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Abstract: With p (n, k) denote the numerical value of the number of partitions of the natural number
n on exactly k parts. Form an arithmetic progression of k natural numbers with an arbitrary first value
x1 = p ( j, k), and the difference d = m · LCM (1, 2, . . . , k), where j and m an arbitrary natural numbers.
Calculate all the values of {p (xi, k)}i=1,2,...,k and make the alternating sum with the appropriate binomial
coefficients

∑k−1
i=0 (−1)i

(
k−1

i

)
p ( j + i · d, k) . The last sum has a constant value equal to (−1)k−1 dk−1

k! ,
regardless of the first selected member x1 of the arithmetic progression. We call this sum the first
partition invariant, and it exists in all classes. In addition to these values there are a whole number of
other invariant values, but they exist only in some classes, and so forth.
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1. Introduction

Let n and k be two positive integers. Denote by p (n, k) the number of partitions of the positive
number n on exactly k parts. Then the partition class k is the sequence p (1, k) , p (2, k) , . . . , p (n, k) , . . .
We already know, see [1], all these values can be divided into the highest d0 = LCM (1, 2, . . . , k) sub
sequences, each of which is calculated by the same polynomial.

Choose a sequence of k natural numbers such that: the first member is arbitrary, and the rest form
an arithmetic progression with a difference d = m · d0, m ∈ N, starting from the chosen first member.
For example:

x1 = j, x2 = j + d, . . . , xk = j + (k − 1) · d, j ∈ N. (1.1)

The corresponding number of partitions of the class k for the elements of the previous arithmetic
progression’s values is:

p (x1, k) , p (x2, k) , . . . , p (xk, k) . (1.2)

If the values, which are calculated using the same polynomial, multiplied by the corresponding
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binomial coefficients, form the alternate sum, we notice that the sum always has a value which is
independent of x1, no matter how we form the sequence (1.1).

For the partition function of classes we already know the following results, see [1, 2] for some
details:

i) The values of the partition function of classes is calculated with one quasi polynomial.
ii) For each class k the quasi polynomial consists of at most LCM (1, 2, . . . , k) different polynomials,

each of them consists of a strictly positive and an alternating part.
iii) All polynomials within one quasi polynomial p (n, k) are of degree k − 1.
iv) All the coefficients with the highest degrees down to

[
k
2

]
are equal for all polynomials (all of

strictly positive) and all polynomials differ only in lower coefficients (alternating part).
v) The form of any polynomial p (n, k) is:

p (n, k) = a1nk−1 + a2nk−2 + · · · + ak, (1.3)

where the coefficients a1, a2, . . . , ak are calculated in the general form.
Let us forget for a moment that the coefficients a1, a2, . . . are known in general form. Knowing that

all values for partitions class of the sequence (1.1) are obtained by one polynomial p (n, k), it is possible
to determine all unknown coefficients in a completely different way from that given in papers [1, 2]. To
determine k unknowns, a k equation is required. For this purpose, it is sufficient to know all the values
of the sequence (1.2). To this end, we must form the system (1.4) and solve it. (For k = 10, see [3]).

a1 · xk−1
1 + a2 · xk−2

1 + · · · + ak = p (x1, k)

a1 · xk−1
2 + a2 · xk−2

2 + · · · + ak = p (x2, k)

. . . . . . . . .

a1 · xk−1
k + a2 · xk−2

k + · · · + ak = p (xk, k)

(1.4)

The system (1.4) can be solved by Cramer’s Rule. For further analysis, we need to find the following
determinants. We will start with the known Vandermonde determinant, see [4].

∆m =

∣∣∣∣∣∣∣∣∣∣∣
xm−1

1 xm−2
1 . . . 1

xm−1
2 xm−2

2 . . . 1
. . . . . . . . .

xm−1
m xm−2

m . . . 1

∣∣∣∣∣∣∣∣∣∣∣ =
∏

1≤i< j≤m

(
xi − x j

)
, m > 1. (1.5)

When we remove the first column and an arbitrary row from the previous determinant we obtain
the Vandermonde determinant of one order less. The following results are known, see [4] and are
needed for further exposure. If we remove the second column and an arbitrary a-th row from the
determinant (1.5) we get∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xm−1
1 xm−3

1 . . . x1 1
. . . . . . . . . . . . . . .

xm−1
a−1 xm−3

a−1 . . . xa−1 1
xm−1

a+1 xm−3
a+1 . . . xa+1 1

. . . . . . . . . . . . . . .

xm−1
m xm−3

m . . . xm 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

 i,a∑
0≤i≤m

xi

 · i, j,a∏
0≤i< j≤m

(
xi − x j

)
(1.6)
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If we remove the third column and an arbitrary a-th row from the determinant (1.5) we get∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xm−1
1 xm−2

1 xm−4
1 . . . x1 1

. . . . . . . . . . . . . . . . . .

xm−1
a−1 xm−2

a−1 xm−4
a−1 . . . xa−1 1

xm−1
a+1 xm−2

a+1 xm−4
a+1 . . . xa+1 1

. . . . . . . . . . . . . . . . . .

xm−1
m xm−2

m xm−4
m . . . xm 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

i, j,a∑
1≤i< j≤m

xi · x j

i, j,a∏
0≤i< j≤m

(
xi − x j

)
(1.7)

Generaly, if we remove the b-th column and an arbitrary a-th row from the determinant (1.5) we get

∆(a,b)
m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xm−1
1 xm−2

1 . . . xb+1
1 xb−1

1 . . . x1 1
. . . . . . . . . . . . . . . . . . . . .

xm−1
a−1 xm−2

a−1 . . . xb+1
a−1 xb−1

a−1 . . . xa−1 1
xm−1

a+1 xm−2
a+1 . . . xb+1

a+1 xb−1
a+1 . . . xa+1 1

. . . . . . . . . . . . . . . . . . . . .

xm−1
m xm−2

m . . . xb+1
m xb−1

m . . . xm 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

 t1,...,tb−1,a∑
1≤t1<t2···<tb−1≤m

xt1 xt2 . . . xtb−1

 i, j,a∏
0≤i< j≤m

(
xi − x j

)
.

The label ∆
(a,b)
m means that from ∆m remove the a-th row and b-th column from the set of variables xa.

2. Invariants of the partitions classes

2.1. The first partition invariant of classes

Theorem 1. Let m, j and k be three positive integers and

I1 (k, j, d) =

k−1∑
i=0

(−1)i
(
k − 1

i

)
p ( j + i · d, k) ,

where d = m · LCM (1, 2, 3, . . . , k). Then I1 (k, j, d) = (−1)k−1 dk−1

k! and is independent of j. (I1 (k, j, d)
is the first partition invariant which exists in all classes.)
Proof. Among the values of the class k we choose the ones corresponding to the sequence (1.1), and
they are given with the sequence (1.2). According to [2], all the elements in (1.2) can be calculated
using the same polynomial p (n, k) with degree k − 1. Elements of the following sequence:

q, q + d, . . . , q + (k − 1) · d, q , j,

are calculated with not necessarily the same polynomial as the previous one. Let the polynomial
p (n, k) have the form as in (1.3). To determine the coefficients a1, a2, . . . , ak it suffices to know the k
values: p (x1, k) , p (x2, k) , . . . , p (xk, k) where x1 = j, x2 = j + d, . . . , xk = j + (k − 1) d are different
numbers. Since ∆k , 0, system (1.4) always has a unique solution, because all the elements of the set
{x1, x2, . . . , xk} are different from one another. According to Cramer’s Rule, to determine the coefficient
of the highest degree of the polynomial (1.3), which calculates the value of the number of partitions of
class k, we have the following formula:

a1 =
p (x1, k) ∆

(1,1)
k − p (x2, k) ∆

(2,1)
k + · · · + (−1)k−1 p (xk, k) ∆

(k,1)
k

∆k
(2.1)
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Determinants ∆
(a,1)
k , (1 ≤ a ≤ k) are also Vandermonde and their values are equal to ∆k−1. Let

{xi}1≤i≤k satisfy (1.1) then for 1 ≤ a ≤ k it holds that

∆
(a,1)
k = ∆k−1 =

∆k

a−1∏
i=1

(xi − xa)
k∏

i=a+1
(xa − xi)

=
∆k

(−1)a−1 (a − 1)!da−1 · (−1)k−a (k − a)!dk−a

=
(−1)k−1 ∆k

(a − 1)! (k − a)!dk−1 .

Replacing in (2.1), after shortening with ∆k we have

a1 = (−1)k−1
(

p (x1, k)
0! (k − 1)!dk−1 −

p (x2, k)
1! (k − 2)!dk−1 + . . . + (−1)k−1 p (xk, k)

(k − 1)!0!dk−1

)
.

The coefficient a1 is already defined in [2] where it is shown that a1 = 1
k!(k−1)! . Substituting into the

previous equality and multiplying by (−1)k−1, we obtain

(−1)k−1

k! (k − 1)!
=

p (x1, k)
0! (k − 1)!dk−1 −

p (x2, k)
1! (k − 2)!dk−1 + · · · + (−1)k−1 p (xk, k)

(k − 1)!0!dk−1 .

Multiplying the last equality with (k − 1)!dk−1 we obtain

(−1)k−1 dk−1

k!
=

k−1∑
i=0

(−1)i
(
k − 1

i

)
p ( j + i · d, k) ,

which was to be proved. As these values are equal to each observed number of objects (1.2) within a
class, the sum is invariant for any observed class. �

All classes of the partition do not contain all the invariants we will list. This primarily refers to
the classes from the beginning. Only the first invariant appears in all classes. The second invariant
holds starting from the third class. The third invariant holds starting from the fifth class. Fourth, from
the seventh class, etc. This coincides with the appearance of the common coefficients {ak} in quasi
polynomials p (n, k), k ∈ N.
Theorem 2. Let m, j and k be three positive integers, k ≥ 3 and

I2 (k, j, d) =

k−1∑
i=0

(−1)i+1
(

j (k − 1) +

((
k
2

)
− i

)
d
) (

k − 1
i

)
p ( j + i · d, k)

where d = m · LCM (2, 3, . . . , k). Then I2 (k, j, d) = (−1)k (k−3)dk−1

4(k−2)! and is independent of j.
Remark. In the previous expression, we should not simplify as then the value for k = 3 cannot be
obtained. However, the value for k = 3 exists and is equal to zero.
Proof. Analogously to Theorem 1, the fact that the sum does not depend on the parameter j is a
consequence of the periodicity per modulo LCM (2, 3, . . . , k) using the same polynomial to calculate
the partition class values.
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In [2] it is shown how the system of linear equations can determine the other unknown coefficient of
the polynomials which are calculated values of the partition classes. This coefficient is obtained from
Cramer’s Rule on system (1.4) and a2 is given by

a2 =
−p (x1, k) ∆

(1,2)
k + p (x2, k) ∆

(2,2)
k − . . . (−1)k p (xk, k) ∆

(k,2)
k

∆k
. (2.2)

Considering (1.6), knowing that {xi}i=1,2,...,k is an arithmetic progression, determinants ∆
(a,2)
k can be

written for 1 ≤ a ≤ k with

∆
(a,2)
k =

 i,a∑
1≤i≤k

xi

 ∆k−1 =

(
(k − 1) j +

((
k
2

)
− a + 1

)
d
)
∆k

a−1∏
i=1

(xi − xa)
k∏

i=a+1
(xa − xi)

=

(
(k − 1) j +

((
k
2

)
− a + 1

)
d
)
∆k

(−1)a−1 (a − 1)!da−1 · (−1)k−a (k − a)!dk−a

=
(−1)k−1

(
(k − 1) j +

((
k
2

)
− a + 1

)
d
)
∆k

(a − 1)! (k − a)!dk−1 .

Knowing the value of the coefficient a2 = k−3
4(k−1)!(k−2)! [2] and substituting in (2.2), and after

multiplication with (−1)k (k − 1)!dk−1 we obtain

(−1)k k − 3
4 (k − 2)!

dk−1 =

(
(k − 1) j +

(
k
2

)
d
) (

k − 1
0

)
p ( j, k)−(

(k − 1) j +

((
k
2

)
+ 1

)
d
) (

k − 1
1

)
p ( j + d, k) + . . .

=

k−1∑
i=0

(−1)i+1
(

j (k − 1) +

((
k
2

)
− i

)
d
) (

k − 1
i

)
p ( j + i · d, k) .�

2.2. The third partition invariant of classes

These invariants are in all classes starting from the fifth. For simplicity we denote them by

R (i, j, k, d) =
1
2

((k − 1) j +

((
k
2

)
− i

)
d
)2

− (k − 1) j2

−

(
1
6

k (k − 1) (2k − 1) − i2
)

d2 − 2d · j
((

k
2

)
− i

))
.

Theorem 3. Let m, j and k be three positive integers, k ≥ 5 and

I3 (k, j, d) =

k∑
i=0

(−1)i R (i, j, k, d)
(
k − 1

i

)
p ( j + i · d, k) ,
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where d = m · LCM (2, 3, . . . , k). Then I3 (k, j, d) = (−1)k−1 9k3−58k2+75k−2
288(k−3)! dk−1 and is independent of j.

Proof. For the third invariant we need the value of the third polynomial coefficient of p (n, k), and it is
shown [2] that this is

a3 =
9k3 − 58k2 + 75k − 2
288 (k − 1)! (k − 3)!

, k ≥ 5.

On the other hand, we have

a3 =
p (x1, k) ∆

(1,3)
k − p (x2, k) ∆

(2,3)
k + · · · + (−1)k−1 p (xk, k) ∆

(k,3)
k

∆k
(2.3)

From formula (1.7) we find ∆
(a,3)
k . The required sum

∑
1≤i< j≤k

xi · x j is convenient to calculate from the

equality
i, j,a∑

1≤i< j≤k

xi · x j =
1
2


 i,a∑

1≤i≤k

xi

2

−

i,a∑
1≤i≤k

x2
i

 ,
where the sequence {xi} satisfies (1.1). Then, we should determine the quotient which can be simplified
by reducing the following:

∆
(a,3)
k

∆k
=

R (a − 1, j, k, d)
a−1∏
i=1

(xi − xa)
k∏

i=a+1
(xa − xi)

.

By multiplying (2.3) with (−1)k−1 (k − 1)!dk−1 and after shortening we obtain:

I3 (k, j, d) =

k−1∑
i=0

(−1)i
· R (i, j, k, d)

(
k − 1

i

)
p ( j + i · d, k) .�

In every subsequent invariant, the proceedings become more complex. But, it is quite clear how
further invariants can be calculated.

3. Consideration of special cases

For each partitions class k, k ∈ N we determine d0 = LCM (1, 2, 3, . . . , k), and then form d = m · d0,
m ∈ N. In addition arbitrarily choose the natural number j and than form sequences (1.1) and (1.2).
Finally, we form an appropriate sum which is for the first invariant:

k−1∑
i=0

(−1)i
(
k − 1

i

)
p ( j + i · d, k) =

k−1∑
i=0

(−1)i
(
k − 1

i

)
p (xi+1, k) , j ∈ N. (3.1)

Sum (3.1) has a constant value in each partitions class and can be nominated as the first partitions
class invariant.
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3.1. The first partitions class invariant

For k = 1, sum (3.1) has a constant value of 1.
For k = 2, d0 = 2. If we choose some m ∈ N and set d = 2m, the sum (3.1) has the form:

p ( j, 2) − p ( j + d, 2) , j ∈ N. According to [1], it is known that p (n, 2) =
[

n
2

]
. Distinguishing between

even and odd numbers of j ( j and j + d have the same parity) and substituting into the sum, we obtain
that the result, in both cases, is equal to −d

2 = −m.
For k = 3, d0 = 6. If we choose some m ∈ N and set d = 6m the sum (3.1) has the form:

p ( j, 3) − 2 · p ( j + d, 3) + p ( j + 2d, 3) , j ∈ N. (3.2)

According to [1], it is known that:

p (n, 3) =
n2 + ωi

12
, i = n mod 6, ωi ∈ {0,−1,−4, 3,−4,−1} . (3.3)

By replacing (3.3) in relation (3.2) we get

j2 + wi1

12
− 2

( j + d)2 + wi2

12
+

( j + 2d)2 + wi3

12
.

Note that: i1 = j mod 6, i2 = ( j + d) mod 6, i3 = ( j + 2d) mod 6 and wi1 = wi2 = wi3 . Finally,
we get the unique sum 6m2.

For k = 4, d0 = 12. If we choose some m ∈ N and set d = 12m the sum (3.1) has the form:

p ( j, 4) − 3p ( j + d, 4) + 3p ( j + 2d, 4) − p ( j + 3d, 4) , j ∈ N. (3.4)

According to [1], it is known that:

p (n, 4) =
1

144
n3 +

1
48

n2 +

 wi
144 , n even,
− 1

16n + wi
144 , n odd,

i ≡ n mod 12, (3.5)

wi ∈ {0, 5,−20,−27, 32,−11,−36, 5, 16,−27,−4,−11} .

Similar to case k = 3, by distinguishing the even and odd j and replacing (3.5) in relation (3.4) we
obtain that the corresponding sums in both cases are equal to: −72m3. (Note that: i1 = j mod 12,
i2 = ( j + d) mod 12, i3 = ( j + 2d) mod 12, i4 = ( j + 3d) mod 12 and wi1 = wi2 = wi3 = wi4 .)

The number of invariants increases, when the class number increases. Starting with class three,
another invariant can be observed.

3.2. The second partitions class invariant

Form in the same way as in the previous section: d0, d and the sequences (1.1) and (1.2) as well as
the sum:

k−1∑
i=0

(−1)i
(

j (k − 1) +

((
k
2

)
− i

)
d
) (

k − 1
i

)
p ( j + i · d, k) .

Previous sum has a constant value in each partitions class (starting from third class) and can be
nominated as the second partitions class invariant.
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For k = 3, d0 = 6. If we choose some m ∈ N and set d = 6m the general form of the second invariant
in the third class can be written as

(2 j + 3d) p ( j, 3) − 2 (2 j + 2d) p ( j + d, 3) + (2 j + d) p ( j + 2d, 3) , j ∈ N

The values p ( j, 3) , p ( j + d, 3) and p ( j + 2d, 3) are calculated using the same polynomial (3.3).
Using (3.3) in the last equality we have

(2 j + 3d)
j2 + wi1

6
− 2 (2 j + 2d)

( j + d)2 + wi2

6
+ (2 j + d)

( j + 2d)2 + wi3

6

Note that: i1 = j mod 6, i2 = ( j + d) mod 6, i3 = ( j + 2d) mod 6 and wi1 = wi2 = wi3 . The last
equality is identical to zero.

For k = 4, d0 = 12. If we choose some m ∈ N and set d = 12m the general form of the second
invariant in the fourth class can be written as

(3 j + 6d) p ( j, 4) − 3 (3 j + 5d) p ( j + d, 4) + 3 (3 j + 4d) p ( j + 2d, 4)

− (3 j + 3d) p ( j + 3d, 4) . (3.6)

The last equations can be verified in an analogous manner, by using the same form of the known
polynomial for the fourth class given in (3.5). Note that: i1 = j mod 12, i2 = ( j + d) mod 12,
i3 = ( j + 2d) mod 12, i4 = ( j + 3d) mod 12 and wi1 = wi2 = wi3 = wi4 . By distinguishing the even
and odd j and replacing (3.5) in relation (3.6) we obtain that the corresponding sums in both cases are
equal to: −216m3.

3.3. The third partition invariants

Form in the same way as in the previous two section: d0, d and the sequences (1.1) and (1.2) as well
as the sum I3 (k, j, d) (Theorem 3). For each class (starting from the fifth) I3 (k, j, d) has constant values
and can be nominated as the third partitions class invariant. It is known [1] that

p (n, 5) =
1

2880
n4 +

1
288

n3 +
1

288
n2 +

− 1
24n + wi

2880 , n even,
− 1

96n + wi
2880 , n odd,

i ≡ n mod 60, (3.7)

wi are following numeric respectively:

0, 9, 104,−351,−576, 905,−216,−351,−256, 9, 360,−31,−576, 9, 104, 225,
− 576, 329,−216,−351, 320, 9,−216,−31,−576, 585, 104,−351,−576, 329, 360,
− 351,−256, 9,−216, 545,−576, 9, 104,−351, 0, 329,−216,−351,−256, 585,
− 216,−31,−576, 9, 680,−351,−576, 329,−216, 225,−256, 9,−216,−31.

For k = 5, d0 = 60. If we choose some m ∈ N and set d = 60m the invariant I3 (k, j, d) can be
written as:
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1
2

(
(4 j + 10d)2

− 4 j2 − 20d · j − 30d2
)

p ( j, 5) −
1
2

(
(4 j + 9d)2

− 4 j2 − 18d · j − 29d2
)

p ( j + d, 5)

+
1
2

(
(4 j + 8d)2

− 4 j2 − 16d · j − 26d2
)

p ( j + 2d, 5)−
1
2

(
(4 j + 7d)2

− 4 j2 − 14d · j − 21d2
)

p ( j + 3d, 5)

+
1
2

(
(4 j + 6d)2

− 4 j2 − 12d · j − 14d2
)

p ( j + 4d, 5) .

Substituting (3.7) into the previous formula by distinguishing between even and odd j, we obtain a
unique value of 1080000m4.

Remark 1. From the Table 1, see [5], given at the end of the paper it is possible to check all of
these explicitly with numerical values. For example:

1. Check the first invariant in the third class. Take m = 2, j = 5. The first invariant formula is

p (5, 3) − 2 · p (17, 3) + p (27, 3) .

From the Table we find: p (5, 3) = 2, p (17, 3) = 24, p (29, 3) = 70. By substitution we find
2 − 2 · 24 + 70 = 24(= 6m2).

2. Check the second invariant in the forth class. Take m = 1, j = 3. The second invariant formula is

81p (3, 4) − 3 · 69p (15, 4) + 3 · 57p (27, 4) − 45p (39, 4) .

From the Table we find: p (3, 4) = 0, p (15, 4) = 27, p (27, 4) = 150, p (39, 4) = 441. By
substitution we find:

81 · 0 − 3 · 69 · 27 + 3 · 57 · 150 − 45 · 441 = −216(= −216m3).

3. Check the third invariant in the fifth class. Take m = 1, j = 1. The third invariant formula is

127806 · p (1, 5) − 380904 · p (61, 5)

+ 419076 · p (121, 5) − 206664 · p (181, 5) + 40686 · p (241, 5) = 1080000.

Using formulas from (3.7), we find that: p (1, 5) = 0, p (61, 5) = 5608, p (121, 5) = 80631,
p (181, 5) = 393369 and p (241, 5) = 1220122, and so by checking we are assured of the accuracy.

Remark 2. Obviously, p (n, k) define values only for n ≥ k. The invariants determine very precisely
that values for n < k should be taken as zero.
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Table 1. Partition classes values.

d0 1 2 6 12 60 60 420 840 2520 2520
n/k 1 2 3 4 5 6 7 8 9 10 11 . . . p(n)
1 1 0 0 0 0 0 0 0 0 0 0 1
2 1 1 0 0 0 0 0 0 0 0 0 2
3 1 1 1 0 0 0 0 0 0 0 0 3
4 1 2 1 1 0 0 0 0 0 0 0 5
5 1 2 2 1 1 0 0 0 0 0 0 7
6 1 3 3 2 1 1 0 0 0 0 0 11
7 1 3 4 3 2 1 1 0 0 0 0 15
8 1 4 5 5 3 2 1 1 0 0 0 22
9 1 4 7 6 5 3 2 1 1 0 0 30
10 1 5 8 9 7 5 3 2 1 1 0 42
11 1 5 10 11 10 7 5 3 2 1 1 56
12 1 6 12 15 13 11 7 5 3 2 1 . . . 77
13 1 6 14 18 18 14 11 7 5 3 2 . . . 101
14 1 7 16 23 23 20 15 11 7 5 3 . . . 135
15 1 7 19 27 30 26 21 15 11 7 5 . . . 176
16 1 8 21 34 37 35 28 22 15 11 7 . . . 231
17 1 8 24 39 47 44 38 29 22 15 11 . . . 297
18 1 9 27 47 57 58 49 40 30 22 15 . . . 385
19 1 9 30 54 70 71 65 52 41 30 22 . . . 490
20 1 10 33 64 84 90 82 70 54 42 30 . . . 627
21 1 10 37 72 101 110 105 89 73 55 43 . . . 792
22 1 11 40 84 119 136 131 116 94 75 56 . . . 1002
23 1 11 44 94 141 163 164 146 123 97 77 . . . 1255
24 1 12 48 108 164 199 201 186 157 128 100 . . . 1575
25 1 12 52 120 192 235 248 230 201 164 133 . . . 1958
26 1 13 56 136 221 282 300 288 252 212 171 . . . 2436
27 1 13 61 150 255 331 364 352 318 267 223 . . . 3010
28 1 14 65 169 291 391 436 434 393 340 282 . . . 3718
29 1 14 70 185 333 454 522 525 488 423 362 . . . 4565
30 1 15 75 206 377 532 618 638 598 530 453 . . . 5604
31 1 15 80 225 427 612 733 764 732 653 573 . . . 6842
32 1 16 85 249 480 709 860 919 887 807 709 . . . 8349
33 1 16 91 270 540 811 1009 1090 1076 984 884 . . . 10143
34 1 17 96 297 603 931 1175 1297 1291 1204 1084 . . . 12310
35 1 17 102 321 674 1057 1369 1527 1549 1455 1337 . . . 14883
36 1 18 108 351 748 1206 1579 1801 1845 1761 1626 . . . 17977
37 1 18 114 378 831 1360 1824 2104 2194 2112 1984 . . . 21637
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4. Conclusions

In this paper, authors have demonstrated a new approach to partitions class invariants, as a way of
proving the relevance and accuracy of all formulas given in [1, 2]. Also, it I can be considered to be
another way to obtain some of the formulas in [2]. The quasi polynomials p (n, k) needed to calculate
the number of partitions of a number n to exactly k parts consists of at most LCM (1, 2, . . . , k) different
polynomials. The invariants claim that the more different polynomials in one quasi polynomial, the
more invariable sizes connect them.
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