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Abstract: If G is a connected graph, the distance d(u, v) between two vertices u, v ∈ V(G) is the
length of a shortest path between them. Let W = {w1,w2, . . . ,wk} be an ordered set of vertices
of G and let v be a vertex of G. The representation r(v|W) of v with respect to W is the k-tuple
(d(v,w1), d(v,w2), . . . , d(v,wk)). W is called a resolving set or a locating set if every vertex of G is
uniquely identified by its distances from the vertices of W, or equivalently if distinct vertices of G have
distinct representations with respect to W. A resolving set of minimum cardinality is called a metric
basis for G and this cardinality is the metric dimension of G, denoted by β(G). The metric dimen-
sion of some wheel related graphs is studied recently by Siddiqui and Imran. In this paper, we study
the metric dimension of wheels with k consecutive missing spokes denoted by W(n, k). We compute
the exact value of the metric dimension of W(n, k) which shows that wheels with consecutive missing
spokes have unbounded metric dimensions. It is natural to ask for the characterization of graphs with
an unbounded metric dimension. The exchange property for resolving a set of W(n, k) has also been
studied in this paper and it is shown that exchange property of the bases in a vector space does not hold
for minimal resolving sets of wheels with k-consecutive missing spokes denoted by W(n, k).
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1. Introduction and preliminary results

Metric dimension is an important parameter in metric graph theory that has appeared in numerous
applications of graph theory, as diverse as, facility location problems, pharmaceutical chemistry [5, 6],
long range aids to navigation, navigation of robots in networks [17], combinatorial optimization [21]
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and sonar and coast guard Loran [23], to name a few. Metric dimension is a generalization of affine
dimension to arbitrary metric spaces (provided a resolving set exists).
In a connected graph G, the distance d(u, v) between two vertices u, v ∈ V(G) is the length of a
shortest path between them. Let W = {w1,w2, . . . , wk} be an ordered set of vertices of G and let v
be a vertex of G. The representation r(v|W) of v with respect to W is the k-tuple (d(v,w1), d(v,w2),
d(v,w3), . . . , d(v,wk)). W is called a resolving set [6] or locating set [23] if every vertex of G is uniquely
identified by its distances from the vertices of W, or equivalently, if distinct vertices of G have distinct
representations with respect to W. A resolving set of minimum cardinality is called a basis for G and
this cardinality is the metric dimension of G, denoted by β(G) [3].
For a given ordered set of vertices W = {w1,w2, . . . ,wk} of a graph G, the ith component of r(v|W) is 0 if
and only if v = wi. Thus, to show that W is a resolving set it is sufficient to verify that r(x|W) , r(y|W)
for each pair of distinct vertices x, y ∈ V(G)\W.
A useful property in computing the metric dimension denoted by β(G) is the following lemma:

Lemma 1.1. [25] Let W be a resolving set for a connected graph G and u, v ∈ V(G). If d(u,w) =

d(v,w) for all vertices w ∈ V(G) \ {u, v}, then {u, v} ∩W , ∅.

Motivated by the problem of uniquely determining the location of an intruder in a network, the
concept of metric dimension was first introduced by Slater in [23, 24] and studied independently
by Harary and Melter in [9]. Applications of this invariant to the navigation of robots in networks
are discussed in [17] and applications to chemistry in [6] while applications to problem of pattern
recognition and image processing, some of which involve the use of hierarchical data structures are
given in [18].
Let F be a family of connected graphs Gn : F = (Gn)n≥1 depending on n as follows: the order
|V(G)| = ϕ(n) and lim

n→∞
ϕ(n) = ∞. If there exists a constant C > 0 such that β(Gn) ≤ C for every

n ≥ 1 then we shall say that F has bounded metric dimension; otherwise F has an unbounded metric
dimension.
If all graphs in F have the same metric dimension (which does not depend on n), F is called a
family with constant metric dimension [15]. A connected graph G has β(G) = 1 if and only if G is
a path [6]; cycles Cn have metric dimension 2 for every n ≥ 3. Also generalized Petersen graphs
P(n, 2), antiprisms An and circulant graphs Cn(1, 2) are families of graphs with constant metric
dimension [15]. Recently some classes of regular graphs with constant metric dimension have been
studied in [13, 20]. An example of a family which has bounded metric dimension is the family of
prisms. Also generalized Petersen graphs P(n, 3) have bounded metric dimension [10].
Note that the problem of determining whether β(G) < k is an NP-complete problem [8]. Some bounds
for this invariant, in terms of the diameter of the graph, are given in [17] and it was shown in [6,17–19]
that the metric dimension of trees can be determined efficiently. It appears unlikely that significant
progress can be made in determining the dimension of a graph unless it belongs to a class for which
the distances between vertices can be described in some systematic manner.
The metric dimension of families of graph having unbounded metric dimension is an interesting
problem in the theory of resolving set. In [3], it was shown that the wheel graph Wn have unbounded
metric dimension with β(Wn) = b2n+2

5 c for every n ≥ 7. Later, Javaid et al. [26] show that the graph J2n

deduced from the wheel W2n by alternately deleting n spokes has unbounded metric dimension with
β(J2n) = b2n

3 c for every n ≥ 4.
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Recently, the metric dimension of some wheel related graphs and the convex polytopes generated by
wheel related graph are studied by Imran et al. [14] and Siddiqui et al. [22], respectively, where they
have provided an exact formula for the metric dimension of several class of wheel related graphs and
shown that all those families have unbounded metric dimension. Further result about the unbounded
metric dimension of graphs was derived by Abbas et al. in [1] and U. Ali et al. in [27]. In this context,
it is natural to ask for characterization of graphs with unbounded metric dimension. In this paper,
we have extended this study and determined a family of graph that is deduced from wheel graph by
removing k consecutive spokes and shown that this family of graph has unbounded metric dimension.
It is also worth mentioning that this family of graph have many interesting graph-theoretic properties
and have been studied intensively in the literature; for example the chromaticity of this family was
investigated in [7]. In this paper, the exact value of metric dimension of W(n, k) is computed. Further,
the exchange property for resolving set of W(n, k) has also been studied, it is shown that exchange
property does not hold for the resolving sets of graph W(n, k).

In what follows all indices i which do not satisfy inequalities 1 ≤ i ≤ n will be taken modulo n.

2. On metric basis of wheel graph with k-consecutive missing spokes

A wheel graph denoted by Wn is defined as Wn � Cn + K1, Where Cn : v1, v2, v3, . . . , vn for n ≥ 3 is
cycle of length n. Suppose v1, v2, v3, ..., vn are the vertices of the outer cycle Cn of Wn and v be the central
vertex of Wn. If p, q be the positive integers such that 1 ≤ p < q ≤ n, then vp+1, vp+2, vp+3, ......, vq−1 are
the vertices in the gap determined by the vertices vp and vq, and the size of the gap is denoted by Gq−p−1

is q − p − 1. Any two gaps Gq−p−1 and Gs−r−1 determined by the vertices vp, vq and vr, vs respectively
are said to be the neighboring gaps if vq = vr.
Definition: A wheel graph with k-consecutive missing spokes denoted by W(n, k) can be obtained by
deleting k-consecutive spokes from the wheel graph denoted by Wn. The graph W(n, k) is depicted in
the Figure 1. In the following theorem, the metric dimension of the graph W(n, k) is determined. The
proof of this theorem is given at the end of this section.

Vn-k

Vn-k+1

Vn-k+2

Vn-k+i

Vn

V1

V2

V3

Figure 1. The wheel graph W(n, k) with k-consecutive missing spokes.

Theorem 2.1. Let W(n, k) denote the wheel graph with k-consecutive missing spokes with k ≥ 1, then
β(W(n, k)) = d 2n−2k−2

5 e for n ≥ 5.
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To prove this theorem, we need to prove some lemmas.

In the following result, the upper bound for the metric dimension of W(n, k) is derived.

Lemma 2.1. For every positive integers n ≥ 5 and k ≥ 1, we have

β(W(n, k) ≤ d
2n − 2k − 2

5
e.

Proof. Let

B = {vd 5i
2 e

: 2 ≤ i ≤ d
2n − 2k − 2

5
e − 1} ∪ {vn−k−1, vn−b k−1

2 c
}

be a set of vertices of the graph W(n, k). In order to show that B is a resolving set for the graph W(n, k);
we consider an arbitrary vertex y ∈ V(W(n, k) \ B).

Then there are following possibilities for the choice of y:
• The vertex y belong to a gap of size d k

2e + 3 of B. From the construction of set B, it is evident that
{v1, v2, v3, v4, vn−k+i : d k+1

2 e + 1 ≤ i ≤ k} are the vertices in the gap of size d k
2e + 3 determined by the

vertices vn−k+d k+1
2 e

and v5. The representation of these vertices are given below:

r(vi|B) =



(k − i + 3, ..., k − i + 3, i − d k+1
2 e), d

k+1
2 e + 1 ≤ i ≤ k ;

(2, 2, ..., 2, k+1
2 ), i = 1;

(2, 2, ..., 2, k+1
2 + 1), i = 2;

(2, 2, ..., 2, k+1
2 + 2), i = 3;

(2, 2, ..., 2, k+1
2 + 2), i = 4.

Which shows that every vertex in the gap of size d k
2e + 3 has a unique representation (see Figure 2).

• y belong to a gap of size d k
2e of B. From the construction of set B, it is evident that {v1, v2, v3, v4, vn−k+i :

d k+1
2 e + 1 ≤ i ≤ k} are the vertices in the gap of size d k

2e determined by the vertices vn−k+d k+1
2 e

and v5.
The representation of these vertices are given below:

r(vi|B) =



(i + 2, i + 2, ..., i + 2, i + 1, d k+1
2 e) − i, 0 ≤ i ≤ d k+1

2 e − 1 ;
(2, 2, ..., 2, k+1

2 ), i = 1;
(2, 2, ..., 2, k+1

2 + 1), i = 2;
(2, 2, ..., 2, k+1

2 + 2), i = 3;
(2, 2, ..., 2, k+1

2 + 2), i = 4.

Which shows that every vertex in the gap of size d k
2e + 3 has a unique representation (see Figure 2).
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Figure 2. Resolving sets for graph W(20, 4) and W(20, 5).

• y belong to a gap of size 2 of B. Let vp+1 and vp+2 be the vertices in the gap of size 2 determined
by the vertices vp and vp+3. If y = vp+1, then it is the unique vertex that has distance 1 and 3 from vp

and vn, respectively, and distance 2 from all other vertices of B. If y = vp+2, then it is again the unique
vertex that has distance 1 and 3 from v3 and v3, respectively, and has distance 2 from all other vertices
of B.
• y belong to a gap of size 1 of B. In this case, let vp+1 be the vertex in the gap of size one determined
by the vertices vp and vp+2; then the vertex vp+1 is the unique vertex that has distance 1 from vp and
vp+2.

The above discussion implies that, every vertex of the graph W(n, k) has unique representation with
respect to the set B. Hence B is a resolving set that show that

β(W(n, k) ≤ d
2n − 2k − 2

5
e.

�

If we delete the vertices vn−k−1, vn−k−2, . . . , vn−1, vn from the graph denoted by W(n, k), then the vertex
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set of the new graph denoted by G1 is

V(G1) = V(W(n, k)) \ {vn−k+i : 1 ≤ i ≤ k}.

From the construction, G1 is isomorphic to the join of the path graph Pn−k and K1. That is G1 �

Pn−k + K1, as shown in Figure 3.

vo

v3

v2

vn-k v1

Figure 3. The graph G1 � W(n, k) \ {vn−k+i : 1 ≤ i ≤ k}.

Lemma 2.2. Every basis of the graph G1 satisfy the following conditions:
(i) A gap determine by any vertex from v1 to vn−k is at most of size 3.
(ii) There is at most one gap in the basis set of size 3.
(iii) At least one of vn−k, vn−k−1 and vn−k−2 must belong to basis set.
(iv) The central vertex v◦ does not belong to any of the basis.
(v) If a gap in any of basis contains at least two vertices; then its neighboring gap contain at most one
vertex

Proof. Let B1 be the arbitrary basis of graph denoted by G1. We prove that B1 satisfy conditions
(i) − (v).
(i): If there exist a gap of size 4 having the vertices {vp, vp+1, vp+2, vp+3}. But in this case, we have
r(vp+1|B1) = r(vp+2|B2) = (2, 2, 2, ..., 2, 2), a contradiction. Thus, any gap determine by any vertex from
v1 to vn−k is at most of size 3.
(ii): Suppose on contrary, that there exist two gaps of size 3. Let {vp, vp+1, vp+2} and {vq, vq+1, vq+2} are
the vertices in these two gaps. Then,we have r(vp+1|B) = r(vq+1|B) = (2, 2, 2, ..., 2, 2), a contradiction.
Hence, there is at most one gap in B1 of size 3
(iii): At least one of vn−k, vn−k−1 and vn−k−2 must belong to B1, otherwise vn−k and vn−k−1 have same
representation. Similarly one of the v1, v2 and v3 also belong to B1.
(iv): Since v◦ is at the distance 1 to all the vertices of G and can be removed from any resolving set.
Therefore B1 being a minimal resolving set can not contain v◦. This implies that he central vertex v◦
does not belong to B1.
(v): Let there are two consecutive gaps of size at least 2 and {vp+1, vp+2} and {vp+4, vp+5} be the vertices
in these gaps determined by vp ,vp+3 and vp+3,vp+6, respectively. Then the vertices vp+2 and vp+4 have
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same representations, a contradiction. Hence, if a gap of B1 contains at least two vertices; then its
neighboring gap contain at most one vertex. �

Lemma 2.3. Every subset of the vertex set of the graph G1 satisfying the conditions of Lemma 2.2 is a
resolving set.

Proof. Let B1 is a subset of V(G1 satisfying all the conditions of Lemma 2.2. Let y ∈ V(G1\B1) be an
arbitrary element, we show that y has unique representation. There are following possibilities for the
choice of y.
• y belong to a gap of size 3 of B1. Assume that the vertices vp, vp+1, vp+2, vp+3,

vp+4 belong to the rim vertices; where vp and vp+4 ∈ B1. The vertex vp+1 then has distance one from vp

and 2 from all other vertices of B1, and vp+2 then has distance 2 from all vertices of B1. Similarly the
vertex vp+3 is it distance 1 from vp+4 and has distance 2 from all other vertices of B1. By condition (i)
and (ii) of Lemma 2.2; these vertices have unique representation.
• y belong to a gap of size 2 of B1. Let the vertices vp, vp+1, vp+2, vp+3 belong to the rim vertices such
that vp and vp+3 ∈ B1. We have two cases here:
If y1 = vp+1, then it has distance 1 from vp and distance 2 from all other vertices of B1. By condition
(v) of Lemma 2.2; these vertices have unique representation.
If y1 = vp+2, then it is at distance 1 from vp+3 and distance 2 from all vertices of B1. Again, by
condition (v) of Lemma 2.2; these vertices have unique representation and no other vertex have this
representation.
• y belong to a gap of size 1 of B1. Assume that {vp, y1, vp+1} belong to the rim vertices; where vp

and vp+1 ∈ B1. Then y is the only vertex having distance 1 from both the vertices vp and vp+1, so the
representation of y is unique.
Thus, we conclude that any set B1 satisfying all conditions of Lemma 2.2 is the resolving set of the
graph G1 � Pn−k + K1. �

�In the following result, the metric dimension of the graph G1 � Pn−k + K1 is computed.

Lemma 2.4. For every positive integer m ≥ 3, β(G1) = d 2m−2
5 e, where m = n − k.

Proof. Define the set B1 as follows,

B1 = {v1} ∪ {vd 5i−1
2 e
, 2 ≤ i ≤ d

2m − 2
5
e − 1} ∪ {vm−1}

The set B1 satisfy all the conditions of Lemma 2.2. Therefore B1 is the resolving set for G1. Which
shows that

β(G1) =≤ |B1| = d
2m − 2

5
e. (2.1)

To prove the lower bound, let B1 be the basis for the graph G1. To show that |B1| ≥ d
2m−2

5 e, we have the
following two cases:
Case 1: When |B1| = 2l, where l ≥ 1.
• If B1 has a gap of size 3, then from Lemma 2.2, B1 can contain at most one gap of size 3, l − 1 gaps
of size 2, l gaps of size 1. So we have

m − B1 ≤ 3 + 2(l − 1) + l
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=⇒ m − 2l ≤ 3 + 2l − 2 + l

=⇒ l ≥
m − 1

5

=⇒ 2l = |B1| ≥
2m − 2

5

=⇒ |B1| ≥ d
2m − 2

5
e.

• If B1 has no gap of size 3, then again from Lemma 2.2, B1 contain no gap of size 3, at most l gaps of
size 2 and l gaps of size 1. Hence we have

m − B1 ≤ 2l + l

=⇒ m − 2l ≤ 3l =⇒ l ≥
m
5

=⇒ 2l = |B1| ≥
2m
5

=⇒ |B1| ≥ d
2m
5
e ≥ d

2m − 2
5
e.

Case 2: When |B1| = 2l + 1, where l ≥ 1.
• If B1 has a gap of size 3; then from Lemma 2.2, B1 can contain at most one gap of size 3, l − 1 gaps
of size 2 and l gaps of size 1. Therefore, we have

m − B1 ≤ 3 + 2(l − 1) + l

=⇒ m − (2l + 1) ≤ 3 + 2l − 2 + l

=⇒ l ≥
m − 2

5
=⇒ 2l + 1 ≥

2(m − 2)
5

+ 1

=⇒ 2l + 1 = |B1| ≥
2m + 1

5

=⇒ |B1| ≥ d
2m + 1

5
e ≥ d

2m − 2
5
e.

• If B1 has no gap of size 3, then again from Lemma 2.2, B1 contain no gap of size 3, at most l gaps of
size 2 and l gaps of size 1. We have

m − B1 ≤ 2l + l

=⇒ m − (2l + 1) ≤ 2l + l

=⇒ l ≥
m − 1

5
=⇒ 2l + 1 ≥

2(m − 1)
5

+ 1

=⇒ 2l + 1 = |B1| ≥
2m + 3

5

=⇒ |B1| ≥
2m + 3

5
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=⇒ |B1| ≥ d
2m + 3

5
e ≥ d

2m − 2
5
e.

The above discussion implies that

β(G1) ≥ d
2m − 2

5
e (2.2)

From Eqs (2.1) and (2.2), we get

β(G1) = d
2m − 2

5
e.

�

We now are in position to prove the main theorem of our paper.
Proof of Theorem 2.1: The upper bound for the metric dimension of the wheel graph with k-
consecutive missing spokes denoted by W(n, k) is given by Lemma 2.1:

β(G1) = β(W(n, k)) ≤ d
2n − 2k − 2

5
e, (2.3)

where n ≥ 5 and k ≥ 1. On the other hand from the Lemma 2.4, we have

β(G1) ≤ d
2m − 2

5
e,

where G1 � W(n, k) \ {vn−k+i : 1 ≤ i ≤ k}. Now by putting the value of m = n − k, we get

β(G1) ≥ d
2m − 2

5
e = d

2n − 2k − 2
5

e.

Since G1 is the subgraph of graph W(n, k), therefore

β(W(n, k)) ≥ d
2n − 2k − 2

5
e. (2.4)

Hence, from Equations (3) and (4), it follows that

β(W(n, k)) = d
2n − 2k − 2

5
e,

where n ≥ 5 and k ≥ 1. This completes the proof.

3. Exchange property for resolving set in W(n, k)

We have seen that a subset W of vertices of a graph G is a resolving set if every vertex in G is
uniquely determined by its distances to the vertices of W. Resolving sets behave like bases in a vector
space in that each vertex in the graph can be uniquely identified relative to the vertices of these sets.
But though resolving sets do share some of the properties of bases in a vector space, they do not always
have the exchange property from linear algebra. Resolving sets are said to have the exchange property
in G if whenever S and R are minimal resolving sets for G and r ∈ R, then there exists s ∈ S so that
(S \ {s}) ∪ {r} is a minimal resolving set [2].

If the exchange property holds for a graph G, then every minimal resolving set for G has the same
size and algorithmic methods for finding the metric dimension of G are more feasible. Thus to show
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that the exchange property does not hold in a given graph, it is sufficient to show two minimal resolving
sets of different size. However, since the converse is not true, knowing that the exchange property does
not hold does not guarantee that there are minimal resolving sets of different size.

The following results concerning exchange property for resolving sets were deduced in [2].

Theorem 3.1. [2] The exchange property holds for resolving sets in trees.

Theorem 3.2. [2] For n ≥ 8, resolving sets do not have the exchange property in wheels Wn.

The exchange property for resolving sets of the graph W(n, k) has been discussed in the next theo-
rem.

Theorem 3.3. The exchange property does not hold for the resolving sets of the graph W(n, k) for every
positive integers n − k ≥ 10 and k ≥ 1.

Proof. To show that exchange property does not hold on the resolving sets of graph W(n, k), we need
to show that there are two minimal resolving sets of different size.
Since the set B = {vd 5i

2 e
: 2 ≤ i ≤ d2n−2k−2

5 e−1}∪{vn−k−1, vn−b k−1
2 c
} is the metric basis of the graph W(n, k),

so indeed it is a minimal resolving set for W(n, k) having cardinality m = n − k.
Now define another subset of the vertex set of the graph W(n, k), for k + 10 and k ≥ 1 as follows:

B∗ = {vn−b k
2 c
, v4i+1, v4 j+2 : 1 ≤ i ≤ d

n − 2k − 2
4

e : 1 ≤ j ≤ d
n − 2k

4
e − 1}

∪{vn−k} ∪ {vn−b k−1
2 c
}

B∗ satisfy all the condition of Lemma 2.2, so is a resolving set of W(n, k) having cardinality
d n−2k−2

4 e + d n−2k
4 e + 1. Next, we show that B∗ is also minimal resolving set by proving that there does

not exist any b ∈ B∗ such that B∗ \ {b} is still a resolving set. There are the following three cases for the
choice of b:
Case 1: If b = vn−b k−1

2 c
; then removal of vn−b k

2 c
would yield a gap of size k + 2. By claim (1), this is not

possible.
Case 2: If b ∈ {v4i+1 : 1 ≤ i ≤ dn−2k−2

4 e} then removal of b can be considered as follows: If b = v5

for i = 1, then it would cause two vertices having same representation as r(v5|B∗) = r(v7|B∗) =

(1, 2, 2, 2, ..., b k
2c + 3). When b = v9 for i = 1, then it would cause two vertices having same repre-

sentation, i.e. r(v9|B∗) = r(v11|B∗) = (2, 2, 1, 2, ..., b k
2c + 3). Similarly, we can show that if we remove

any basis vertex v4i+1 for 1 ≤ i ≤ dn−2k−2
4 e, then v4i+1 and v4i+3 will have the same representations.

Case 3: If b ∈ {v4 j+2 : 1 ≤ j ≤ dn−2k
4 e − 1}. In this case by removing b = v6 for j = 1, would cause two

vertices having same representations which are r(v5|B∗) = r(v7|B∗) = (1, 2, 2, 2, ..., b k−1
2 c + 3). If b = v9

for i = 1, then it would cause two vertices having same representations, i.e. r(v9|B∗) = r(v11|B∗) =

(2, 2, 1, 2..., b k−1
2 + 3c). Similarly, it can be shown that for any choice of the vertex b from the set of

vertices {v4 j+2 : 1 ≤ j ≤ d2n−2k
5 e − 1}; the vertices v4 j+1 and v4 j+3 will have the same representations.

This shows that B∗ is a minimal resolving set, which completes the proof. �

4. Conclusions

The problem of determining whether β(G) < k is an NP-complete problem. It is natural to ask
for characterization of graphs with bounded or unbounded metric dimension. In general, it appears
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unlikely that significant progress can be made in this regard unless it belongs to a class for which the
distances between vertices can be described in some systematic manner. There have been significant
work done in literature to explore the families of graphs with unbounded metric dimension (See [1,
3, 14, 22, 26, 27]). In this context, we have explore a family that is constructed from wheel graph
by removing k consecutive spokes and it is shown that this family of graph has unbounded metric
dimension. This results also add further support to a negative answer of an open problem raised in [12].
It is further shown that exchange property for resolving set does not hold for this family of graphs.
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