m—1 m—2 b+1 b—1
B A A S ol o S

The label Af,?’b) means that from A,, remove the a-th row and b-th column from the set of variables x,,.
2. Invariants of the partitions classes

2.1. The first partition invariant of classes
Theorem 1. Let m, j and k be three positive integers and

k-1

(k=1
n(k,j,d):Z(—l)’( l. )p(j+i-d,k>,

i=0

whered = m-LCM(1,2,3,...,k). Then I, (k, j,d) = (—1)"_1 % and is independent of j. (I (k, j, d)
is the first partition invariant which exists in all classes.)

Proof. Among the values of the class k£ we choose the ones corresponding to the sequence (1.1), and
they are given with the sequence (1.2). According to [2], all the elements in (1.2) can be calculated
using the same polynomial p (n, k) with degree k — 1. Elements of the following sequence:

q,9+d,....,qg+k-1)-d, q#]

are calculated with not necessarily the same polynomial as the previous one. Let the polynomial
p (n, k) have the form as in (1.3). To determine the coefficients a;, as, ..., a; it suffices to know the k
values: p (x1,k), p(x2,k),...,p(x, k) where x; = j, x, =j+d,..., xx = j+(k—1)d are different
numbers. Since A, # 0, system (1.4) always has a unique solution, because all the elements of the set
{x1, X2, ..., x;} are different from one another. According to Cramer’s Rule, to determine the coefficient
of the highest degree of the polynomial (1.3), which calculates the value of the number of partitions of
class k, we have the following formula:

PN = p G, ) AZY 4+ (1D p (s k) ALY
= .

a 2.1)
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Determinants A;{“’”,(l < a < k) are also Vandermonde and their values are equal to A;_;. Let
{xi}1<i<k satisfy (1.1) then for 1 < a < k it holds that

A
(al) _ _ k
Ay =M = k
ITGi—x0) IT (xa—x0)
i=1 i=a+1

(=D a = Dldet - (=D (k — a)ldka

3 (- A,
" (a-D!(k-a)d-t

Replacing in (2.1), after shortening with A; we have

k-1 p (x1,k) p (x2,k) k-1
Voo e Tigk— gt T tED

a, = (—1

p (X, k) )
(k- D10t 1)’

The coefficient a; is already defined in [2] where it is shown that a; = Substituting into the

S S
K="
previous equality and multiplying by (—1)*"!, we obtain

D" pak p (x2, k)

k-1
HGk-Dl - 0lh=DId= ~ TTk—2yae T D

p (X, k)
(k — D01

Multiplying the last equality with (k — 1)!d*~! we obtain

k-1 k=l
(~1)! % = ;(—n’(k l. 1)p<j+i-d,k),

which was to be proved. As these values are equal to each observed number of objects (1.2) within a
class, the sum is invariant for any observed class. O

All classes of the partition do not contain all the invariants we will list. This primarily refers to
the classes from the beginning. Only the first invariant appears in all classes. The second invariant
holds starting from the third class. The third invariant holds starting from the fifth class. Fourth, from
the seventh class, etc. This coincides with the appearance of the common coefficients {a;} in quasi
polynomials p (n, k), k € N.
Theorem 2. Let m, j and k be three positive integers, k > 3 and

o . k k—1
Iz(k,j,d)=Z(—l)’“(j(k—1)+((2)—i)a’)( ; )p(j+i~d,k)
i=0

where d = m - LCM (2,3,....k). Then L, (k, j.d) = (-1)* 424~ and is independent of j.

Remark. In the previous expression, we should not simplify as then the value for k = 3 cannot be
obtained. However, the value for k = 3 exists and is equal to zero.

Proof. Analogously to Theorem 1, the fact that the sum does not depend on the parameter j is a
consequence of the periodicity per modulo LCM (2,3, ..., k) using the same polynomial to calculate

the partition class values.
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In [2] it is shown how the system of linear equations can determine the other unknown coefficient of
the polynomials which are calculated values of the partition classes. This coefficient is obtained from
Cramer’s Rule on system (1.4) and a, is given by

=AM 4 p (. D AP =L (=D p (k) ALY
T A - 22)

onsiderin .6), knowing that {x;}._ 1s an arithmetic progression, determinants A, can be
Considering (1.6), k g that {x;};_15. & thmetic prog det ts A? can b
written for 1 < a < k with

A/(:ﬂ) _ (#Za xi]Ak - ((k— 1)j+((§)—a+ 1)d)Ak

a—1 k
_11 (xi —xa) IT (xa = xp)

i=a+1
(k=1)j+(()-a+1)d)A
- (-D* (a - Dldet - (=D (k — a)!dk—@
DT (k=D () —a+1)d) A
(a— D!k —a)ld! '

k=3

Knowing the value of the coefficient a, = DD

multiplication with (—1)* (k — 1)!d*"! we obtain

[2] and substituting in (2.2), and after

o k=3 (R N1
(-1 —4(k_2)!d —((k 1)]+(2)d)( 0 )p(J,k)

((k— 1)j+((]2€)+ l)d)(kI 1)p(j+d,k)+...
k

—1
- Z(—l)’“ (j(k— 1)+((]2€)—i)d)(k; 1)p(j+i-d,k).|:|

i=0

2.2. The third partition invariant of classes

These invariants are in all classes starting from the fifth. For simplicity we denote them by

1 k 2
R(, jk,d) = 5[(@— l)j+((2)—i)d) — (k=1

1 2\ 2 (k) .
—(gk(k—l)(2k—1)—z)d —2d-]((2)—z)).

Theorem 3. Let m, j and k be three positive integers, k > 5 and
: k-1
13 (k’.]’d) = Z(_l)lR(l’]’k’d)( i )p(.]+ld’k),
i=0

AIMS Mathematics Volume 5, Issue 6, 6233-6243.
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where d = m- LCM (2,3, ....k). Then I3 (k, j.d) = (—1)"" 2538732 g=1 and is independent of .
Proof. For the third invariant we need the value of the third polynomial coefficient of p (n, k), and it is
shown [2] that this is

9k — 58k + 75k — 2

= , kZ
a 288 (k- 1)! (k —3)!

On the other hand, we have

P RDAM = p o ) AP -+ (<D p (g, k) AR
- =

(2.3)

as

From formula (1.7) we find A,(:”3). The required sum  », Xx;-x; is convenient to calculate from the

1<i<j<k
equality
i,j#a 1 i#a 2 i#a
2
2, Nx=g (Z) =25
1<i<j<k I<i<k I<i<k

where the sequence {x;} satisfies (1.1). Then, we should determine the quotient which can be simplified
by reducing the following:

A Rla-1,jkd)
A, a-l k ’
¢ [T 0= %) T1 (= x)
i= i=a+

By multiplying (2.3) with (=1)*"! (k — 1)!d*"" and after shortening we obtain:
S k-1
i=0

In every subsequent invariant, the proceedings become more complex. But, it is quite clear how
further invariants can be calculated.

3. Consideration of special cases

For each partitions class k, k € N we determine dy = LCM (1,2, 3,...,k), and then form d = m - d,
m € N. In addition arbitrarily choose the natural number j and than form sequences (1.1) and (1.2).
Finally, we form an appropriate sum which is for the first invariant:

k-1 k-1 k-1 k-1
Z(—l)’( . )p(j+i-d,k):2<—1>'( . )p(le,k),jeN. (3.
1 pars 1

i=0

Sum (3.1) has a constant value in each partitions class and can be nominated as the first partitions
class invariant.

AIMS Mathematics Volume 5, Issue 6, 6233-6243.
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3.1. The first partitions class invariant

For k = 1, sum (3.1) has a constant value of 1.

For k = 2, dy = 2. If we choose some m € N and set d = 2m, the sum (3.1) has the form:
p(j,2)—p(j+d,2),je N. According to [1], it is known that p (n,2) = [%] Distinguishing between
even and odd numbers of j (j and j + d have the same parity) and substituting into the sum, we obtain
that the result, in both cases, is equal to —% = -m.

For k = 3, dy = 6. If we choose some m € N and set d = 6m the sum (3.1) has the form:

According to [1], it is known that:

n2+a)i

3) =
p(n,3) B

, i=n mod 6, w; €{0,-1,-4,3,-4,-1}. (3.3)

By replacing (3.3) in relation (3.2) we get

P Hwy _2(j+d)2 Wi, (j +2d)* + w;,
12 12 12 '

Note that: i; = j mod 6, i, = (j+d) mod 6, i3 = (j+2d) mod 6 and w;, = w;, = w;,. Finally,
we get the unique sum 6m?.
For k =4, dy = 12. If we choose some m € N and set d = 12m the sum (3.1) has the form:

According to [1], it is known that:

1 1 =L neven
nd)= —n’ + —n>+ {144 ’ i=n mod 12, 3.5
PO =Tt g {—%n + 2 nodd, )

w; €{0,5,-20,-27,32,-11,-36,5, 16, -27, -4, 11} .

Similar to case k = 3, by distinguishing the even and odd j and replacing (3.5) in relation (3.4) we
obtain that the corresponding sums in both cases are equal to: —72m>. (Note that: i, = j mod 12,
ih=(j+d)ymod 12,13 = (j+2d)mod 12,i, = (j+3d)mod 12 and w;, = w;, = w;; = w;,.)

The number of invariants increases, when the class number increases. Starting with class three,
another invariant can be observed.

3.2. The second partitions class invariant

Form in the same way as in the previous section: d,, d and the sequences (1.1) and (1.2) as well as

the sum: .
Z(—l)"(j(k— I+ ((k)—i)d)(k_. 1)p<j+i-d,k).
pare 2 i

Previous sum has a constant value in each partitions class (starting from third class) and can be
nominated as the second partitions class invariant.
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For k = 3, dy = 6. If we choose some m € N and set d = 6m the general form of the second invariant
in the third class can be written as

2j+3d)p(;3)-2Q2j+2d)p(j+d.3)+2j+d)p(j+2d,3),jeN

The values p(j,3),p(j+d,3) and p(j+ 2d, 3) are calculated using the same polynomial (3.3).
Using (3.3) in the last equality we have

i+ d) +w i+ 2d)? + w;
(J+)+W2+(2j+d)(1+ )+ wy,

)
. ]+Wi1 .
2i+3d) ——L —22j+2d
(2j+3d) 6 (2j +2d) c c

Note that: iy = j mod 6, i, = (j+d)mod 6, i3 = (j+2d)mod 6 and w; = w;, = w;,. The last
equality is identical to zero.

For k = 4, dy = 12. If we choose some m € N and set d = 12m the general form of the second
invariant in the fourth class can be written as

Bj+6d)p(j,4)-3Cj+5d)p(j+d,4)+33Bj+4d)p(j+2d,4)
-@Bj+3d)p(j+3d,4). (3.6)

The last equations can be verified in an analogous manner, by using the same form of the known
polynomial for the fourth class given in (3.5). Note that: iy, = j mod 12, i, = (j+d)mod 12,
i3 = (j+2d)mod 12, iy = (j+3d)mod 12 and w;, = w;, = w;; = w;,. By distinguishing the even
and odd j and replacing (3.5) in relation (3.6) we obtain that the corresponding sums in both cases are
equal to: —216m°.

3.3. The third partition invariants

Form in the same way as in the previous two section: dy, d and the sequences (1.1) and (1.2) as well
as the sum /5 (k, j,d) (Theorem 3). For each class (starting from the fifth) /5 (k, j, d) has constant values
and can be nominated as the third partitions class invariant. It is known [1] that

1 1 1 —Ln+ 2 peven
n5 = nt + A — 247 0 28807 i = n mod 60, (3.7
p(n.) 2880" 288" T 288 {—%n + 2% nodd, G0

w; are following numeric respectively:
0,9,104,-351,-576,905, -216,-351, =256, 9,360, -31, -576,9, 104, 225,
- 576,329, -216,-351,320,9,-216,-31, -576, 585, 104, -351, -576, 329, 360,

- 351, -256,9,-216,545,-576,9, 104, -351, 0,329, -216, -351, —256, 585,
-216,-31,-576,9, 680, -351,-576,329, =216, 225, -256,9, -216, -31.

For k = 5, dy = 60. If we choose some m € N and set d = 60m the invariant /5 (k, j,d) can be
written as:

AIMS Mathematics Volume 5, Issue 6, 6233-6243.
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1 1
5((4j+ 10d)’ - 457 = 20d - j - 30d) p (j.5) - E((4j+9d)2—4j2— 184 - j - 29d°) p (j +d.5)

1
+5 ((4)+8d)* - 4 - 16d-j—26d2)p(j+2d,5)—§((4j+7d)2—4j2— 14d - j - 21d*) p (j+ 3d.5)

| —

1
+5 (@) +6d7 42 = 124 j = 14d*) p (j +4d.5).

Substituting (3.7) into the previous formula by distinguishing between even and odd j, we obtain a
unique value of 1080000m*.

Remark 1. From the Table 1, see [5], given at the end of the paper it is possible to check all of
these explicitly with numerical values. For example:

1. Check the first invariant in the third class. Take m = 2, j = 5. The first invariant formula is

p(5,3)-2-p(17,3)+ p(27,3).

From the Table we find: p(5,3) = 2, p(17,3) = 24, p(29,3) = 70. By substitution we find
2—-2-24+70 = 24(= 6m?).

2. Check the second invariant in the forth class. Take m = 1, j = 3. The second invariant formula is

81p(3,4)—3-69p(15,4) +3-57p(27,4) —45p(39,4).

From the Table we find: p(3,4) = 0, p(15,4) = 27, p(27,4) = 150, p(39,4) = 441. By
substitution we find:

81-0-3-69-27+3-57-150—45-441 = -216(= —216m).
3. Check the third invariant in the fifth class. Take m = 1, j = 1. The third invariant formula is

127806 - p (1,5) — 380904 - p (61,5)
+ 419076 - p (121,5) — 206664 - p (181, 5) + 40686 - p (241,5) = 1080000.

Using formulas from (3.7), we find that: p(1,5) = 0, p(61,5) = 5608, p(121,5) = 80631,
p (181,5) = 393369 and p (241,5) = 1220122, and so by checking we are assured of the accuracy.

Remark 2. Obviously, p (n, k) define values only for n > k. The invariants determine very precisely
that values for n < k should be taken as zero.
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Table 1. Partition classes values.

dy 112 |6 12 |60 |60 420 | 840 | 2520 | 2520

nfk| 12 |3 4 5 6 7 8 9 10 11 p(n)
1 110 |0 0 0 0 0 0 0 0 0 1

2 111 |0 0 0 0 0 0 0 0 0 2

3 11 |1 0 0 0 0 0 0 0 0 3

4 112 |1 1 0 0 0 0 0 0 0 5

5 112 |2 1 1 0 0 0 0 0 0 7

6 113 |3 2 1 1 0 0 0 0 0 11

7 113 |4 3 2 1 1 0 0 0 0 15

8 114 |5 5 3 2 1 1 0 0 0 22

9 114 |7 6 5 3 2 1 1 0 0 30

10 |15 |8 9 7 5 3 2 1 1 0 42

T {15 (10 |11 |10 |7 5 3 2 1 1 56

12 {16 |12 |15 |13 |11 7 5 3 2 1 77

13 |1]6 |14 |18 |18 |14 11 7 5 3 2 101
14 |17 [16 |23 |23 |20 15 11 7 5 3 135
15 |17 |19 |27 |30 |26 21 15 11 7 5 176
16 |18 |21 |34 |37 |35 28 22 15 11 7 231
17 |18 [24 |39 |47 |44 38 29 22 15 11 297
18 || 119 |27 |47 |57 |58 49 40 30 22 15 385
19 |19 (30 (54 |70 |71 65 52 41 30 22 490
20 (11033 |64 |84 |90 82 70 54 42 30 627
21 || 11037 |72 |101 | 110 | 105 | &9 73 55 43 792
22 || 11140 |84 | 119|136 |131 | 116 |94 75 56 1002
23 || 1|11 44 [94 | 141|163 | 164 | 146 | 123 |97 77 1255
24 || 11248 | 108 | 164 | 199 |201 | 186 | 157 | 128 | 100 1575
25 || 11252 [120 | 192 | 235 | 248 |230 | 201 | 164 | 133 1958
26 (|1 ]13 |56 |136 221|282 |300 |288 |252 |212 |171 2436
27 (1|13 |61 |150 255|331 |364 |352 |318 |267 |223 3010
28 (1|14 |65 |169 |291 | 391 |436 |434 |393 |340 | 282 3718
29 (11470 | 185|333 |454 |522 |525 |488 |423 | 362 4565
30 (1| 15|75 |206 377|532 | 618 | 638 |598 |530 |453 5604
31 |1 |15|80 |225 427|612 | 733 |764 |732 | 653 | 573 6842
32 |1 16|85 |249 480|709 | 860 |919 |887 |807 | 709 8349
33 (|1]16|91 |270 540 | 811 | 1009 | 1090 | 1076 | 984 | 884 10143
34 || 117196 |297 603|931 | 1175|1297 | 1291 | 1204 | 1084 12310
35 || 1|17 102|321 | 674 | 1057 | 1369 | 1527 | 1549 | 1455 | 1337 14883
36 || 1|18 | 108 | 351 | 748 | 1206 | 1579 | 1801 | 1845 | 1761 | 1626 17977
37 || 1|18 | 114 | 378 | 831 | 1360 | 1824 | 2104 | 2194 | 2112 | 1984 21637
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4. Conclusions

In this paper, authors have demonstrated a new approach to partitions class invariants, as a way of
proving the relevance and accuracy of all formulas given in [1, 2]. Also, it I can be considered to be
another way to obtain some of the formulas in [2]. The quasi polynomials p (n, k) needed to calculate
the number of partitions of a number 7 to exactly k parts consists of at most LCM (1,2, ..., k) different
polynomials. The invariants claim that the more different polynomials in one quasi polynomial, the
more invariable sizes connect them.
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