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1. Introduction

Predator-prey model is one of basic interspecies relations for ecological and social system [1]. The
more complex biochemical network structure and food chain are based on the predator-prey model [2].
The study of Lotka and Volterra [3, 4] has opened the way to study the dynamics of the predator-
prey systems. After that, Gause and Smaragdova also proposed a well-known Gause-type predator-
prey model. Kolmogorov first focused on the qualitative analysis of this Gause-type predator-prey
model in 1972. Freedman [5] introduced the generalized autonomous Gause model, which comes
from accounting for periodic changes of the environment. Gause-type predator-prey models have been
widely applied to describe some population models [6–9]. For example, Hasik [6] considered the
generalized Gause-type predator-prey model{

x′ = xg(x) − yp(x),
y′ = y

[
q(x) − γ

]
,

(1.1)

here g(x) represents the increase in prey density. When the natural environment is relatively bad, the
mortality rate of the population is higher than its birth rate, so the g(x) here can get a negative value.
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p(x) represents the amount of prey consumed by a single predator per unit time. q(x)−γ represents the
growth rate of the predator, and the same as g(x), q(x) − γ can also be taken to a negative value. Ding
et al. [7] considered the periodic Gause-type predator-prey system with delay{

x′ (t) = x (t) f (t, x (t − τ(t))) − g(t, x (t))y (t − σ1(t)) ,
y′ (t) = y (t) [−d (t) + h(t, x (t − σ2(t)))] ,

(1.2)

where x(0), y(0) ≥ 0 are the prey and the predator and obtained the positive periodic solution of this
system (1.2) by using the continuation theorem.

For the past few years, more and more researchers are interested in the dynamic behavior of
predator-prey systems with Allee effect. The Allee effect describes that the low population is affected
by the positive relationship between population growth rate and density, which increases the
likelihood of their extinction. Terry [10] considered predator-prey systems with Allee effect and
described how to extend the traditional definition of effective components and population Allee effect
for a single species model to predators in the predator-prey model. Cui et al. [11] focused on the
dynamic behavior and steady-state solutions of a class of reaction-diffusion predator-prey systems
with strong Allee effect. Cai et al. [12] explored the complex dynamic behavior for a Leslie-Gower
predation model with additive Allee effect on prey. Without considering the influence of Allee effect
on prey, the model has a unique global asymptotically stable equilibrium point. However, considering
the influence of Allee reaction on prey, the model has no definite positive equilibrium point [12].
Baisad and Moonchai [13] were interested in a Gause-type predator-prey model with Holling type-III
functional response and Allee effect on prey as follows

dx
dt

= r
(
1 −

x
K

)
(x − m) x −

sx2

x2 + a2 y,

dy
dt

=

(
px2

x2 + a2 − c
)

y.
(1.3)

Using the linearization method, they gave the local stability of three equilibrium types and also carried
out a numerical simulation of the results. Guan and Chen [14] studied the dynamical analysis of a two
species amensalism model with Beddington-DeAngelis functional response and Allee effect.

The study of the dynamics of a harvested population is a topic studied in mathematical
bioeconomics [15], inside a larger chapter dealing with optimal management of renewable resources.
The exploitation of biological resources and the harvesting of interacting species is applied in
fisheries, forestry and fauna management [15–17]. Etoua and Rousseau [16] studied a generalized
Gause model with both prey harvesting and Holling response function of type III:

dx
dt

= rx
(
1 −

x
K

)
−

mx2y
ax2 + bx + 1

− h1,

dy
dt

= y
(
−d +

cmx2

ax2 + bx + 1

)
,

x ≥ 0, y ≥ 0,

(1.4)

where the eight parameters: r, k,m, a, c, d, h are strictly positive and b ≥ 0. Through the following
linear transformation and time scaling

(X,Y,T ) =

(
1
k

x,
1
ck

y, cmk2t
)
.
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Laurin and Rousseau [17] transformed the model (1.4) into the simplified system with the number of
parameters reduced to five 

ẋ = ρx(1 − x) − y
x2

αx2 + βx + 1
− λ,

ẏ = y
(
−δ +

x2

αx2 + βx + 1

)
,

x ≥ 0, y ≥ 0,

(1.5)

with parameters

(ρ, α, β, δ, λ) =

(
r

cmk2 , ak2, bk,
d

cmk2 ,
h

cmk3

)
.

And the Hopf bifurcation was studied in [16, 17]. Du et al. [18] considered a general predator-prey
model with prey and predator harvesting and proved that the predator-prey system has at least four
positive periodic solutions. In addition, some other predator-prey models have been studied
widely [19–22].

In this paper, we consider a generalized Gause-type predator-prey model with Allee effect, Holling
type III functional response and harvesting terms

dx
dt

= r(t)
(
1 −

x(t)
K

)
(x(t) − m(t))x(t) −

s(t)x2

x2(t) + a2(t)
y(t) − H1(t),

dy
dt

=

(
p(t)x2(t)

x2(t) + a2(t)
− b(t)y(t) − c(t)

)
y(t) − H2(t),

x(0) > 0, y(0) > 0,

t ∈ [0,T ], (1.6)

where x = x(t) and y = y(t) represent the population sizes of prey and predator at time t, respectively.
The size can represent numbers of individuals or density in the unit space of the population. To ensure
biological significance, the parameter of K is positive, and a, b, c, H1, H2, m, p, r, s are positive
T−periodic functions. The meaning of the parameters in system (1.6) is given as follows:
• a is the amount of prey at which predation rate is maximal.
• b is the predator population decays in the competition among the predators.
• c is the natural per capita death rate of the predator.
• K is the environmental capacity of the prey.
• m is the minimum viable population.
• p is the conversion efficiency of reduction rate of the predator.
• r is the growth rate of the prey.
• s is the maximum per capita consumption rate.
In system (1.6), the Allee effect is defined by the term r(t)

(
1 − x(t)

K

)
(x(t) − m(t))x(t) and the

Holling type-III functional response is represented by the term s(t)x2

x2(t)+a2(t) . This Holling type-III
functional response describes a behavior in which the number of prey consumed per predator initially
increases quickly as the density of prey grows and levels off with further increase in prey density [13].
H1(t) and H2(t) describe the harvesting rate of prey and predators. We consider four important
assumptions as regards the interactions between prey and predator:
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• the prey population is affected by the Allee effect,
• the functional response is Holling type-III,
• the influence of artificial harvest is considered on predator and prey, and
• the predator population decays in the competition among the predators is investigated.
In this paper, we establish some conditions to ensure that system (1.6) has at least two positive

periodic solutions. We outline the format for the rest of this paper. In Sect. 2, we describe several
technical lemmas. In Sect. 3, using a systematic qualitative analysis and employing the Mawhin
coincidence degree theory, we obtain that system (1.6) has at least two positive T−periodic solutions
of system (1.6).

2. Preliminaries

In this section, we will give relevant definitions of the Mawhin coincidence degree theory [23] and
several technical lemmas.

Let both X and Y be Banach spaces, L : DomL ⊂ X −→ Y be a linear map and N : X× [0, 1] −→ Y
be a continuous map. If ImL ∈ Y is closed and dimKerL = codimImL < +∞, then we call the operator
L is a Fredholm operator of index zero. If L is a Fredholm operator with index zero and there exists
continuous projections P : X −→ X and Q : Y −→ Y such that ImP = KerL and ImL = KerQ =

Im(I − Q), then L|DomL∩KerP : (I − P) X −→ ImL has an inverse function, and we set it as KP. Assume
that Ω × [0, 1] ∈ X is an open set. If QN(Ω × [0, 1]) is bounded and KP(I − Q)N(Ω × [0, 1]) ∈ X is
relatively compact, then we say that N(Ω × [0, 1]) is L−compact.

Next, we will give the Mawhin coincidence degree theorem.
Lemma 2.1. ( [23, 24]) Let X and Y be two Banach spaces, L : DomL ⊂ X −→ Y be a Fredholm
operator with index zero, Ω ∈ Y be an open bounded set, and N : Ω × [0, 1] −→ X be L−compact on
Ω × [0, 1]. If all the following conditions hold

[C1] Lx , λNx, for x ∈ ∂Ω ∩ DomL, λ ∈ (0, 1);
[C2] QNx , 0, for every x ∈ ∂Ω ∩ KerL;
[C3] Brouwer degree deg{JQN,Ω ∩ KerL, 0} , 0, where J : ImQ −→ KerL is an isomorphism.

Then the equation Lx = Nx has at least one solution on Ω ∩ DomL.

Lemma 2.2. ( [19]) Let x > 0, y > 0, z > 0 and x > 2
√

yz. For functions f (x, y, z) =
x+
√

x2−4yz
2z and

g(x, y, z) =
x−
√

x2−4yz
2z ,the following assertions hold:

(i) f (x, y, z) and g(x, y, z) are monotonically increasing and monotonically decreasing with respect
to the variable x ∈ (0,∞);

(ii) f (x, y, z) and g(x, y, z) are monotonically decreasing and monotonically increasing with respect
to the variable y ∈ (0,∞);

(iii) f (x, y, z) and g(x, y, z) are monotonically decreasing and monotonically increasing with respect
to the variable z ∈ (0,∞).

Throughout this paper, we denote by C[0,T ] the space of all bounded continuous functions f :
R → R, and denote by C+ the set of all functions f ∈ C and f ≥ 0. For the convenience of statement,
we use the notations as follows

f =
1
T

∫ T

0
f (t) dt, f L = min

t∈[0,T ]
f (t) , f M = max

t∈[0,T ]
f (t) .
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3. Existence of positive periodic solutions

In this section, we will establish the existence results of at least two positive periodic solutions for
the system (1.6).
Theorem 2.1. Assume the following conditions hold:

(H1)
(

pMu+
2

u−2+(aL)2 − cL
)2
> 4bLHL

2 ;

(H2)
(

pLu−2

u+
2+(aM)2 − cM

)2
> 4bMHM

2 ;

(H3) the algebra equation system
r̄
(
1 −

eu

K

)
(eu − m̄) −

s̄euev

e2u + (ā)2 −
H1

eu = 0,

p̄e2u

e2u + (ā)2 − b̄ev − c̄ −
H2

ev = 0,

has finite real-valued solutions (uk
∗, vk

∗) , k = 1, 2, ..., n, satisfying∑
(uk∗,vk∗)

det G (uk
∗, vk

∗)
n∏

k=1

uk
∗

n∏
k=1

vk
∗ , 0,

where

G (uk, vk) =


r̄eu

(
m̄
K

+1 −
eu

K

)
−

s̄euev

e2u + (ā)2 +
2s̄e3uev[

e2u + (ā)2
]2 +

H1

e2u − s̄euev

e2u+(ā)2

2p̄e2u

e2u + (ā)2 +
2p̄e4u[

e2u + (ā)2
]2 −b̄ev + H2

e2v


.

Then system (1.6) has at least two positive T−periodic solutions.

Proof of Theorem 2.1. Suppose (x (t) , y (t)) ∈ R2 is an arbitrary positive of system (1.6). Let x =

eu(t), y = ev(t), it follows from system (1.6) we can obtain
u̇ (t) = r (t)

(
1 −

eu(t)

K

) (
eu(t) − m (t)

)
−

s (t) eu(t)ev(t)

e2u(t) + a2 (t)
−

H1 (t)
eu(t) ,

v̇ (t) =
p (t) e2u(t)

e2u(t) + a2 (t)
− b (t) ev(t) − c (t) −

H2 (t)
ev(t) ,

(3.1)

where˙=
d
dt

.
Let

X = Y =
{
z (t) = (u (t) , v (t))T

∈ C
(
R, R2

)
: z (t + T ) ≡ z (t)

}
,

be equipped with the norm

‖z (t)‖ =
∥∥∥(u (t) , v (t))T

∥∥∥ = max
t∈[0,T ]

|u (t)| + max
t∈[0,T ]

|v (t)|,

where X and Y are Banach spaces, T is the transpose.

AIMS Mathematics Volume 5, Issue 6, 6135–6148.



6140

Taking z ∈ X and then we will define operators of L, P and Q as follows.
Firstly, let

L : DomL ∩ X −→ Y, Lz =
dz
dt
.

It is clear that
KerL = {z ∈ domL : z = c, c ∈ R2},

that is dimKerL = dimR2 = 2. Next we calculate ImL. Let

dz
dt

= y(t), y(t) ∈ Y.

Integrating both sides of this equation, we have∫ T

0

dz
dt

dt =

∫ T

0
y (t)dt,

thus ∫ T

0
y (t)dt = z (T ) − z (0) = 0.

From
X = Y = {z(t) = (u(t), v(t))T ∈ C(R, R2) : z(t + T ) ≡ z(t)},

we can obtain y(t) = z(t), that is

ImL = {z ∈ Y :
∫ T

0
z (t)dt = 0}

is closed in Y . Obviously, ImL ∩ R2 = {0}.
Considering P, Q are both continuous projections satisfying

ImP = KerL, ImL = KerQ = Im(I − Q).

Let
P : X −→ KerL,

then, we get P(z) is a constant. Here, we denote it by

P(z) =
1
T

∫ T

0
z (t)dt.

Secondly, let

Q : Y −→ Y\ImL, β =

∫ T

0
z (t)dt and Q(z) = αβ,

then, we have

Q(Q(z)) = Q(αβ) = α

∫ T

0
αβdt = α2β

∫ T

0
dt = α2βT = Q(z) = αβ,
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i.e.
α =

1
T
.

Hence,

Q(z) =
1
T

∫ T

0
z (t)dt.

Thirdly, for ∀z ∈ Y, z1(t) = z(t) − Q(z), we’re going to verify z1(t) ∈ ImL, i.e.
∫ T

0
z1 (t)dt = 0. Here∫ T

0
z1 (t)dt =

∫ T

0
z (t)dt −

∫ T

0
Q (z)dt = β − α

∫ T

0

∫ T

0
z (t)dtdt = β − αβT = β − β = 0,

that is
z1(t) ∈ ImL.

Moreover, we can obtain
Y = ImL ⊕ R2, codimImL = dimR2 = 2.

i.e.,
dimKerL = codimImL.

So L is a Fredholm operator with index zero, which implies L has a unique inverse. We define by
KP : ImL −→ KerP ∩ DomL the inverse of L.

By simply calculating, we have

KP(z) =

∫ t

0
z (w)dw −

1
T

∫ T

0

∫ t

0
z (w)dwdt.

Define N : X −→ Y by the form

Nz =

(
∆1 (z(t), t)
∆2 (z(t), t)

)
,

where

∆1 (z(t), t) = r (t)
(
1 −

eu(t)

K

) (
eu(t) − m (t)

)
−

s (t) eu(t)ev(t)

e2u(t) + a2 (t)
−

H1 (t)
eu(t) ,

∆2 (z(t), t) =
p (t) e2u(t)

e2u(t) + a2 (t)
− b (t) ev(t) − c (t) −

H2 (t)
ev(t) .

Thus

QNz =


1
T

∫ T

0
∆1 (z(t), t)dt

1
T

∫ T

0
∆2 (z(t), t)dt

 ,
and

KP(I − Q)Nz (3.2)

=

 ∫ t

0
∆1 (z(w), w)dw∫ t

0
∆2 (z(w), w)dw

 −  1
T

∫ T

0

∫ t

0
∆1 (z(w), w)dwdt

1
T

∫ T

0

∫ t

0
∆2 (z(w), w)dwdt
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−

 1
T

∫ t

0

∫ T

0
∆1 (z(w), w)dwdw

1
T

∫ t

0

∫ T

0
∆2 (z(w), w)dwdw

 +

 1
T 2

∫ T

0

∫ t

0

∫ T

0
∆1 (z(w), w)dwdwdt

1
T 2

∫ T

0

∫ t

0

∫ T

0
∆2 (z(w), w)dwdwdt


=


∫ t

0
∆1 (z(w), w)dw − 1

T

∫ T

0

∫ t

0
∆1 (z(w), w)dwdt −

(
t
T −

1
2

) ∫ T

0
∆1 (z(w), w)dw∫ t

0
∆2 (z(w), w)dw − 1

T

∫ T

0

∫ t

0
∆2 (z(w), w)dwdt −

(
t
T −

1
2

) ∫ T

0
∆2 (z(w), w)dw

 .
Let Ω ⊂ X be bounded. For ∀z ∈ Ω, we have that ‖z‖ ≤ M1, |u(t)| ≤ M1 and |v(t)| ≤ M1.

Next, we see that QN(Ω) is bounded.∣∣∣∣∣∣ 1
T

∫ T

0
∆1 (z(t), t)dt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1
T

∫ T

0
r (t)

(
1 −

eu(t)

K

) (
eu(t) − m (t)

)
dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
T

∫ T

0

s (t) eu(t)ev(t)

e2u(t) + a2 (t)
dt

∣∣∣∣∣∣ +

∣∣∣∣∣∣ 1
T

∫ T

0

H1 (t)
eu(t) dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
T

∫ T

0

[
r (t) eu(t) − r (t) m (t) −

r (t) e2u(t)

K
+

r (t) m (t) eu(t)

K

]
dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
T

∫ T

0

s (t) eu(t)ev(t)

a2 (t)
dt

∣∣∣∣∣∣ +

∣∣∣∣∣∣ 1
T

∫ T

0

H1 (t)
eu(t) dt

∣∣∣∣∣∣
≤ r̄eM1 + rm +

r̄e2M1

K
+

rmeM1

K
+

( s
a2

)
e2M1 + H1eM1 ,

and ∣∣∣∣∣∣ 1
T

∫ T

0
∆2 (z(t), t)dt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1
T

∫ T

0

p (t) e2u(t)

e2u(t) + a2 (t)
dt

∣∣∣∣∣∣ +

∣∣∣∣∣∣ 1
T

∫ T

0
b (t) ev(t)dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
T

∫ T

0
c (t)dt

∣∣∣∣∣∣ +

∣∣∣∣∣∣ 1
T

∫ T

0

H2 (t)
ev(t) dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
T

∫ T

0

p (t) e2u(t) + p (t) a2 (t)
e2u(t) + a2 (t)

dt

∣∣∣∣∣∣ + b̄eM1 + c̄ + H2eM1

=

∣∣∣∣∣∣ 1
T

∫ T

0
p (t)dt

∣∣∣∣∣∣ + b̄eM1 + c̄ + H2eM1

= p̄ + b̄eM1 + c̄ + H2eM1 .

It is immediate that QN and KP(I − Q)N are continuous.
Consider a sequence of function {z} ⊂ Ω. We have the following inequality for the first function of

KP(I − Q)Nz.

KP(I − Q)N∆1(z(t1), t1) − KP(I − Q)N∆1(z(t2), t2)

=

∫ t1

t2

[
r (w)

(
1 −

eu(w)

K

) (
eu(w)

− m (w)
)
−

s (w) eu(w)ev(w)

e2u(w) + a2 (w)
−

H1 (w)
eu(w)

]
dw

−

( t1 − t2

T

) ∫ T

0

[
r (w)

(
1 −

eu(w)

K

) (
eu(w)

− m (w)
)
−

s (w) eu(w)ev(w)

e2u(w) + a2 (w)
−

H1 (w)
eu(w)

]
dw

≤ (t1 − t2)
[
rMeM1 − rLmL −

rLe−2M1

K
+

rMmMeM1

K

]
AIMS Mathematics Volume 5, Issue 6, 6135–6148.
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− (t1 − t2)
[
r̄e−M1 − rm −

r̄e2M1

K
+

rme−M1

K

]
.

For another function, we have similar inequalities as follows

KP(I − Q)N∆2(z(t1), t1) − KP(I − Q)N∆2(z(t2), t2)

=

∫ t1

t2

[
p (w) e2u(w)

e2u(w) + a2 (w)
− b (w) ev(w)

− c (w) −
H2 (w)
ev(w)

]
dw

−

( t1 − t2

T

) ∫ T

0

[
p (w) e2u(w)

e2u(w) + a2 (w)
− b (w) ev(w)

− c (w) −
H2 (w)
ev(w)

]
dw

≤ (t1 − t2)
[

pMe2M1

a2L − bLe−M1 − cL −
H2

L

eM1

]
+ (t1 − t2)

[
b̄eM1 + c̄ + H2eM1

]
.

Hence the sequence {KP(I − Q)Nz} is equicontinuous. Using the periodicity of the functions, we know
that the sequence {KP(I − Q)Nz} is uniformly bounded.

An application of Ascoli-Arzela’s theorem shows that {KP(I − Q)N(Ω)} is compact for any bounded
set Ω ⊂ X. Since QN(Ω) is bounded, we conclude that N is L−compact on Ω for any bounded set
Ω ⊂ X.

Then, considering the operator equation Lx = λNx, as follows{
u̇ (t) = λ∆1(z(t), t),
v̇ (t) = λ∆2(z(t), t),

(3.3)

where λ ∈ (0, 1). Let
u (ξ1) = max

t∈[0,T ]
u (t) , u (η1) = min

t∈[0,T ]
u (t) ,

v (ξ2) = max
t∈[0,T ]

v (t) , v (η2) = min
t∈[0,T ]

v (t) .

Through simple analysis, we have

u̇ (ξ1) = u̇ (η1) = 0, v̇ (ξ2) = v̇ (η2) = 0.

From (3.3), we can find that

r (ξ1)
(
1 −

eu(ξ1)

K

) (
eu(ξ1)

− m (ξ1)
)
−

s (ξ1) eu(ξ1)ev(ξ1)

e2u(ξ1) + a2 (ξ1)
−

H1 (ξ1)
eu(ξ1) = 0, (3.4)

p (ξ2) e2u(ξ2)

e2u(ξ2) + a2 (ξ2)
− b (ξ2) ev(ξ2)

− c (ξ2) −
H2 (ξ2)
ev(ξ2) = 0, (3.5)

and

r (η1)
(
1 −

eu(η1)

K

) (
eu(η1)

− m (η1)
)
−

s (η1) eu(η1)ev(η1)

e2u(η1) + a2 (η1)
−

H1 (η1)
eu(η1) = 0 (3.6)

p (η2) e2u(η2)

e2u(η2) + a2 (η2)
− b (η2) ev(η2)

− c (η2) −
H2 (η2)
ev(η2) = 0, (3.7)
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In view of (3.4), we have

r (ξ1)
(
1 −

eu(ξ1)

K

) (
eu(ξ1)

− m (ξ1)
)

=
s (ξ1) eu(ξ1)ev(ξ1)

e2u(ξ1) + a2 (ξ1)
+

H1 (ξ1)
eu(ξ1) > 0,

then, we get
rL

K
e2u(ξ1)

−

(
rM +

rMmM

K

)
eu(ξ1) + rLmL < 0,

which implies that

eu− =:
rM + rMmM

K −

√(
rM + rMmM

K

)2
−

4(rL)2mL

K

2rL

K

< eu(ξ1)

<
rM + rMmM

K +

√(
rM + rMmM

K

)2
−

4(rL)2mL

K

2rL

K

:=eu+ .

Similarly, we can discuss the range of eu(η1) from (3.6)

r (η1)
(
1 −

eu(η1)

K

) (
eu(η1)

− m (η1)
)

=
s (η1) eu(η1)ev(η1)

e2u(η1) + a2 (η1)
+

H1 (η1)
eu(η1) > 0,

A direct calculation gives

rL

K
e2u(η1)

−

(
rM +

rMmM

K

)
eu(η1) + rLmL < 0,

so we can obtain

eu− =:
rM + rMmM

K −

√(
rM + rMmM

K

)2
−

4(rL)2mL

K

2rL

K

< eu(η1)

<
rM + rMmM

K +

√(
rM + rMmM

K

)2
−

4(rL)2mL

K

2rL

K

:=eu+ .

From (3.5), we have

b (ξ2) e2v(ξ2)
−

(
p (ξ2) e2u(ξ2)

e2u(ξ2) + a2 (ξ2)
− c (ξ2)

)
ev(ξ2) + H2 (ξ2) = 0,

and

bLe2v(ξ2)
−

(
pMe2u+

e2u− + (aL)2 − cL

)
ev(ξ2) + H2

L < 0,

then, we get

ev− =:

pMe2u+

e2u−+(aL)2 − cL −

√(
pMe2u+

e2u−+(aL)2 − cL
)2
− 4bLH2

L

2bL < ev(ξ2)
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<

pMe2u+

e2u−+(aL)2 − cL +

√(
pMe2u+

e2u−+(aL)2 − cL
)2
− 4bLH2

L

2bL :=ev+ .

By (3.7), we obtain

b (η2) e2v(η2)
−

(
p (η2) e2u(η2)

e2u(η2) + a2 (η2)
− c (η2)

)
ev(η2) + H2 (η2) = 0,

and

bLe2v(η2)
−

(
pMe2u+

e2u− + (aL)2 − cL

)
ev(η2) + H2

L < 0,

this implies that

ev− =:

pMu2
+

e2u−+(aL)2 − cL −

√(
pMu2

+

e2u−+(aL)2 − cL
)2
− 4bLH2

L

2bL < ev(η2)

<

pMu2
+

e2u−+(aL)2 − cL +

√(
pMe2u+

e2u−+(aL)2 − cL
)2
− 4bLH2

L

2bL :=ev+ .

And then, in view of (3.5) and (3.7) we have

bMe2v(ξ2)
−

(
pLe2u−

e2u+ + (aM)2 − cM

)
ev(ξ2) + H2

M > 0,

that is

ev(ξ2) >

pLe2u−

e2u+ +(aM)2 − cM +

√(
pLe2u−

e2u+ +(aM)2 − cM
)2
− 4bMH2

M

2bM :=el+

or

ev(ξ2) <

pLe2u−

e2u+ +(aM)2 − cM −

√(
pLe2u−

e2u+ +(aM)2 − cM
)2
− 4bMH2

M

2bM :=el− .

From (3.7), we obtain

bMe2v(η2)
−

(
pLe2u−

e2u+ + (aM)2 − cM

)
ev(η2) + H2

M > 0,

i.e.
ev(ξ2) > l+ or ev(ξ2) < el− .

In view of Lemma 2.2, we can find that v− < l− < l+ < v+. Thus, we have{
v (ξ2) > l+ or v (ξ2) < l−,
v− < v (ξ2) < v+,

and {
v (η2) > l+ or v (η2) < l−,
v− < v (η2) < v+,
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that is
v (ξ2) ∈ (v−, l−) ∪ (l+, v+) , v (η2) ∈ (v−, l−) ∪ (l+, v+) .

Similarly, we get
u (ξ1) ∈ (u−, u+) , u (η1) ∈ (u−, u+) .

It is easy to know that u±, v±, l± are independent of λ. Consider the following two sets

Ω1 =
{
z = (u, v)T

∈ X
∣∣∣ u− < u < u+, v− < v < l−

}
,

Ω2 =
{
z = (u, v)T

∈ X
∣∣∣ u− < u < u+, l+ < v < v+

}
.

Obviously, Ωi ∈ X and Ω1
⋂

Ω2 = ∅. So Ωi’s (i = 1, 2) satisfy the condition [C1] of Lemma 2.1.
Next, we show that QNz , 0, for ∀z ∈ ∂Ωi ∩ KerL = ∂Ωi ∩ R2 (i = 1, 2).

If it is not true, then there exists (u, v)T
∈ ∂Ωi, such that
∫ T

0
∆1 (z(t), t) dt = 0,∫ T

0
∆2 (z(t), t) dt = 0.

By virtue of the mean value theorem, there exists two points t j ∈ [0,T ] ( j = 1, 2) satisfying{
∆1 (z(t1), t1) = 0,
∆2 (z(t2), t2) = 0.

So, we obtain
u ∈ (u−, u+) ,

and
v ∈ (v−, l−) ∪ (l+, v+) ,

which contradicts (u, v)T
∈ ∂Ωi ∩ R2. So the condition [C2] in Lemma 2.1 holds.

Then, we check the condition [C3] in Lemma 2.1. Define the homomorphism
J : ImQ −→ KerL, Jz ≡ z. From [H3], we have

deg {JQN,Ωi ∩ KerL, 0} =
∑

z∗k∈QN−1(0)

sgnJQN
(
z∗k
)

=
∑

z∗k∈QN−1(0)

det G
(
u∗k, v

∗
k
) n∏

k=1

u∗k
n∏

k=1

v∗k , 0.

This implies that the condition [C3] in Lemma 2.1 holds too. Note that, Ω1 and Ω2 satisfies all
conditions of Lemma 2.1. Therefore, system (1.6) has at least two T−periodic solutions. �

Here, we would like to give two remarks.
Remark 2.1. If we take H1(t) = 0,H2(t) = 0 and b(t) = 0, i.e., system (1.6) without considering the
harvesting terms of prey and predator, as well as the predator competition, we find that the system (1.3)
in [13] is the system (1.6).
Remark 2.2. In [16] and [17], the authors only considered the Gause model (1.4) and (1.5) with prey
harvesting h1, respectively, but they don’t investigate the influence of the predator harvesting. In fact,
the influence of the predator harvesting is very important in biological populations and bioeconomics,
especially in fisheries management etc.
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4. Conclusions

In this paper, we are concerned with a Gause-type predator-prey model with Allee effect, Holling
type III functional response and the artificial harvesting terms, which are very important in biological
populations and bioeconomics. Four important assumptions as regards the interactions between prey
and predator is considered. By applying the Mawhin coincidence degree theory, we obtain the existence
of multiple positive periodic solutions for the predator-prey model.

Acknowledgments

We express our sincere thanks to the anonymous reviewers for their valuable comments and
suggestions. This work is supported by the Natural Science Foundation of China (Grant
No.11771185). The first author supported by Postgraduate Research and Practice Innovation Program
of Jiangsu Province (Grant Nos. KYCX18-2091, KYCX20-2082 and KYCX20-2206).

Conflict of interest

The authors declare no conflict of interest in this paper.

References

1. J. Wang, J. Shi, J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62
(2011), 291–331.

2. Z. Du, X. Zhang, H. Zhu, Dynamics of Nonconstant Steady States of the Sel’kov Model with
Saturation Effect, J. Nonlinear Sci., 30 (2020), 1553–1577.

3. A. J. Lotka, Elements of Physical Biology, Williams & Wilkins Co., Baltimore, 1925.

4. V. Volterra, Variazionie fluttuazioni del numero d’individui in specie animali convivent, Mem.
Acad. Lincei Roma., 2 (1926), 31–113.

5. H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Monogr. Textb. Pure
Appl. Math., vol. 57. Dekker, New York, 1980.

6. K. Hasik, On a predator-prey system of Gause type, J. Math. Biol., 60 (2010), 59–74.

7. X. Ding, B. Su, J. Hao, Positive periodic solutions for impulsive Gause-type predator-prey systems,
Appl. Math. Comput., 218 (2012), 6785–6797.

8. V. Kr̆ivan, On the Gause predator-prey model with a refuge: A fresh look at the history, J. Theo.
Bio., 274 (2011), 67–73.

9. Y. Lv, R. Yuan, Existence of traveling wave solutions for Gause-type models of predator-prey
systems, Appl. Math. Comput., 229 (2014), 70–84.

10. A. J. Terry, Predator-prey models with component Allee effect for predator reproduction, J. Math.
Biol., 71 (2015), 1325–1352.

11. R. Cui, J. Shi, B. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone,
J. Differential Equations, 256 (2014), 108–129.

AIMS Mathematics Volume 5, Issue 6, 6135–6148.



6148

12. Y. Cai, C. Zhao, W. Wang, et al. Dynamics of a Leslie-Gower predator-prey model with additive
Allee effect, Appl. Math. Model., 39 (2015), 2092–2106.

13. K. Baisad, S. Moonchai, Analysis of stability and Hopf bifurcation in a fractional Gauss-type
predator-prey model with Allee effect and Holling type-III functional response, Adv. Differ. Equ.,
2018 (2018), 1–20.

14. X. Guan, F. Chen, Dynamical analysis of a two species amensalism model with Beddington-
DeAngelis functional response and Allee effect on the second species, Nonlinear Anal. Real World
Appl., 48 (2019), 71–93.

15. D. Xiao, L. S. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate
harvesting, SIAM J. Appl. Math., 65 (2005), 737–753.

16. R. M. Etoua, C. Rousseau, Bifurcation analysis of a generalized Gause model with prey harvesting
and a generalized Holling response function of type III, J. Differential Equations, 249 (2010),
2316–2356.

17. S. Laurin, C. Rousseau, Organizing center for the bifurcation analysis of a generalized Gause
model with prey harvesting and Holling response function of type III, J. Differential Equations,
251 (2011), 2980–2986.

18. Z. Du, X. Chen, Z. Feng, Multiple postive periodic solutions to a predator-prey model with Leslie-
Gower Holling-type II functional response and harvesting terms, Discrete Contin. Dyn.Syst. Ser.
S., 7 (2014), 1203–1214.

19. Z. Du, Y. Lv, Permanence and almost periodic solution of a Lotka-Volterra model with mutual
interference and time delays, Appl. Math. Model., 37 (2013), 1054–1068.

20. M. Negreanu, J. I. Tello, Global existence and asymptotic behavior of solutions to a Predator-Prey
chemotaxis system with two chemicals, J. Math. Anal. Appl., 474 (2019), 1116–1131.

21. Z. Du, Z. Feng, X. Zhang, Traveling wave phenomena of n-dimensional diffusive predator-prey
systems, Nonlinear Anal. Real World Appl., 41 (2018), 288–312.

22. X. Chen, Z. Du, Existence of positive periodic solutions for a neutral delay predator-prey Model
with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst., 17 (2018),
67–80.

23. R. Gaines, J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag,
Berlin, 1977.

24. X. Lin, Q. Zhang, Existence of solution for a p-Laplacian multi-point boundary value problem at
resonance, Qual. Theory Dyn. Syst., 17 (2018), 143–154.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 6, 6135–6148.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Existence of positive periodic solutions
	Conclusions 

