
http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(6): 6189–6210.
DOI: 10.3934/math.2020398
Received: 06 May 2020
Accepted: 06 July 2020
Published: 31 July 2020

Research article

The existence of upper and lower solutions to second order random
impulsive differential equation with boundary value problem

Zihan Li1, Xiao-Bao Shu1,∗and Fei Xu2

1 College of Mathematics, Hunan University, Changsha, Hunan 410082, PR China
2 Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada

* Correspondence: Email: sxb0221@163.com; Tel: +073188821501.
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1. Introduction

Impulsive differential equations have many applications in engineering, science and finance. As a
ubiquitous phenomenon, pulses exist in mechanical systems with impacts, optimal control models in
economics, and the transfers of satellite orbit. It is difficult to model such phenomena using
continuous models or discrete models [1, 2]. In the 1950s, an impulsive model was developed to
describe such specific evolution of a dynamic system [1]. Impulsive differential systems describe the
dynamic processes with discontinuous jump caused by sudden changes. A variety of impulsive
systems were investigated in the literature [3–6, 23, 35, 38, 40].

The characteristics of impulsive differential equations have attracted the attention of scholars [31,
32]. In recent years, many scholars have studied the initial and boundary value problem of fixed
impulse differential equations [16, 17, 22]. For example, the boundary value problem of impulsive
equations have been examined in the literature [7–10, 15, 18, 24]. The existence and uniqueness of
solutions to the following impulsive equation with boundary value problems have been investigated in
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the literature [11]. 
− u′′ = f (t, u, u′), t ∈ J \ {t1, t2, · · · , tm},

∆u(tk) = Ik(u(tk)), k = 1, 2, · · · ,m,
− ∆u′(tk) = Nk(u(tk)),
au(0) − bu′(0) = 0, cu(1) + du′(1) = 0,

(1.1)

where a > 0, b ≥ 0, c > 0, d ≥ 0, 0 = t0 < t1 < t2 < · · · < tm = 1, J = [0, 1].
Some kinds of stochastic differential equation with fixed impulsive moments and Random impulsive

differential equations also obtained considerable attention in the literature [12–14,20,21,25,26,36,37].
The Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite
delays has been studied in [19]. The authors considered the following system

d(x(t)) = f (t, xt)dt + g(t, xt)dW(t), t ≥ 0, t , ξk,

x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, · · · ,
xt0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ,

(1.2)

where xt is Rd -valued stochastic process such that xt ∈ R
d, xt = {x(t + θ) : −τ ≤ θ ≤ 0}. Here, 0 = ξ0 <

ξ1 < ξ2 < · · · < ξk < · · · < limk→∞ ξk = +∞, and x(ξ−k ) = limt→ξk−0 x(t). Note that {N(t), t ≥ 0} is the
simple counting process generated by ξk, and {W(t) : t ≥ 0} is a given m-dimensional Winer process.

The fixed point method [28] had been used to study the random impulsive differential equations.
Niu et al. [27] used the fixed point method to address the existence and Hyers-Ulam stability for the
following differential equation 

x′′(t) = f (t, x(t)), t ∈ J, t , ξk,

x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, · · · ,
x0 = x0, x′(0) = x1.

(1.3)

Upper and lower solution method can be used to study fractional evolution equations [33] and
impulsive differential equations [34].

To the best of our knowledge, the boundary value problem of second order random impulsive
differential equation has not been studied using the upper and lower solution method in the literature.
In this paper, we use the upper and lower solution method to study the following second order random
impulsive differential equation with boundary value problem.

− x′′(t) = f (t, x(t), x′(t)), t ∈ J′,

x(ξ+
k ) = bk(τk)x(ξ−k ), k = 1, 2, · · · ,

α0x(0) − α1x′(0) = x0,

β0x(1) + β1x′(1) = x∗0.

(1.4)

Where f : J × R × R→ R is a continuous mapping. x(t) is a stochastic process taking values in the
Euclidean space (R, ‖·‖). Then, we introduce τk to be a random variable defined from Ω to Ek

4
= (0, dk),

with 0 < dk < 1 for every k ∈ N+. We assume that τi and τ j are independent of each other when i , j
for every i, j ∈ N+ and bk: Ek → R satisfies for every k ∈ N+, bk(τk) ≥ 0. Set ξk = ξk−1 + τk. Obviously,
{ξk} is a process with independent increments and the impulsive moments ξk form a strictly increasing
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sequence, i.e. 0 = ξ0 < ξ1 < ξ2 < · · · < ξk < · · · < 1. We hold the opinion that x(ξ−k ) = limt→ξk−0 x(t),
x(ξ+

k ) = limt→ξk+0 x(t). The convergence is under the meaning of the orbit. Since for a realization
(sample) of random process, {ξk} will become a series of fixed time points. Under that sense, so we can
define the limit as we would in general. We suppose that {N(t) : t ≥ 0} is the simple counting process
generated by ξk. Let J = [0, 1], R+ = (0,+∞) and J′ 4= J \ {ξ1, ξ2, · · · }. Here, α0, α1, β0, β1, x0, x∗0 are
constants satisfying α0α1 , 0, β0 , 0, α0, α1, β0, β1, x0, x∗0 ≥ 0.

The rest of the paper is organised as follows: In section 2, we introduce some notations and
preliminaries. In section 3, we use the upper and lower solution method to study the existence of
solutions to the second order random impulsive differential equations. In section 4, we give an
example to show the application of the main result. Finally, conclusions are presented.

2. Preliminaries

Suppose (Ω,Γ, P) is a probability space. Let Lp(Ω,Rn) be the collection of all strongly measurable,
pth integrable, and Γt-measurable with Rn-valued random variables x : Ω → Rn and norm Lp(Ω,Rn)
for p ≥ 1. Here, E(x) =

∫
Ω

xdP < ∞ is the expectation of x, and Lp(Ω,Rn) is equipped with its natural

norm ‖x‖Lp(Ω,Rn) =
(∫

Ω
‖x‖pdP

) 1
p

= (E‖x‖p)
1
p .

We introduce the space PC = PC(J, L2(Ω,Rn)):={u(t) | u(t) = u(t, ω) is a strongly measurable,
square integrable, random process from J into L2(Ω,Rn), and u(t) is continuous when t ∈ J′ and left
continuous when t ∈ J \ J′}. We can prove that PC is a Banach space with norm

‖ u ‖PC=

(
sup
t∈J

E ‖ u(t) ‖2
)1/2

. (2.1)

Then, we consider the space PC1 = PC1(J, L2(Ω,Rn)):={u(t) | u(t) = u(t, ω) is a strongly
measurable, square integrable, random process from J into L2(Ω,Rn), u(t) is continuously
differentiable when t ∈ J′ and left continuous when t ∈ J \ J′, u′(ξ−k ) and u′(ξ+

k ) exist for k = 1, 2, · · · }.
It is easy to see that PC1 is also a Banach space with norm

‖ u ‖PC1= max
{(

sup
t∈J

E ‖ u(t) ‖2
)1/2

,
(

sup
t∈J

E ‖ u′(t) ‖2
)1/2}

. (2.2)

The functions in PC1 which satisfy the equation (1.4) are called the solutions of the equation (1.4).
For convince, in the rest of the paper we write PC(J, L2(Ω,R)) as PC(J,R), write PC1(J, L2(Ω,R))

as PC1(J,R). In this paper, the upper and lower solutions of equation (1.4) are studied in PC1(J,R)
space.

Now we consider the equation (2.3)
− u′′(t) = f (t, h(t), h′(t)) − M[u(t) − h(t)], t ∈ J′,

u(ξ+
k ) = bk(τk)h(ξ−k ), k = 1, 2, · · · ,

α0u(0) − α1u′(0) = x0,

β0u(1) + β1u′(1) = x∗0,

(2.3)

where h(t) ∈ PC1(J,R) and M is a positive constant.
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Lemma 2.1. Equation (2.3) has one solution, given by

u(t) =

∞∑
k=0

[
Ck

1e
√

Mt + Ck
2e−

√
Mt + ĥ(t)

]
I(ξk ,ξk+1](t), (2.4)



Ck
1 = C1, k = 0,

Ck
1 = δ−k C1 − e−2

√
Mξ1δ−k C2 +

k∑
n=1

∆−n,k[bn(τn)h(ξn) − ĥ(ξn)], k = 1, 2, · · · ,

Ck
2 = C2, k = 0,

Ck
2 = −e2

√
Mξ1δ+

k C1 + δ+
k C2 +

k∑
n=1

∆+
n,k[bn(τn)h(ξn) − ĥ(ξn)], k = 1, 2, · · · ,

(2.5)

and

δ−k =
1
2k

[
1 +

∑
1≤i1< j1≤k

e−2
√

M(ξ j1−ξi1 ) +
∑

1≤i1< j1<i2< j2≤k

e−2
√

M[(ξ j2−ξi2 )+(ξ j1−ξi1 )]

+ · · · +
∑

1≤i1<···< jn≤k≤ jn+1

e−2
√

M[(ξ jn−ξin )+···+(ξ j1−ξi1 )]
]
,

δ+
k =

1
2k

[
1 +

∑
1≤i1< j1≤k

e2
√

M(ξ j1−ξi1 ) +
∑

1≤i1< j1<i2< j2≤k

e2
√

M[(ξ j2−ξi2 )+(ξ j1−ξi1 )]

+ · · · +
∑

1≤i1<···< jn≤k≤ jn+1

e2
√

M[(ξ jn−ξin )+···+(ξ j1−ξi1 )]
]
,

(2.6)

∆−n,k =
1

2k−n+1 e−
√

Mξn

[
1 +

∑
n≤i1< j1≤k

(−1)I{n}(i1)e−2
√

M(ξ j1−ξi1 )

+
∑

n≤i1< j1<i2< j2≤k

(−1)I{n}(i1)e−2
√

M[(ξ j2−ξi2 )+(ξ j1−ξi1 )]

+ · · · +
∑

n≤i1<···< jl≤k≤ jl+1

(−1)I{n}(i1)e−2
√

M[(ξ jl−ξil )+···+(ξ j1−ξi1 )]
]
,

∆+
n,k =

1
2k−n+1 e

√
Mξn

[
1 +

∑
n≤i1< j1≤k

(−1)I{n}(i1)e2
√

M(ξ j1−ξi1 )

+
∑

n≤i1< j1<i2< j2≤k

(−1)I{n}(i1)e2
√

M[(ξ j2−ξi2 )+(ξ j1−ξi1 )]

+ · · · +
∑

n≤i1<···< jl≤k≤ jl+1

(−1)I{n}(i1)e2
√

M[(ξ jl−ξil )+···+(ξ j1−ξi1 )]
]
,

(2.7)

C1 =
1
|Q|

∣∣∣∣∣∣∣∣∣∣∣∣
x0 α0 +

√
Mα1

x∗0 − [e
√

MB−(1)(β0 +
√

Mβ1) −e2
√

Mξ1+
√

MA−(1)(β0 +
√

Mβ1)
+e−

√
MB+(1)(β0 −

√
Mβ1) +e−

√
MA+(1)(β0 −

√
Mβ1)

+β0ĥ(1) + β1ĥ′(1)]

∣∣∣∣∣∣∣∣∣∣∣∣ , (2.8)
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C2 =
1
|Q|

∣∣∣∣∣∣∣∣∣∣∣∣
α0 −

√
Mα1 x0

e
√

MA−(1)(β0 +
√

Mβ1) x∗0 − [e
√

MB−(1)(β0 +
√

Mβ1)
−e2

√
Mξ1−

√
MA+(1)(β0 −

√
Mβ1) +e−

√
MB+(1)(β0 −

√
Mβ1)

+β0ĥ(1) + β1ĥ′(1)]

∣∣∣∣∣∣∣∣∣∣∣∣ , (2.9)

|Q| =

∣∣∣∣∣∣∣∣∣
α0 −

√
Mα1 α0 +

√
Mα1

e
√

MA−(1)(β0 +
√

Mβ1) −e2
√

Mξ1+
√

MA−(1)(β0 +
√

Mβ1)
−e2

√
Mξ1−

√
MA+(1)(β0 −

√
Mβ1) +e−

√
MA+(1)(β0 −

√
Mβ1)

∣∣∣∣∣∣∣∣∣ . (2.10)

Denote

ĥ(t) = −
e−
√

Mt

2
√

M

∫ t

0
e
√

Msσ(s)ds +
e
√

Mt

2
√

M

∫ t

0
e−
√

Msσ(s)ds, (2.11)

σ(s) = f (s, h(s), h′(s)) + Mh(s), (2.12)

and the index function

IA(t) =

1 t ∈ A,

0 t < A,
(2.13)

I{n}(i1) =

1 n = i1,

0 n , i1,
(2.14)

where

A−(t) =

∞∑
k=0

δ−k I(ξk ,ξk+1](t),

A+(t) =

∞∑
k=0

δ+
k I(ξk ,ξk+1](t),

(2.15)

and

B−(t) =

∞∑
k=0

k∑
n=1

∆−n,k[bn(τn)h(ξn) − ĥ(ξn)]I(ξk ,ξk+1](t),

B+(t) =

∞∑
k=0

k∑
n=1

∆+
n,k[bn(τn)h(ξn) − ĥ(ξn)]I(ξk ,ξk+1](t).

(2.16)

Proof. Suppose ξ1, ξ2 ,· · · is a sample orbit. Thus, when t ∈ [0, ξ1], the solution of the equation (2.3) is

u0(t) = C1e
√

Mt + C2e−
√

Mt + ĥ(t). (2.17)

When t ∈ (ξ1, ξ2], we assume that the solution of the equation (2.3) is

u1(t) =C1
1e
√

Mt + C1
2e−

√
Mt + ĥ(t). (2.18)

Plug in the initial conditions
u1(ξ+

1 ) = b1(τ1)h(ξ1),
u′1(ξ+

1 ) = u′0(ξ1),
(2.19)
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we can get

C1
1 =

1
2

e−
√

Mξ1[C1e
√

Mξ1 −C2e−
√

Mξ1 + b1(τ1)h(ξ1) − ĥ(ξ1)],

C1
2 =

1
2

e
√

Mξ1[−C1e
√

Mξ1 + C2e−
√

Mξ1 + b1(τ1)h(ξ1) − ĥ(ξ1)].
(2.20)

In the same way, we can get when t ∈ (ξk, ξk+1],

Ck
1 =

1
2

e−
√

Mξk[Ck−1
1 e

√
Mξk −Ck−1

2 e−
√

Mξk + bk(τk)h(ξk) − ĥ(ξk)],

Ck
2 =

1
2

e
√

Mξk[−Ck−1
1 e

√
Mξk + Ck−1

2 e−
√

Mξk + bk(τk)h(ξk) − ĥ(ξk)].
(2.21)

Based on the above discussion, mathematical induction can be obtained as

Ck
1 =δ−k C1 − e−2

√
Mξ1δ−k C2 +

k∑
n=1

∆−n,k[bn(τn)h(ξn) − ĥ(ξn)],

Ck
2 = −e2

√
Mξ1δ+

k C1 + δ+
k C2 +

k∑
n=1

∆+
n,k[bn(τn)h(ξn) − ĥ(ξn)].

(2.22)

Where δ+
k , δ

−
k ,∆

+
k ,∆

−
k are defined as the equations (2.6) and (2.7).

So, the solution of the equation (2.3) is

u(t) =

[ ∞∑
k=0

Ck
1I(ξk ,ξk+1](t)

]
e
√

Mt +

[ ∞∑
k=0

Ck
2I(ξk ,ξk+1](t)

]
e−
√

Mt + ĥ(t), (2.23)

and
∞∑

k=0

Ck
1I(ξk ,ξk+1](t) =

[ ∞∑
k=0

δ−k I(ξk ,ξk+1](t)
]
C1 −

[ ∞∑
k=0

δ−k I(ξk ,ξk+1](t)
]
e−2

√
Mξ1C2

+

∞∑
k=0

k∑
n=1

∆−n,k[bn(τn)h(ξn) − ĥ(ξn)]I(ξk ,ξk+1](t),

(2.24)

∞∑
k=0

Ck
2I(ξk ,ξk+1](t) = −

[ ∞∑
k=0

δ+
k I(ξk ,ξk+1](t)

]
e2
√

Mξ1C1 +

[ ∞∑
k=0

δ+
k I(ξk ,ξk+1](t)

]
C2

+

∞∑
k=0

k∑
n=1

∆+
n,k[bn(τn)h(ξn) − ĥ(ξn)]I(ξk ,ξk+1](t).

(2.25)

Therefore
u(t) = [A−(t)C1 − e−2

√
Mξ1 A−(t)C2 + B−(t)]e

√
Mt

+ [−e2
√

Mξ1 A+(t)C1 + A+(t)C2 + B+(t)]e−
√

Mt + ĥ(t),
(2.26)

u′(t) =
√

M[A−(t)C1 − e−2
√

Mξ1 A−(t)C2 + B−(t)]e
√

Mt

−
√

M[−e2
√

Mξ1 A+(t)C1 + A+(t)C2 + B+(t)]e−
√

Mt + ĥ′(t).
(2.27)

Substituting these equations into the boundary value conditions of the equation (2.3) yields and
using the Cramer’s rule, it follows from (2.26) and (2.27) that (2.5)–(2.16) hold.
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Lemma 2.2. δ−k and δ+
k are uniformly bounded series.

Proof. We firstly consider δ−k ,
e−2

√
M[(ξ jm−ξim )+···+(ξ j1−ξi1 )] ≤ 1. (2.28)

So, for every n ∈ N+, we have∑
1≤i1<···< jn≤k≤ jn+1

e−2
√

M[(ξ jn−ξin )+···+(ξ j1−ξi1 )] ≤

(
k

2n

)
, (2.29)

δ−k =
1
2k

[
1 +

∑
1≤i< j≤k

e−2
√

M(ξ j−ξi) +
∑

1≤i1< j1<i2< j2≤k

e−2
√

M[(ξ j2−ξi2 )+(ξ j1−ξi1 )]

+ · · · +
∑

1≤i1<···< jn≤k≤ jn+1

e−2
√

M[(ξ jn−ξin )+···+(ξ j1−ξi1 )]
]

≤
1
2k

[
1 +

(
k
2

)
+

(
k
4

)
+ · · · +

(
k

2n

) ]
=

1
2
.

(2.30)

In the same way, we can prove that δ+
k is uniformly bounded and

δ+
k ≤

1
2

e2
√

M. (2.31)

Lemma 2.3. For every n ∈ N+, ∆−n,k and ∆+
n,k are uniformly bounded series.

Proof. We can easily prove that

− 2n−1δ−k ≤ ∆−n,k ≤ 2n−1δ−k ,

− 2n−1e
√

Mδ+
k ≤ ∆+

n,k ≤ 2n−1e
√

Mδ+
k .

(2.32)

So, we have
|∆−n,k| ≤ 2n−1δ−k ≤ 2n−2,

|∆+
n,k| ≤ 2n−1e

√
Mδ+

k ≤ 2n−2e3
√

M,
(2.33)

and we have proved the lemma.

Definition 2.1. Define the operator Λ : PC1[J,R]→ PC1[J,R] such that

Λh =

∞∑
k=0

[
Ck

1e
√

Mt + Ck
2e−

√
Mt + ĥ(t)

]
I(ξk ,ξk+1](t). (2.34)

Definition 2.2. v0(t) ∈ PC1[J,R] is called a lower solution of equation (1.4) if v0(t) satisfies the
inequality group 

− v′′0 (t) ≤ f (t, v0(t), v′0(t)),
v0(ξ+

k ) ≤ bk(τk)v0(ξ−k ),
α0v0(0) − α1v′0(0) ≤ x0,

β0v0(1) + β1v′0(1) ≤ x∗0.

(2.35)
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Definition 2.3. ω0(t) ∈ PC1[J,R] is called an upper solution of equation (1.4) if ω0(t) satisfies the
inequality group 

− ω′′0 (t) ≥ f (t, ω0(t), ω′0(t)),
ω0(ξ+

k ) ≥ bk(τk)ω0(ξ−k ),
α0ω0(0) − α1ω

′
0(0) ≥ x0,

β0ω0(1) + β1ω
′
0(1) ≥ x∗0.

(2.36)

Lemma 2.4. h(t) ∈ PC1[J,R] is the solution of equation (1.4) if and only if h(t) ∈ PC1[J,R] is the fix
point of the operator Λ.

Proof. If h(t) is the fix point of the operator Λ, it is to say that h(t) satisfies the equation Λh(t) = h(t),
then, in the equation (2.3), we have u(t) = Λh(t) = h(t), so, we can replace u(t) with h(t) in the
equation (2.3), and we have 

− h′′(t) = f (t, h(t), h′(t)),
h(ξ+

k ) = bk(τk)h(ξ−k ),
α0h(0) − α1h′(0) = x0,

β0h(1) + β1h′(1) = x∗0,

(2.37)

and we have proved that h(t) is a solution of the equation (1.4).
If h(t) is the solution of the equation (1.4), then using the same method, we can easily know that it

is also the fix point of the operator Λ, and we have proved the lemma.

Lemma 2.5.(The Arzela-Ascoli Theorem)( [29]) The set M ⊂ C2[J,Rn] is column compact tight if and
only if

(i) The functions in the set M are uniformly bounded, that is to say, there exists a fixed constant K
for all u(t) ∈ M, where ‖u(t)‖ ≤ K.

(ii) Functions in the set M are equally continuous, that is to say, for all ε > 0, there exists δ = δ(ε)
such that when t1, t2 ∈ J and ‖ t1 − t2 ‖< δ for all u(t) ∈ M, there is ‖ u(t1) − u(t2) ‖< ε.

Lemma 2.6.( [30]) Suppose E is a semi-ordered Banach space. For x0, y0 ∈ E, x0 ≤ y0, and D =

[x0(t), y0(t)], A : D→ E is an operator. Assuming that the following conditions are satisfied
(i) A is an increasing operator,
(ii) x0 is the lower solution of A and y0 is the upper solution of A,
(iii) A is a continuous operator,
(iv) A(D) is a relatively compact set of columns in E.
Then, A has a maximum fixed point and a minimum fixed point in D. Let x0 and y0 be the initial

conditions. We then have the iteration sequences

xn = Axn−1, yn = Ayn−1, n = 1, 2, · · · . (2.38)

Thus,
x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · ≤ yn ≤ · · · ≤ y1 ≤ y0, (2.39)
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and
xn → x∗, yn → y∗. (2.40)

3. Main result

(H1) The equation (1.4) has the lower solution v0(t) and the upper solution ω0(t) and they meet the
inequality

v0(t) ≤ ω0(t), (3.1)

for any t ∈ J.
(H2) There exists a constant M > 0, such that

f (t, x1, y) − f (t, x2, y) ≥ −M(x1 − x2), (3.2)

for any t ∈ J, y ∈ PC1(J,R) and v0(t) ≤ x2(t) ≤ x1(t) ≤ ω0(t).
(H3) There exist constants B1 and B2 such that

∞∑
k=0

{ k∑
n=1

∆−n,kbn(τn)
}
I(ξk ,ξk+1](t) ≤ B1,

∞∑
k=0

{ k∑
n=1

∆+
n,kbn(τn)

}
I(ξk ,ξk+1](t) ≤ B2.

(3.3)

(H4) There exists an increasing continuous function Θ(x) satisfies that Θ(x)
x is a decreasing function and

E‖ f (t, x, y)‖2 ≤ Θ(‖x‖PC1), (3.4)

for every t ∈ J, x1, x2 ∈ D = [v0(t), ω0(t)], and y ∈ PC1(J,R).
(H5) There exist a function Ψ(t, x, y) and a constant K such that

(i) For each t ∈ J, the function Ψ(t, ·, ·) : R × R → R is continuous and Ψ(t, 0, 0) = 0. For every
x, y ∈ R, the function Ψ(·, x, y) : J → R is measurable;

(ii)
E ‖ f (t, x1, y1) − f (t, x2, y2) ‖2≤ KΨ(t,E‖x1 − x2‖

2,E‖x′1 − x′2‖
2), (3.5)

for every t ∈ J, x(t) ∈ D = [v0(t), ω0(t)].
(H6) Define P = 12 e2

√
M

M , P∗ = 12e2
√

M + ln 3(m1 + m2), m1 = sup
t

E‖Ck
1e
√

Mt‖2, and

m2 = sup
t

E‖Ck
2e−

√
Mt‖2.

Then we define the sequences vn and ωn as

vn(t) =

∞∑
k=0

[
Ck

1(vn−1)e
√

Mt + Ck
2(vn−1)e−

√
Mt

]
I(ξk ,ξk+1](t)

−
e−
√

Mt

2
√

M

∫ t

0
e
√

Ms
[
Mvn−1(s) + f (s, vn−1(s), v′n−1(s))

]
ds

+
e
√

Mt

2
√

M

∫ t

0
e−
√

Ms
[
Mvn−1(s) + f (s, vn−1(s), v′n−1(s))

]
ds,

(3.6)
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ωn(t) =

∞∑
k=0

[
Ck

1(ωn−1)e
√

Mt + Ck
2(ωn−1)e−

√
Mt

]
I(ξk ,ξk+1](t)

−
e−
√

Mt

2
√

M

∫ t

0
e
√

Ms
[
Mωn−1(s) + f (s, ωn−1(s), ω′n−1(s))

]
ds

+
e
√

Mt

2
√

M

∫ t

0
e−
√

Ms
[
Mωn−1(s) + f (s, ωn−1(s), ω′n−1(s))

]
ds.

(3.7)

Theorem 3.1.
If conditions (H1) ∼ (H6) are met, the equation (1.4) has the maximum solution x∗(t) and the

minimum solution x∗(t) in [v0(t), ω0(t)]
⋂

PC1[J,R]. And there exist ωn(t) = Λωn−1(t) uniformly
convergent to x∗(t), vn(t) = Λvn−1(t) uniformly convergent to x∗(t), n = 1, 2, · · · . And if x(t) is the
solution of the equation (1.4), it satisfies

ln(E‖x(t)‖2) ≤ P
∫ 1

0

Θ(E‖x(t)‖2)
E‖x(t)‖2

dt + P∗. (3.8)

Proof. We will prove this theorem in five steps.
Step(1). We prove that v0(t) and ω0(t) are the lower and upper solutions of the operator Λ, i.e., we
should prove v0(t) ≤ Λv0(t) and ω0(t) ≥ Λω0(t).

When there is no random impulsive, we set v1(t) = Λv0(t). Now, we only need to prove that
v0(t) ≤ v1(t). Here, we use proof by contradiction. If it is not true, then there exist t0 ∈ J and ε > 0
such that v0(t0) = v1(t0) + ε,

v0(t) ≤ v1(t) + ε,
(3.9)

for every t ∈ J. If t0 ∈ J \ ({0}
⋃
{1}), it is easy to see thatv′0(t0) − v′1(t0) = 0,

v′′0 (t0) − v′′1 (t0) ≤ 0.
(3.10)

However,

− v′′1 (t) = f (t, v0(t), v′0(t)) − M[v1(t) − v0(t)] ≥ −v′′0 (t) − M[v1(t) − v0(t)],
v′′0 (t0) − v′′1 (t0) ≥ M[v0(t0) − v1(t0)] = Mε > 0,

(3.11)

which is a contradiction to the inequality v′′0 (t0) − v′′1 (t0) ≤ 0. Thus, our hypothesis does not work.
When t0 = 0 or t0 = 1, we assume that t0 = 0. Therefore,

m(t) = v1(t) − v0(t),
min
t∈J
{m(t)} = m(0), (3.12)

assuming that v1(0) + ε = v0(0), it is easy to see that

v′1(0) − v′0(0) ≥ 0. (3.13)
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By the boundary value conditions, we can get

α0v0(0) − α1v′0(0) ≤ x0,

α0v1(0) − α1v′1(0) = x0.
(3.14)

Thus, we have
α1v′1(0) + α0ε − α1v′0(0) ≤ 0,
α1[v′1(0) − v′0(0)] < 0,

(3.15)

which is a contradiction to the hypothesis. Therefore, we have proved that v(t) ≤ Λv(t).
When the equation has the random pulses, we have − v′′1 (t) = f (t, v0(t), v′0(t)) − M[v1(t) − v0(t)],

v1(ξ+
k ) = bk(τk)v0(ξ−k ),

(3.16)

and v0(t) is the lower solution of the equation (1.4). Thus, according to the second inequality of (2.35),
for every t ∈ {ξk}k∈N+ , we have

v0(ξ+
k ) ≤ bk(τk)v0(ξ−k ) = v1(ξ+

k ). (3.17)

Thus, based on our discussion, we conclude that for every t ∈ (ξk, ξk+1], k = 1, 2, · · · ,

v1(t) ≥ v0(t). (3.18)

Hence, we have proved that v1(t) ≥ v0(t) for every t ∈ J.
In the same way, we can prove that ω0(t) ≥ Λω0(t) for every t ∈ J.

Step(2). We prove that Λ is an increasing operator.
First of all, we take any h1(t) and h2(t), h1(t), h2(t) ∈ PC1[J,R]. Suppose h1(t) ≥ h2(t) for any

t ∈ J. Then, we prove that Λh1(t) ≥ Λh2(t). Here, we use proof by contradiction. Let h∗1(t) = Λh1(t),
h∗2(t) = Λh2(t). Then, we need to prove h∗1(t) ≥ h∗2(t).

When there is no random pulse, if the hypothesis is not true, then there must exist t0 ∈ J and ε > 0
such that h∗1(t0) + ε = h∗2(t0) and h∗1(t) + ε ≥ h∗2(t) for every t ∈ J. If t0 ∈ J \ ({0}

⋃
{1}), then we have

h′∗1 (t0) − h′∗2 (t0) = 0,
h′′∗1 (t0) − h′′∗2 (t0) ≥ 0,

(3.19)

and
− h′′∗1 (t) = f (t, h1(t), h′1(t)) − M[h∗1(t) − h1(t)],
− h′′∗2 (t) = f (t, h2(t), h′2(t)) − M[h∗2(t) − h2(t)].

(3.20)

Thus

h′′∗1 (t0) − h′′∗2 (t0) = f (t0, h2(t0), h′2(t0)) − f (t0, h1(t0), h′1(t0))
+ M[h∗1(t0) − h∗2(t0)] + M[h2(t0) − h1(t0)]
≤ M[h1(t0) − h2(t0)] + M[h∗1(t0) − h∗2(t0)] + M[h2(t0) − h1(t0)]
≤ −Mε < 0.

(3.21)
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Which is a contradiction. When t0 = 0 or t0 = 1, we assume that t0 = 0 and h∗1(0) + ε = h∗2(0).
Then

h′∗1 (0) − h′∗2 (0) ≥ 0. (3.22)

Thus

α0h∗1(0) − α1h′∗1 (0) = x0,

α0h∗2(0) − α1h′∗2 (0) = x0.
(3.23)

Take the difference of these equation yields

α1[h′∗1 (0) − h′∗2 (0)] + α0ε = 0. (3.24)

That is to say h′∗1 (0) − h′∗2 (0) < 0, which is a contradiction.
When there exits random pulses, we have

Λh2(ξ+
k ) = h∗2(ξ+

k ) = bk(τk)h2(ξ−k ) ≤ bk(τk)h1(ξ−k ) = Λh1(ξ+
k ). (3.25)

Then, for every t ∈ (ξk, ξk+1], k = 1, 2, · · · , we have

Λh1(t) ≥ Λh2(t). (3.26)

Thus, for every t ∈ J, the inequality Λh1(t) ≥ Λh2(t) is true.

Step(3). We prove that Λ is a continuous operator. That is to say, we should prove that for any ε > 0,
there exists δ(ε) > 0 such that when ‖ h1(t) − h2(t) ‖PC1< δ, ‖ Λh1(t) − Λh2(t) ‖PC1< ε.

We assume that

Λh1 =

∞∑
k=0

[
Ck

1e
√

Mt + Ck
2e−

√
Mt

]
I(ξk ,ξk+1](t) + ĥ1(t), (3.27)

Λh2 =

∞∑
k=0

[
C̃k

1e
√

Mt + C̃k
2e−

√
Mt

]
I(ξk ,ξk+1](t) + ĥ2(t), (3.28)

E‖Λh1 − Λh2‖
2 ≤ 3E

∥∥∥∥∥∥e
√

Mt
∞∑

k=0

(Ck
1 − C̃k

1)I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

+ 3E

∥∥∥∥∥∥e−
√

Mt
∞∑

k=0

(Ck
2 − C̃k

2)I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

+ 3E ‖ ĥ1(t) − ĥ2(t) ‖2 .

(3.29)
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Among them,

E

∥∥∥∥∥∥ ∞∑
k=0

e
√

Mt(Ck
1 − C̃k

1)I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

= E

∥∥∥∥∥∥ ∞∑
k=0

e
√

Mt

[
δ−k (C1 − C̃1) − e−2

√
Mξ1δ−k (C2 − C̃2)

+

k∑
n=1

∆−n,kbn(τn)
[
(h1(ξn) − h2(ξn)) − (ĥ1(ξn) − ĥ2(ξn))

]]
I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

≤
3
4

E‖e
√

Mt(C1 − C̃1)‖2 +
3
4

E‖e
√

Mte−2
√

Mξ1(C2 − C̃2)‖2

+ 3E

∥∥∥∥∥∥e
√

Mt
∞∑

k=0

k∑
n=1

∆−n,kbn(τn)
[
(h1(ξn) − h2(ξn)) − (ĥ1(ξn) − ĥ2(ξn))

]
I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

,

(3.30)

and we have

A+(t) = Ã+(t), (3.31)

A−(t) = Ã−(t). (3.32)

E‖B−(t) − B̃−(t)‖2

= E

∥∥∥∥∥∥ ∞∑
k=0

k∑
n=1

∆−n,kbn(τn)
[
(h1(ξn) − h2(ξn)) − (ĥ1(ξn) − ĥ2(ξn))

]
I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

≤ sup
t∈J

[
E‖h1(t) − h2(t)‖2 + E‖ĥ1(t) − ĥ2(t)‖2

]
E

∥∥∥∥∥∥ ∞∑
k=0

k∑
n=1

∆−n,kbn(τn)I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

≤ B2
1 sup

t∈J

[
E‖h1(t) − h2(t)‖2 + E‖ĥ1(t) − ĥ2(t)‖2

]
,

(3.33)

E‖B+(t) − B̃+(t)‖2

= E

∥∥∥∥∥∥ ∞∑
k=0

k∑
n=1

∆+
n,kbn(τn)

[
(h1(ξn) − h2(ξn)) − (ĥ1(ξn) − ĥ2(ξn))

]
I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

≤ sup
t∈J

[
E‖h1(t) − h2(t)‖2 + E‖ĥ1(t) − ĥ2(t)‖2

]
E

∥∥∥∥∥∥ ∞∑
k=0

k∑
n=1

∆+
n,kbn(τn)I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

≤ B2
2 sup

t∈J

[
E‖h1(t) − h2(t)‖2 + E‖ĥ1(t) − ĥ2(t)‖2

]
,

(3.34)
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and

E‖ĥ1(t) − ĥ2(t) ‖2 ≤ 2E
(∥∥∥∥∥∥e−

√
Mt

2
√

M

∥∥∥∥∥∥2∥∥∥∥∥∥
∫ t

0
e
√

Ms[σ1(s) − σ2(s)]ds

∥∥∥∥∥∥2)
+ 2E

(∥∥∥∥∥∥ e
√

Mt

2
√

M

∥∥∥∥∥∥2∥∥∥∥∥∥
∫ t

0
e−
√

Ms[σ1(s) − σ2(s)]ds

∥∥∥∥∥∥2)
≤ 2E

(∥∥∥∥∥∥e−
√

Mt

2
√

M

∥∥∥∥∥∥2∥∥∥∥∥∥
∫ t

0
e
√

Ms[ f (s, h1(s), h′1(s))

− f (s, h2(s), h′2(s)) + M(h1(s) − h2(s))]ds

∥∥∥∥∥∥2)
+ 2E

(∥∥∥∥∥∥ e
√

Mt

2
√

M

∥∥∥∥∥∥2∥∥∥∥∥∥
∫ t

0
e−
√

Ms[ f (s, h1(s), h′1(s))

− f (s, h2(s), h′2(s)) + M(h1(s) − h2(s))]ds

∥∥∥∥∥∥2)
,

(3.35)

combing with (H5), we have

E

∥∥∥∥∥∥
∫ t

0
e−
√

Ms[ f (s, h1(s), h′1(s)) − f (s, h2(s), h′2(s)) + M(h1(s) − h2(s))]ds

∥∥∥∥∥∥2

≤ 2
∫ t

0
KΨ(s,E‖h1(s) − h2(s)‖2,E‖h′1(s) − h′2(s)‖2)ds

+ 2
∫ t

0
ME‖h1(s) − h2(s)‖2ds.

(3.36)

From (3.31) and (3.32), we can easily know that |Q| is dependent with h(t). So, based on the
above discussion, we can know when ‖ h1(t) − h2(t) ‖→ 0, ‖ĥ1(t) − ĥ2(t)‖ → 0, ‖C1 − C̃1‖ → 0 and
‖C2 − C̃2‖ → 0. And then ,we can get when ‖ h1(t) − h2(t) ‖→ 0, E ‖ Λh1(t) − Λh2(t) ‖2→ 0.

Then

Λ′h(t) =

∞∑
k=0

(
√

MCk
1e
√

Mt −
√

MCk
2e−

√
Mt)I(ξk ,ξk+1](t)

+
1
2

e−
√

Mt
∫ t

0
e
√

Msσ(s)ds +
1
2

e
√

Mt
∫ t

0
e−
√

Msσ(s)ds,

(3.37)

hence,

E ‖ Λ′h1(t) − Λ′h2(t) ‖2 ≤ 4
√

ME

∥∥∥∥∥∥ ∞∑
k=0

(Ck
1 − C̃k

1)e
√

MtI(ξk ,ξk+1](t)

∥∥∥∥∥∥2

+ 4
√

ME

∥∥∥∥∥∥ ∞∑
k=0

(Ck
2 − C̃k

2)e−
√

MtI(ξk ,ξk+1](t)

∥∥∥∥∥∥2

+ 2E

∥∥∥∥∥∥e−
√

Mt
∫ t

0
e
√

Ms[σ1(s) − σ2(s)]ds

∥∥∥∥∥∥2

+ 2E

∥∥∥∥∥∥e
√

Mt
∫ t

0
e−
√

Ms[σ1(s) − σ2(s)]ds

∥∥∥∥∥∥2

,

(3.38)
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which implies that
lim
δ→0
‖ Λh1(t) − Λh2(t) ‖PC1= 0. (3.39)

Thus, we have proved that Λ is a continuous operator.

Step(4). We prove that the functions in the set
{
u ∈ PC1(J,R) | u ∈ Λ(D)

}
are uniformly bounded.

Because u ∈ Λ(D), for any u ∈
{
u ∈ PC1(J,R) | u ∈ Λ(D)

}
, there exists h(t) ∈ D such that u = Λh(t),

E ‖ Λh(t) ‖2 ≤ 3E

∥∥∥∥∥∥ ∞∑
k=0

Ck
1e
√

MtI(ξk ,ξk+1](t)

∥∥∥∥∥∥2

+ 3E

∥∥∥∥∥∥ ∞∑
k=0

Ck
2e−

√
MtI(ξk ,ξk+1](t)

∥∥∥∥∥∥2

+ 3E ‖ ĥ(t) ‖2,

(3.40)

suppose r1 = 1
M , r2 = e2

√
M

M and we have

E ‖ ĥ(t) ‖2 ≤ r1

∫ t

0
Mr2E‖ f (s, h(s), h′(s)) + Mh(s)‖2ds

+ r2

∫ t

0
Mr1E‖ f (s, h(s), h′(s)) + Mh(s)‖2ds

≤ 4Mr1r2

∫ t

0
[E‖ f (s, h(s), h′(s))‖2 + ME‖h(s)‖2]ds

≤ 4Mr1r2

∫ t

0
[Θ(E‖h(s)‖2) + ME‖h(s)‖2]ds,

(3.41)

so, if h(t) is the solution of the equation (1.4), we have

E‖h(t)‖2 ≤ 3(m1 + m2) + 12Mr1r2

∫ t

0
Θ(E‖h(s)‖2) + ME‖h(s)‖2ds. (3.42)

Next, define φ(t) = E‖h(t)‖2 and we have the inequality

φ(t) ≤ 3(m1 + m2) + 12Mr1r2

∫ t

0
Θ(φ(s)) + Mφ(s)ds. (3.43)

Define the right of the inequality (3.43) as the function ϕ(t), we can get

φ(t) ≤ ϕ(t), t ∈ J, (3.44)

so,
ϕ′(t) ≤ 12Mr1r2[Θ(ϕ(t)) + Mϕ(t)], (3.45)

lnϕ(t) − lnϕ(0) ≤ 12Mr1r2

∫ t

0

Θ(ϕ(s))
ϕ(s)

+ Mds

≤ 12Mr1r2

[ ∫ 1

0

Θ(φ(s))
φ(s)

ds + M
]
,

(3.46)
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then we can easily get

ln φ(t) ≤ 12Mr1r2

[ ∫ 1

0

Θ(φ(s))
φ(s)

ds + M
]

+ ln(3m1 + 3m2)

≤ P
∫ 1

0

Θ(φ(t))
φ(t)

dt + P∗.

(3.47)

For ∆−n,k, ∆+
n,k, δ

−
k and δ−k are bounded, combining with

E ‖ B−(t) ‖2 ≤ E

∥∥∥∥∥∥ ∞∑
k=0

k∑
n=1

∆−n,kbn(τn)
[
h(ξn) − ĥ(ξn)

]
I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

≤ sup
t∈J

[
E‖h(t)‖2 + E‖ĥ(t)‖2

]
E

∥∥∥∥∥∥ ∞∑
k=0

k∑
n=1

∆−n,kbn(τn)I(ξk ,ξk+1](t)

∥∥∥∥∥∥2

,

(3.48)

and consider that Θ(s) satisfies the condition (H4) and D = [v0(t), ω0(t)], where v0(t), ω0(t) are all
square integrable, so, E‖Λh(t)‖2 is bounded.

Then,

ĥ′(t) =
e−
√

Mt

2

∫ t

0
e
√

Msσ(s)ds +
e
√

Mt

2

∫ t

0
e−
√

Msσ(s)ds, (3.49)

and

E ‖ Λ′h(t) ‖2 ≤ 4E

∥∥∥∥∥∥ ∞∑
k=0

√
MCk

1e
√

MtI(ξk ,ξk+1](t)

∥∥∥∥∥∥2

+ 4E

∥∥∥∥∥∥ ∞∑
k=0

√
MCk

2e−
√

MtI(ξk ,ξk+1](t)

∥∥∥∥∥∥2

+ 2E

∥∥∥∥∥∥e−
√

Mt
∫ t

0
e
√

Msσ(s)ds

∥∥∥∥∥∥2

+ 2E

∥∥∥∥∥∥e
√

Mt
∫ t

0
e−
√

Msσ(s)ds

∥∥∥∥∥∥2

.

(3.50)

Using the same way, we can prove that E ‖ Λ′h(t) ‖2 is bounded. Thus, we have proved that the
functions in the set

{
u(t) ∈ C2(J,R) | u(t) ∈ Λ(D)

}
are uniformly bounded.

Step(5). We prove that the set {u(t) | u(t) = Λh(t)} is equicontinuous.

For every u(t) ∈ {u(t) | u(t) = Λh(t)}, and every t1, t2 ∈ J, ‖t1 − t2‖ < δ,

u(t) =

∞∑
k=0

[
Ck

1e
√

Mt + Ck
2e−

√
Mt + ĥ(t)

]
I(ξk ,ξk+1](t), (3.51)
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and,
E ‖ u(t1) − u(t2) ‖2

≤ 3E

∥∥∥∥∥∥ ∞∑
k=0

Ck
1

[
e
√

Mt1 I(ξk ,ξk+1](t1) − e
√

Mt2 I(ξk ,ξk+1](t2)
]∥∥∥∥∥∥2

+ 3E

∥∥∥∥∥∥ ∞∑
k=0

Ck
2

[
e−
√

Mt1 I(ξk ,ξk+1](t1) − e−
√

Mt2 I(ξk ,ξk+1](t2)
]∥∥∥∥∥∥2

+ 3E ‖ ĥ(t1) − ĥ(t2) ‖2

≤ 3E

∥∥∥∥∥∥ ∞∑
k=0

Ck
1

[
e
√

Mt1 I(ξk ,ξk+1](t1) − e
√

Mt2 I(ξk ,ξk+1](t2)
]∥∥∥∥∥∥2

+ 3E

∥∥∥∥∥∥ ∞∑
k=0

Ck
2

[
e−
√

Mt1 I(ξk ,ξk+1](t1) − e−
√

Mt2 I(ξk ,ξk+1](t2)
]∥∥∥∥∥∥2

+ 6E
(∥∥∥∥∥∥e−

√
Mt

2
√

M

∥∥∥∥∥∥2∥∥∥∥∥∥
∫ t2

t1
e
√

Msσ(s)ds

∥∥∥∥∥∥2)
+ 6E

(∥∥∥∥∥∥ e
√

Mt

2
√

M

∥∥∥∥∥∥2∥∥∥∥∥∥
∫ t2

t1
e−
√

Msσ(s)ds

∥∥∥∥∥∥2)
.

(3.52)

We suppose t1 ∈ (ξk1 , ξk1+1), t2 ∈ (ξk2 , ξk2+1), so when ‖t1 − t2‖ < δ, ‖ξk1+1 − ξk2‖ < δ

E

∥∥∥∥∥∥ ∞∑
k=0

Ck
1

[
e
√

Mt1 I(ξk ,ξk+1](t1) − e
√

Mt2 I(ξk ,ξk+1](t2)
]∥∥∥∥∥∥2

= E‖Ck1
1 e
√

Mt1 −Ck2
1 e
√

Mt2‖2.

(3.53)

So, it is easy to see that when δ→ 0, E ‖ u(t1) − u(t2) ‖2→ 0. Then, we consider

u′(t) =

∞∑
k=0

(
√

MCk
1e
√

Mt −
√

MCk
2e−

√
Mt)I(ξk ,ξk+1](t1)

+
1
2

e−
√

Mt
∫ t

0
e
√

Msσ(s)ds +
1
2

e
√

Mt
∫ t

0
e−
√

Msσ(s)ds.

(3.54)

Therefore,
E ‖ u′(t1) − u′(t2) ‖2

≤ 4E

∥∥∥∥∥∥ ∞∑
k=0

√
MCk

1

[
e
√

Mt1 I(ξk ,ξk+1](t1) − e
√

Mt2 I(ξk ,ξk+1](t2)
]∥∥∥∥∥∥2

+ 4E

∥∥∥∥∥∥ ∞∑
k=0

√
MCk

2

[
e−
√

Mt1 I(ξk ,ξk+1](t1) − e−
√

Mt2 I(ξk ,ξk+1](t2)
]∥∥∥∥∥∥2

+ 2E
(
‖ e−

√
Mt ‖2

∥∥∥∥∥∥
∫ t2

t1
e
√

Msσ(s)ds

∥∥∥∥∥∥2)
+ 2E

(
‖ e
√

Mt ‖2

∥∥∥∥∥∥
∫ t2

t1
e−
√

Msσ(s)ds

∥∥∥∥∥∥2)
.

(3.55)
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Using the same method, we can prove that when δ→ 0, E ‖ u′(t1) − u′(t2) ‖2→ 0. We have already
proved that when ‖t1 − t2‖ → 0, E ‖ u(t1) − u(t2) ‖2→ 0. So

‖ u(t1) − u(t2) ‖PC1→ 0. (3.56)

That is to say, the set {u(t) | u(t) = Λh(t)} is equicontinuous.
Using Lemma (2.5), we know that the set {u(t) | u(t) = Λh(t)} is a column compact set. It follows

from Lemma (2.6) that the equation (1.4) has a solution in D = [v0(t), ω0(t)], where t ∈ [0, 1]. Thus,
theorem (3.1) is established. �

4. Example

The main result could have many applications, now, we give an example to illustrate this theorem.
We consider the following second order random impulsive differential equation with boundary value
problems. 

− x′′(t) = (−x(t) sin(t) + t)3, t ∈ J′,

x(ξ+
k ) =

k
3k τkx(ξ−k ), k = 1, 2, · · · ,

x(0) − 2x′(0) = 1,
2x(1) + x′(1) = 1.

(4.1)

Let τk ∼ U(0, 1
2k ), then the probability density function of τk is

p(x) =


2k x ∈ (0,

1
2k ),

0 x < (0,
1
2k ).

(4.2)

Set ξ0 = 0, ξk+1 = ξk + τk+1. Obviously, {ξk} is a process with independent increments and the
impulsive moments ξk form a strictly increasing sequence. And for every k ∈ N,

ξk < ξk+1 ≤
1
2

+
1
22 + · · · +

1
2k+1 < 1. (4.3)

So in this example, bk(τk) = k
3k τk, τk is a random variable defined from Ω to Ek = (0, dk) = (0, 1

2k ).
Suppose τi and τ j are independent of each other when i , j, x(ξ+

k ) = lim
t→ξk+0

x(t) and x(ξ−k ) = lim
t→ξk−0

x(t).

Taking v0(t) = 0, ω0(t) = 6 cos t, we can easily prove that v0(t) is the lower solution and ω0(t) is the
upper solution of the equation (4.1). And for every v0(t) ≤ x2(t) < x1(t) ≤ ω0(t), we have

[−x1(t) sin(t) + t]3 − [−x2(t) sin(t) + t]3

= − sin t[x1(t) − x2(t)][(−x1(t) sin(t) + t)2

+ (−x1(t) sin(t) + t)(−x2(t) sin(t) + t) + (−x2(t) sin(t) + t)2]
≥ −3[x1(t) − x2(t)][ω0(t) + 1]2

≥ −147[x1(t) − x2(t)].

(4.4)
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So, we can easily know that M = 147.

k∑
n=1

∆−n,kbn(τn) ≤
k∑

n=1

2n−1 n
3nτn = 3[1 − (

2
3

)k] − k(
2
3

)k+1. (4.5)

So, we have proved that
∞∑

k=0

{ k∑
n=1

∆−n,kbn(τn)
}
I(ξk ,ξk+1](t) ≤ 3. That is to say B1 = 3. In the same way we

can prove that B2 = 3e3
√

147.
For every v0(t) ≤ x2(t) < x1(t) ≤ ω0(t), we have

E‖[−x(t) sin t + t]3‖2 ≤ E‖ω0(t)3 + 3ω0(t)2 + 3ω0(t) + 1‖2 < ∞, (4.6)

and
E‖[−x1(t) sin t + t]3 − [−x2(t) sin t + t]3‖2

≤ E‖[(x1(t) − x2(t)][(x1(t) + 1)2 + (x1(t) + 1)(x2(t) + 1) + (x2(t) + 1)2]‖2.
(4.7)

So, the equation (4.1) meets all the conditions of the theorem (3.1). We can get the solution of the
equation of the equation (4.1) between v0(t) = 0 and ω0(t) = 6 cos t by constructing iterative sequences
starting from v0 an ω0 respectively.

5. Conclusions

In this article, we study the existence of upper and lower solutions of second order random impulse
equation (1.4). First, we study the solution form of the corresponding linear impulsive system (2.3)
induced by system (1.4). Based on the form of the solution, we define the solution operator. Secondly,
we prove that the fixed point of this operator is the solution of equation (1.4). Finally, we construct
two monotone iterative sequences by the solution to (2.3). We then prove that they converge. Thus, it
is concluded that there exists upper and lower solution to system (1.4). Impulsive differential
equations have been studied in literature [7–10]. Random impulsive differential equations have also
been discussed in the literature [12–14, 19, 27, 39]. In this paper, we extend the form of solutions to
initial value problems of random impulsive differential equations to more general boundary value
problems. The upper and lower methods are applied to Random impulsive differential equations and
the related conclusions are generalized.
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