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Abstract: Type-reduction (TR) is a key block for interval type-2 fuzzy logic systems (IT2 FLSs). In 

general, Karnik-Mendel (KM) (or enhanced Karnik-Mendel (EKM)) algorithms are used to perform 

the TR. These two types of algorithms have the advantage of preserving the uncertainties of 

membership functions (MFs) flow in IT2 FLSs. This paper gives the initialization explanations of 

KM and EKM algorithms, and proposes reasonable initialization enhanced Karnik-Mendel (RIEKM) 

algorithms for centroid TR of IT2 FLSs. By considering the accurate continuous Nie-Tan (CNT) 

algorithms as the benchmark, four computer simulation examples are adopted to illustrate and 

analyze the performances of RIEKM algorithms for solving the centroid TR and defuzzification of 

IT2 FLSs. Compared with the EKM algorithms, the proposed RIEKM algorithms have smaller 

absolute errors and faster convergence speeds, which afford the potential value for designing and 

applying IT2 FLSs. 
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1. Introduction 

As we all know, the membership grades of type-1 fuzzy sets (T1 FSs) are crisp numbers as 0 or 

1, therefore, the membership functions (MFs) of T1 FSs are not inherently uncertain and they can 

only measure uncertainties in a limited scope. The membership grades of interval type-2 fuzzy sets 

(IT2 FSs) are intervals, so the IT2 FSs are capable of better model uncertainties [1,2]. In the past 

decades, great progresses have been made transiting from type-1 fuzzy logic systems (T1 FLSs) to 
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interval type-2 fuzzy logic systems (IT2 FLSs). IT2 FLSs based on IT2 FSs can approximate real 

continuous functions defined on compact sets with arbitrary accuracy. Furthermore, IT2 FLSs have 

been successfully applied in many fields with uncertainty, nonlinearity and time-varying 

characteristics like autonomous mobile robots [3,4], intelligent controllers [5], financial systems [6], 

power systems [7,8], permanent magnetic drive [9–11], edge detection [12], medical systems [13] 

and hot strip mill [14,15] and so on. 

Generally speaking, IT2 FLSs (see Figure 1) are composed of fuzzifier, rules, inference [16], 

type-reducer and defuzzifier. Among which, the block of type-reduction (TR) under the guidance of 

inference plays the central role, and its main function is to transform the IT2 FS to the T1 FS. Then 

the defuzzification changes the T1 FS to the crisp output. The operations in TR are the differences 

between T1 and IT2 FLSs, which makes the latter with more challenges. 

 

Figure 1. An IT2 FLS [2,17]. 

Currently, the computationally intensive iterative Karnik-Mendel (KM) algorithms and 

enhanced Karnik-Mendel (EKM) algorithms [18–20] are the most popular approaches for 

performing the TR. These two types of algorithms have the advantages of preserving the 

uncertainties flow in the systems and converge in super-convergence speed. However, the 

initializations of KM and EKM algorithms are usually given by trial and error of extensive 

simulation experiments. This paper analyzes the initializations [21] of KM and EKM algorithms, and 

provides reasonable initialization EKM (RIEKM) algorithms for performing the centroid TR and 

defuzzification of IT2 FLSs. According the accurate benchmark CNT algorithms [22], the proposed 

RIEKM algorithms have smaller absolute errors and faster convergence speeds compared with the 

EKM algorithms. 

The rest of this paper is organized as follows. Section 2 gives the background of IT2 FLSs. 

Section 3 provides the RIEKM algorithms, and how to adopt them to perform the centroid TR of IT2 

FLSs. In Section 4, four computer simulation experiments are used to illustrate and analyze the 

performances of RIEKM algorithms. Finally the conclusions and expectations are given in Section 5. 

2. IT2 FLSs 

The rules uncertainties of IT2 FLSs generate from numerical or language uncertainties in 

knowledge, while these uncertainties can be solved by T2 FSs. In fact, the concept of T2 FSs can be 

viewed as the extension of concept of T1 FSs. 

Definition 1. A T2 FS A
~

 can be characterized by its T2 MF ),(~ ux
A

 , i.e., 
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]}1,0[,|),(),,{(
~

~  uXxuxuxA
A

                     (1) 

in which the primary variable Xx , and the secondary variable ]1,0[u , here equation (1) is 

usually referred to as the point-value expression, and whose compact form is as: 

),/(),(
~

]1,0[
~ uxuxA

Xx Ju A
x

  
  .                           (2) 

Definition 2. A vertical slice of ),(~ ux
A

  is the secondary MF, i.e., 





xJu

xAA
uufxuxx /)()(),( ~~  .                      (3) 

Definition 3. The two dimensional support of ),(~ ux
A

  is called as the footprint of uncertainty 

(FOU), i.e., 

}0),(|]1,0[),{()
~

(FOU ~  uxXuxA
A

                    (4) 

here the upper and lower bounds of )
~

(FOU A  are referred to as the upper MF (UMF) and lower MF 

(LMF), respectively, i.e., 

)
~

(FOU)()
~

UMF( ~ AxA A   , )
~

(FOU)()
~

(LMF ~ AxA
A

  .    (5) 

For any IT2 FSs, they can be completely characterized by their UMFs and LMFs. That’s 

because the secondary membership grades of IT2 FSs must be equal to 1, i.e., 1)( ufx
. 

From the aspect of inference structure, IT2 FLSs can be divided into Mamdani type [7,11,14] and 

Takagi-Sugeno-Kang (TSK) type [10,15]. Without loss of generality, consider a Mamdani IT2 FLS 

with p  inputs pp XxXxXx  ,,, 2211   and one output Yy , there are a total of M  fuzzy 

rules, where the lth  rule is of the form: 

If 1x  is lF1

~
 and 2x  is lF2

~
 and … and px  is 

l

pF
~

, then y  is lG
~

 ),,1( Ml  .  (6) 

In order to simplify the expressions, we model the input measurements as crisp sets, i.e., 

singleton fuzzifier is adopted. Then the process of fuzzy reasoning [7,16,23] is given as follows:  

The fuzzy relation of each fuzzy rule is as: 

llll

p

lll GAGFFFR
~~~~~~

:
~

21                                (7) 

whose MF is as: 

)()]([ ),(),( ~~1~~~ yxyxyx ll
i

lll GiF

p

iGAR
   

                    (8) 

where the sign   is the product or minimum t-norm [24].  

The T2 output of each fuzzy rule is 
l

x

l RAB
~~

 , and whose MF is as: 

)()()]([)()],()([)( ~~1~~~~ xFyxyyxxy l

GiF

p

iGGAAXxB ll
i

lll
x

l          (9) 

in which  is the composition operation, and   is the maximum t-norm. )(xF l   is the defined 

firing interval, i.e., 
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:lF
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
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




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







)()(

)()(

)](),([)(

~
1

~1
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i

l
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p

i

l

lll

xxf

xxf

xfxfxF

l
i

l
i







                             (10) 

Here the most popular centroid TR approach [21] is selected, i.e., the output IT2 FS lB
~

 of 

each rule (which generates by merging each fuzzy rule and its corresponding consequent IT2 FS) is 

described as: 



















)()()|(

)()()|(

)]|(),|([)
~

(FOU

~~

~~

~~

yxfxy

yxfxy

xyxyB

ll

ll

ll

G

l

B

G

l

B

BB

l







                    (11) 

where   denotes the product or minimum t-norm. 

Then aggregating all the firing rule IT2 FS lB
~

 to obtain the final output B
~

, i.e., 
















)|()|()|(

)|()|()|(

)]|(),|([)
~

(FOU

:
~

~~~

~~~

~~

1

1

xyxyxy

xyxyxy

xyxyB

B

M

M

BBB

BBB

BB









              (12) 

where   represents the maximum operation. Then the type-reduced set 
CY  can be obtained by 

computing the centroid 
B

C~  of B
~

, i.e., 

],/[1 ~~~
BBBC rlCY                                  (13) 

where 
B

l ~  and 
B

r~  can be computed by KM types of algorithms as: 

 

 

 

 








k

i

N

ki

iBiB

k

i

N

ki

iBiiBi

NkBNkB

yy

yyyy

kll

1 1

~~

1 1

~~

,,1
~

,,1
~

)()(

)()(

min)(min 






                      (14) 

 

 

 

 








k

i

N

ki

iBiB

k

i

N

ki

iBiiBi

NkBNkB

yy

yyyy

krr

1 1

~~

1 1

~~

,,1
~

,,1
~

)()(

)()(

max)(max






                      (15) 

where N  is the number of sampling of primary variable y , and k  is the switch point. 

Finally the crisp output is computed by taking the arithmetic average of 
B

l ~  and 
B

r~ , i.e., 

.2/)( ~~
BB

rly                                 (16) 
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3. RIEKM algorithms 

First of all, we derive the theoretical interpretations of initialization of KM and EKM algorithms. 

Let byyya N  21
, then the continuous KM and EKM algorithms compute as (see Eqs 

(14) and (15)): 

 

 






 













a

b

BB

a

b

BB

ba
l

baB

dyydyy

dyyydyyy
Fl

)()(

)()(
min)(min

~~

~~

],[],[
~             (17) 

 

 






 













a

b

BB

a

b

BB

ba
r

baB

dyydyy

dyyydyyy
Fr

)()(

)()(
min)(min

~~

~~

],[],[
~ .           (18) 

In addition, the specific computation steps of CKM and CEKM algorithms are given in Tables 1 and 

2. According to the notations 
lF  in (17) and rF  in (18), from Steps 2 and 4 in Table 1, we can find: 

)(  ll F , and  l
                          (19) 

)(  rr F , and  r .                         (20) 

When iterations terminate, lB
l ~  and rB

r ~ , therefore 

)( ~~
BlB

lFl  , )( ~~
BrB

rFr                          (21) 

here 
B

l ~  and 
B

r~  are the fixed points of )(lF  and )(rF , respectively. In like manner, the 

relations of (21) still hold for the CEKM algorithms as in Table 2. 

In order to set the initialization of the algorithms, let )()()( ~~ yyy BB
   for all ],[ bay , 

then 2/)]()([)( ~~ yyy BB
  . In this case, Eqs (17) and (18) become the same, so that, 













b

a
BB

b

a
BB

b

a

b

a

BB

dyyy

dyyyy

dyy

dyyy
rl

2/)]()([

2/)]()([

)(

)(

~~

~~

~~








             (22) 

Equation (22) is the initialization approach of CKM algorithms given in Table 1, denoted here as 
)1( , i.e., 






b

a

b

a

dyy

dyyy

)(

)(
)1(




                                  (23) 

in which 2/)]()([)( ~~ yyy BB
  . 
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Table 1. CKM algorithms [18,21,25] for computing the centroid of B
~

. 

Step CKM algorithm for 
B

l ~ ,  







b

a

b

a

yyyB

dyy

dyyy
l

BB )(

)(
min

)](),([)(
~

~~ 




 

1 

Let 2/)]()([)( ~~ yyy BB
  , and compute .

)(

)(






b

a

b

a

dyy

dyyy




  

2 Set )()( ~ yy B   when y , and )()( ~ yy
B

   when y , 

and compute .
)(

)(






b

a

b

a
l

dyy

dyyy




  

3 Check if   || l
(  is a given error bound), if yes, stop and set 

lB
l ~ , if no, go 

 to Step 4. 
4 Set 

l   and go to Step 2. 

Step 

CKM algorithm for 
B

r~ , 







b

a

b

a

yyy
B

dyy

dyyy
r

BB )(

)(
max

)](),([)(
~

~~ 




 

1 

Let 2/)]()([)( ~~ yyy BB
  , and compute .

)(

)(






b

a

b

a

dyy

dyyy




  

2 Set )()( ~ yy
B

   when y , and )()( ~ yy B   when y , 

and compute .
)(

)(






b

a

b

a
r

dyy

dyyy




  

3 Check if   || r (  is a given error bound), if yes, stop and set 

rB
r ~ , if no, go 

 to Step 4. 

4 Set l   and go to Step 2. 
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Table 2. CEKM algorithms [18,21,25] for computing the centroid of B
~

. 

Step CEKM algorithm for 
B

l ~  

1 Set 4.2/)( abac  , and compute dyyydyyy
b

c B

c

a
B )()( ~~    , 

dyydyy
b

c B

c

a
B )()( ~~    ,  /c . 

2 Check if  || cc , if yes, stop and set 
B

lc ~ , if no, go to Step 4. 

3 Compute )( ccsigns  , 





),max(

),min(
~~ )]()([

cc

cc BB dyyyys  , 







),max(

),min(
~~ )]()([

cc

cc BB dyyys  ,   /c . 

4 Set   ,,, cccc  and go to Step 2. 

Step CEKM algorithm for 
B

r~  

1 Set 7.1/)( abac  , and compute dyyydyyy
b

c
B

c

a B
)()( ~~    , 

dyydyy
b

c
B

c

a B
)()( ~~    ,  /c . 

2 Check if  || cc , if yes, stop and set 
B

rc ~ , if no, go to Step 4. 

3 
Compute )( ccsigns  , 






),max(

),min(
~~ )]()([

cc

cc BB dyyyys  , 







),max(

),min(
~~ )]()([

cc

cc BB dyyys  ,   /c . 

4 Set   ,,, cccc  and go to Step 2. 

The specific computation steps of discrete KM and EKM algorithms are provided in Tables 3 

and 4. And the discrete form of )1(  is established in Steps 1 and 2 in Table 3, i.e., 

}11,

)]()([

)]()([

|{ 1

1

~~

1

~~

)1( 





 








Nky

yy

yyy

ykk kN

i

iBiB

N

i

iBiBi

k





          (24) 

this KM initialization approach can provide excellent results as )(~ y
B

  and )(~ yB  are very close 

to each other, that’s because it becomes the exact optimal solution of (14) or (15) when 

)()( ~~ yy BB
  . 

For the EKM algorithms, the initialization approach is based on the difference between )(~ y
B

  

and )(~ yB . Let’s make an assumption that 

.
)(

)(

~

~






b

a B

b

a
B

dyy

dyy




                               (25) 

Attention that 1 , because )()( ~~ yy
BB    for all ],[ bay .  

In order to initialize the EKM algorithms, suppose that both )(~ y
B

  and )(~ yB  be constants 
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for ],[ bay , i.e., 0)(~  ny
B

 , and 0)(~  nyB  , according to Eq (14), so that 

)]()([2

)()(
         

)()(

)()(
)(

2222

~~

~~






























































 

 

 

 

 

 

ba

ba

dydy

ydyydy

ndyndy

nydynydy

dyydyy

dyyydyyy
F

a

b

a

b

a

b

a

b

a

b

BB

a

b

BB

l

.        (26) 

Then find the derivative of )(lF , so that 

2

22

)]()([2

])()()[1(
)(











ba

ba
Fl .                           (27) 

Table 3. KM algorithms [18,21,25] for computing the centroid of B
~

. 

Step 
KM algorithm for 

B
l ~ , )/()(min

11
)](),([

~
~~







N

i

i

N

i

ii
yyB

yl
iBiBi




 

1 Set Niyyi iBiB
,,1,2/)]()([)( ~~    and compute  

)/()(
11





N

i

ii

N

i

iyc  . 

2 Find )11(  Nkk  such that 
1  kk ycy . 

3 Set )(~
iBi y   when ki  , and )(~ iBi y   when ki  ,  

and compute )/()()(
11

~ 



N

i

ii

N

i

iB
ykl  . 

4 Check if ckl
B

)(~ , if yes, stop and set 
BB

lkl ~~ )(   and Lk  , if no, go 

to Step 5. 

5 Set )(~ klc
B

  and go to Step 2. 

Step 
KM algorithm for 

B
r~ , )/()(max

11
)](),([

~
~~







N

i

i

N

i

ii
yy

B
yr

iBiBi




 

1 Set Niyyi iBiB
,,1,2/)]()([)( ~~    and compute  

)/()(
11





N

i

ii

N

i

iyc  . 

2 Find )11(  Nkk  such that 1  kk ycy . 

3 Set )(~ iBi y   when ki  , and )(~
iBi y   when ki  ,  

and compute )/()()(
11

~ 



N

i

ii

N

i

iB
ykr  . 

4 Check if ckr
B

)(~ , if yes, stop and set 
BB

rkr ~~ )(   and Rk  , if no, go 

to Step 5. 

5 Set )(~ krc
B

  and go to Step 2. 



6157 

AIMS Mathematics  Volume 5, Issue 6, 6149–6168. 

Table 4. EKM algorithms [18,19,21,25] for computing the centroid of B
~

. 

Step EKM algorithm for 
B

l ~  

1 Set ]4.2/[Nk   (the nearest integer to 4.2/N ) and compute 

)()( ~

1

~

1

iB

N

ki

iiB

k

i

i yyyy  


 , 





N

ki

iB

k

i

iB yy
1

~

1

~ )()(  ,  /c . 

2 Find )11(  Nkk  such that 
1  kk ycy . 

3 Check if kk  , if yes, stop and set 
B

lc ~  and Lk  , if no, go to Step 4. 

4 
Compute )( kksigns  , )]()([ ~~

),max(

1),min(

iBiB

kk

kki

i yyys   




, 







),max(

1),min(

~~ )]()([
kk

kki

iBiB yys  ,   /c . 

5 Set kkcc  ,,,   and go to Step 2. 

Step EKM algorithm for 
B

r~  

1 
Set ]7.1/[Nk   and compute )()( ~

1

~

1

iB

N

ki

iiB

k

i

i yyyy  


 , 





N

ki

iB

k

i

iB
yy

1

~

1

~ )()(  ,  /c . 

2 Find )11(  Nkk  such that 
1  kk ycy . 

3 Check if kk  , if yes, stop and set 
B

rc ~  and Rk  , if no, go to Step 4. 

4 
Compute )( kksigns  , )]()([ ~~

),max(

1),min(

iBiB

kk

kki

i yyys   




, 







),max(

1),min(

~~ )]()([
kk

kki

iBiB yys  ,   /c . 

5 Set kkcc  ,,,   and go to Step 2. 

Setting 0)(  lF , therefore 










2

2

)(

)(

a

b
, 









a

b
.                       (28) 

Solving Eq (28) for  , we can obtain 

.
11 














ab
a

ab
l                        (29) 

For the Eq (27), l  is the minimum value of )(lF . Because 0)(  lF  for ),[ la   , and 

0)(  lF  for ],( bl  . Therefore, lllB
Fl   )(~ . 

In like manners, it can be obtained: 
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)]()[(2

)()(
)(

2222











ba

ba
Fr                              (30) 

Therefore, 

2

22

)]()[(2

])())[(1(
)(











ba

ba
Fr .                       (31) 

Setting 0)(  rF , it follows that: 



 1

)(

)(
2

2






a

b
, 



/1





a

b
.                       (32) 

Solving Eq (30) for  , we can obtain 

.
/11/11

/1
















ab
a

ab
r                        (33) 

For the Eq (30), r  is the maximum value of )(rF . Because 0)(  rF  for ),[ ra   , and 

0)(  rF  for ],( br  . Therefore, rrrB
Fr   )(~ . Considering the Eqs (29) and (33) together, 

the new initialization approach for   can be denoted as )2( , i.e., 

























.for   
/11

,for      
1

~

~

)2(

B

B

r
ab

a

l
ab

a




                           (34) 

Table 5. RIEKM algorithms for computing the centroid of B
~

. 

Step RIEKM algorithm for 
B

l ~  

1 
Set  )]1/([  Nk  (  

 


N

i

N

i
BB yy

1 1

~~ )](/[)]([  , which is depend on  

the specific examples) and compute 





N

ki

iB

k

i

iBiB

N

ki

iiB

k

i

i yyyyyy
1

~

1

~~

1

~

1

)()(),()(  ,  /c . 

2 Find )11(  Nkk  such that 1  kk ycy . 

3 Check if kk  , if yes, stop and set 
B

lc ~  and Lk  , if no, go to Step 4. 

4 
Compute )( kksigns  , )]()([ ~~

),max(

1),min(

iBiB

kk

kki

i yyys   




, 







),max(

1),min(

~~ )]()([
kk

kki

iBiB yys  ,   /c . 

5 Set kkcc  ,,,   and return to Step 2. 

Continued on next page 
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Step RIEKM algorithm for 
B

r~  

1 
Set )]/11/([  Nk  and compute )()( ~

1

~

1

iB

N

ki

iiB

k

i

i yyyy  


 , 





N

ki

iB

k

i

iB
yy

1

~

1

~ )()(  ,  /c  

2 Find )11(  Nkk  such that 
1  kk ycy . 

3 Check if kk  , if yes, stop and set 
B

rc ~  and Rk  , if no, go to Step 4. 

4 
Compute )( kksigns  , )]()([ ~~

),max(

1),min(

iBiB

kk

kki

i yyys   




, 







),max(

1),min(

~~ )]()([
kk

kki

iBiB yys  ,   /c . 

5 Set kkcc  ,,,   and return to Step 2. 

Here 1 , therefore, )(
2

1)2( aba   for 
B

l ~ , and )(
2

1)2( aba   for 
B

r~ . 

Comparing the initializations of EKM algorithms in Table 4 and CEKM algorithms in Table 2, 

the discrete form of Eq (34) can be as: 













.for   ])/11/([

,for      ])1/([

~

~
)2(

B

B

rN

lN
k




                          (35) 

where N  denotes the number of sampling of primary variable, and this 

].)(/[])([
1

~

1

~ 



N

i
B

N

i

B yy   

Interestingly, when 2 , it can be obtained that 4.2211   , and 

7.12/11/11   , therefore, the equation (35) becomes: 






.for      ]7.1/[

,for      ]4.2/[

~

~
)2(

B

B

rN

lN
k                           (36) 

Equation (36) is just the initialization approach of EKM algorithms, which generates from 

empirical extensive simulation experiments. For the proposed reasonable initialization EKM 

(RIEKM) algorithms, we should determine each specific   for the corresponding simulations. 

Finally the specific computation steps of discrete RIEKM algorithms are provided in Table 5. 

4. Simulation experiments 

Four computer simulation examples are provided in this section to illustrate the performances 

RIEKM algorithms. Before performing the centroid TR, suppose that the FOU of centroid output IT2 

FS be known by weighting and aggregating all the fuzzy rules under the guidance of inference. Here 

the primary variable of centroid output IT2 FS is denoted by the letter x , x  is uniformly sampled, 

and the number of sampling is chosen as 9000:50:50N .  
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In the first example, the FOU is bounded by the piecewise linear functions [21–23,25–26]. In 

the second example, the FOU is bounded by both the Gaussian functions and piecewise linear 

functions [20–22,27–31]. In the third example, the FOU is bounded by the Gaussian functions 

[21–23,25–26]. In the last example, the FOU is a Gaussian IT2 MF with uncertainty standard 

deviation [20–22,27–31]. Then the Figure 2 and Table 6 provide the defined FOUs for four 

examples.  

 

(a)                               (b) 

 
(b)                               (d) 

Figure 2. The graphs of FOUs, (a) example 1; (b) example 2; (c) example 3, and (d) example 4. 

In examples 1, 2 and 4, let the primary variable ]10 ,0[x . In addition, let the primary variable 

]14 ,5[x in example 2. The accurate continuous Nie-Tan (CNT) algorithms [22,25] compute the 

centroid output of IT2 FS A
~

 as: 









b

a
AA

b

a
AA

CNT

dxxx

dxxxx
y

)]()([

)]()([

~~

~~




.                        (37) 
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Table 6. MF expressions for FOUs. 

Num Expressions 

1 

}

otherwise         ,0

85  ,
9

8

53   ,
6

3

,

otherwise         ,0

74  ,
6

7

41   ,
6

1

max{)(
1

~





























































 x
x

x
x

x
x

x
x

x
A



 

}

otherwise         ,0

86  ,
5

216

62   ,
5

2

,

otherwise         ,0

73  ,
4

7

31   ,
2

1

max{)(
1

~





























































 x
x

x
x

x
x

x
x

xA

 

2 


















146.2,
19

)14(4.0

6.25,
19

)5(6.0

)(
2

~

x
x

x
x

x
A
























14185.7],)
75.1

9
(

2

1
exp[

185.75],)
5

2
(

2

1
exp[

)(
2

2

~
2

x
x

x
x

xA  

3 

]}
2

)6(
exp[4.0],

2

)3(
exp[5.0max{)(

22

~
3







xx
x

A


 

]}
4

)6(
5.0exp[8.0],

4

)3(
5.0max{exp[)(

22

~
3







xx
xA

 

4 ],)
25.0

3
(

2

1
exp[)( 2

~
4




x
x

A
 ])

75.1

3
(

2

1
exp[)( 2

~
4




x
xA  

Therefore, the CNT algorithms are firstly considered as the benchmark to compute the 

defuzzified values for four examples as: 320794.41 
y , 714087.32 

y , 395260.43 
y , and 

999999.44 
y . Then graphs of defuzzified values computed by two types of discrete EKM 

algorithms are shown in Figure 3. 

Furthermore, the absolute errors between the benchmark CNT algorithms and two types of 

discrete EKM algorithms are provided in Figure 4. 
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(a)                            (b) 

 
(c)                             (d) 

Figure 3. The graphs of defuzzifed values computed by the EKM and RIEKM 

algorithms, (a) example 1; (b) example 2; (c) example 3, and (d) example 4. 

 
(a)                             (b) 

 
(c)                              (d) 

Figure 4. The functional graphs of absolute errors between the CNT algorithms and two 

types of discrete EKM algorithms, (a) example 1; (b) example 2; (c) example 3, and (d) 

example 4. 
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In order to further measure the performances of two types of algorithms, here we define the 

absolute errors sum 


 
180

1

)( ||
i

RIEKMEKMCNT iii
yy  of defuzzified values for four examples, and they are 

shown in Table 7, in which the last column denotes the total average of absolute errors sum for the 

EKM algorithms and RIEKM algorithms. 

Table 7. The absolute errors sum of defuzzified values for the CNT algorithms and two 

types of discrete EKM algorithms. 

Algorithms EKM RIEKM 

Example 1 0.932160 0.889015 

Example 2 15.595056 14.933244 
Example 3 3.577131 3.546304 

Example 4 0.027159 0.000251 
Total average 5.032877 4.842204 

Observing from the Figures 3,4 and the Table 7, the following conclusions can be made: 
1) As the number of sampling increases, these two types of discrete EKM algorithms all 

converge to certain values. The absolute errors of RIEKM algorithms are always less than the EKM 

algorithms in these four examples (as the red error curves of RIEKM algorithms are under the 

corresponding blue error curves of EKM algorithms). 
2) In example 1, the RIEKM algorithms can obtain the result that is closed to the benchmark 

value with the number of sampling of 150. In other three examples, the RIEKM algorithms can 

almost get the optimal value just at the number of sampling of 50 (starting number of sampling). 
3) As 9000:50:50N , the RIEKM algorithms can obtain smaller absolute errors sum than the 

EKM algorithms in all four examples. In addition, the total average absolute errors sum of RIEKM 

algorithms is less than the EKM algorithms. 
4) According to the items one to three, it is evidence that the proposed RIEKM algorithms can 

obtain better calculation accuracy than the EKM algorithms. 

For the sake of applying these algorithms, next we study the specific unrepeatable computation 

times that depend on the hardware and software environments. Here the computer simulation 

platform is a dual CPU desktop with the Microsoft Windows XP operating system, E5300@2.6GHz 

and 2.00GB memory. All the programs are performed by the Matlab 2013a. Then Figure 5 gives the 

computation times for four examples, and the unit of time is the second (s). 

 

 

 

 

mailto:E5300@2.6GHz
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(a)                              (b) 

 
(c)                              (d) 

Figure 5. The computation times of EKM and RIEKM algorithms, (a) example 1; (b) 

example 2; (c) example 3, and (d) example 4. 

As shown in Figure 5, except for some fluctuations, the computation times of two types of 

discrete EKM algorithms emerge linear variation. In most number of sampling, the computation 

times of EKM algorithms are slightly better than the RIEKM algorithms. In other words, the 

convergence speeds of RIEKM algorithms are faster than the EKM algorithms in general. When the 

number of sampling is fixed, the computation times of two types of EKM algorithms are as: 

RIEKM>EKM for all four examples. This may because the initialization of RIEKM algorithms is 

more complex than the simple EKM algorithms.  
Here we should point out that the paper focuses on the theoretical performances of RIEKM 

algorithms compared with the EKM algorithms. Four computer simulation examples show the 

advantages of RIEKM algorithms on high computation accuracy requirement. However, if the 

requirement of calculation accuracy is not very high, the simple EKM algorithms will complete with 

slightly faster computation speeds. 

5. Conclusions 

This paper gives the fuzzy reasoning process of IT2 FLSs, and discusses the initializations of 

EKM algorithms. And the reasonable initialization EKM (RIEKM) algorithms are provided to 

perform the centroid TR and defuzzification of IT2 FLSs. For computing the defuzzified values of 
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IT2 FLSs, the proposed RIEKM algorithms can obtain better absolute errors and faster convergence 

speeds than the EKM algorithms. 
Many interesting works still lie ahead, including extending and weighting the RIEKM 

algorithms to perform the centroid TR [17,27,28,31,32,40–44,49,50] of general type-2 fuzzy logic 

systems, and studying the center-of-sets TR of T2 FLSs [33], and the relations between discrete and 

continuous TR algorithms [18,21,28–30]. Future studies will also be focused on designing and 

applying IT2 or GT2 FLSs based on intelligent optimization algorithms [3,7–12,34–39,45–48,53] for 

forecasting, control [51,52] and identification. 
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